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Unit-I 

Primes in Certain Arithmetical 

Progressions and System of Congruences 

 

Primes in certain arithmetical progressions.  

Peano Axioms are    

(1) 1 N where N is the set of natural numbers  

(2) For every natural number n there exists its successor number (n+1) N  

(3) 1 is not the successor of any natural number i.e. o  N.  

(4) Principle of mathematical Induction : If p(n) is a mathematical statement 

which is true for n = 1 and p(n) is true for n = m + 1 whenever it is true for 

n = m then p(n) is true for all natural numbers.  

Law of well ordering  :- Every subset of N has a least element.   

Theorem 1.1 Every natural number n > 1 has a prime divisor (factor) 

Proof :- We shall prove the lemma by induction on n.  

For n = 2, lemma is true ( 2 > 1, 2 has a prime divisor 2) 

Suppose lemma is true for all natural number <n.  Now consider n.  If n is 

prime.  Then the lemma is true because it has a prime divisor n itself.  So 

assume „n‟ to be composite.  Then n has a positive divisor n1, 1 < n, < n such 

that n = n1.n2 where 1 < n2 < n 

Since n1 < n by induction hypothesis n1 has a prime divisor say p.  Then p | n1 

and n1 | n  

  p | n.  This proves the theorem. 

Theorem 1.2 (Euclid) :- The number of primes are infinite 

Proof :- If possible, suppose number of primes are finite.  Let these be p1,          

p2,…pr. 

Consider N = p1 p2…pr +1 

Now N > 1, by above theorem N has a prime divisor say p>1.  But only 

primes are p1, p2,…,pr so  p = pi for some i  

Then p | p1 p2…pr, Also p | N    p | (N  p1. p2…pr) or p | 1, which is a 

contradiction.   

Hence number of primes are infinite 

Note :- Let P = {2, 3, 5, 7, 11, 13,…} be the set of all primes and let S = {3, 5, 

7,…} be the set of odd primes.  Then S can be divided into two mutually 
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disjoint subsets having primes of the form 4n+1, 4n+3 and the set {5, 7, 11, 

13; 17,…} can also be divided into two subsets having prime numbers of the 

form 6n+1 and 6n+5, n = 0, 1, 2,… 

Theorem 1.3 The primes of the form (4n+3) are infinite in number. 

Proof :- If possible, suppose primes of the form 4n+3 are finite and let they be 

p1 . p2,…pr 

Consider N = 4 p1.p2…pr 1.  Then N > 1 

So N can be written as the product of primes.  Now N is odd, N  2.   

Thus N can be written as a product of odd primes, so N can be written as a 

product of primes of the form (4n+1) and (4n+3).  But if N were divisible by 

primes of the form (4n+1) then N would also be of the form (4n+1).  But N is 

of the form (4n+3), so N is divisible by atleast one prime of the form (4n+3) 

say p.  But only primes of form (4n+3) are p1, p2,…, pr,  Then p = pi for            

some i  

Now p | N and p | p1…pr   p | [4(p1  p2…pr)  N]   p | 1, which is a 

contradiction 

Hence, Number of primes of the form (4n+3) are infinite in number.  

Theorem 1.4  The number of primes of the form (6n+5) are infinite in 

number. 

Proof :- If possible, let number of primes of the form (6n+5) are finite and let 

these be p1, p2…pr. 

Let N = 6(p1…pr) 1.  Then N > 1 so N can be written as a product of primes.  

 N can be written as a product of primes of the form (6n+1) and (6n+5).  If 

N were divisible by primes of the form (6n+1) only, then N would be of the 

form (6n+1), so N is divisible by atleast one prime of the form (6n+5) say p.  

But only primes of the form (6n+5) are p1, p2,…, pr,  so p = pi for some i  

Now p | N and p | pi p2…pr,  so  p | [6(p1  p2…pr)  N]   p | 1, which is a 

contradiction  

Hence number of primes of the form (6n+5) are infinite in number.  

Note :- If gcd(a, b) = 1 Then every odd prime factor of a
2
 + b

2
 must be of the 

form 4n + 1.  

For example gcd (4, 3) = 1, 4
2
 + 3

2
 = 25 has an odd prime factor say 5 of the 

form 4n+1 

Theorem 1.5 Primes of the type (4n+1) are infinite in number. 

Proof :- If possible let p1, p2,…pr be the only primes of the type (4n+1).  

Consider N = (2p1 p2…pr)
2
+1 
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Now N is of the type a
2 

+ b
2
 and gcd(a, b) = 1.  Also N is odd so 2     N and all 

the prime factors of N are odd, so all the odd prime factors of N must be of the 

form (4n+1) Let p | N.  Then p will be of the form (4n+1)  But the only primes 

of the form (4n+1) are p1, p2,…,pr, p = pi for some i  

Then p | N and p | (2p1…pr)
2
 i.e. p | 1, which is a contradiction.  Hence 

number of primes of the form (4n+1) are infinite in number.    

Theorem 1.6 Primes of the type 8n+5 are infinite in number  

Proof :- If possible, let p1, p2,…, pr be the only primes of the form (8n+5)  

Consider N = (p1 p2…pr)
2
 +4 = (p1 p2…pr)

2
 + 2

2
  

Then N is of the form a
2
 + b

2
 and 2   p1  p2…pr implies g.c.d(a, b) = 1.  Also N 

is odd, every prime factor of N must be of the form 4n+1.  Now we know that 

square of every odd number is of the type 8n+1.  Since (2n+1)
2
 = 4n

2
 + 4n+1 

= 4n(n+1)+1 = 8k + 1, and so N is of the form 8k +5.    

Now if every prime factor of N is of the type 8n+1 then their product N will 

also be of the form 8n+1 since [(8n1 + 1) (8n2+1) = 64n1n2 + 8(n1 + n2) +1= 

8[8n1n2 + (n1 + n2)] + 1 = 8k + 1 

But N is of the form 8n+5 and so atleast one factor of  N must be of the type 

8n+5 say p. Therefore      p = p1 for some i. Now p | N and p | (p1 p2…Pr )
2
 

 p | [N- (p1 p2… p r )
2 
] 

 p | 4  p  4. 

But the smallest prime of the form 8n+5. So this is a contradiction and 

therefore primes of the type 8n+5 are infinite in  number. 

Fermat numbers  

 A French mathematician Fermat conjectured that Fn = 
n22 +1 

represents primes for all values of n  0 

Note that  F0 = 
022 +1 = 3 

  F1 = 
122 +1 = 5,  F2 = 

222 +1 = 17 

  F3 = 
322 +1 = 257,      F4 = 65537 are all primes. These 

numbers are called Fermat numbers. A Fermat number which is a prime is 

called a Fermat prime.  However no Fermat primes are known beyond F4.  In 

1732, Euler proved that F5 is composite.  However his proof was very 

complicated.  We give an easy proof due to Burmet.  

Theorem 1.7 F5 = 
522 +1 is composite  

Proof :- Let a = 2
7
 = 128 and b = 5 

then  a = b
3
 + 3 or a b

3
 = 3 
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Now   1 + ab b
4
 = 1+b(a b

3
) 

       = 1 + 3b = 16 = 2
4
 

and   F5 = 1)2(1)2(12 48223252  

       = (2
1
  2

7
)
4
 + 1 = (2a)

4
 + 1 = 16a

4
 + 1 = (1+ ab b

4
) a

4
 + 1 

       = (1+ab) a
4
 + (1 a

4
 b

4
) 

       = (1+ab) a
4
 + (1 +ab) (1 ab) (1+a

2
b

2
) 

       = (1 +ab) [a
4
 + (1 ab) (1+a

2
 b

2
)] 

Thus 1 + ab = 1+128 5 = 641 is a divisor of F5.  Clearly f5 > 641 and so F5 is 

composite. 
 
  

Remark :- We have not been able to find any Fermat prime number beyond 

F4 and research is still on.  However it is conjectured that Fn is not a prime for 

n > 4.  But Fermat‟s number have very interesting properties. 

Theorem 1.8 All Fermat numbers are relatively prime to each other i.e., 

  gcd(Fm, Fn) = 1 for m  n 

Proof :- W. L. O. G., we assume that m > n 

Let m = n + k where k  1 

Now  Fm = Fn+k = 1)2(12
k2n2kn2  

Set   x = 
n22  

Then   Fm = 1)x(
k2  

Now  
1x

21)x(

F

2F
k2

n

m  

    = 
1x

1x
k2

 

    = 
1x

)1x()1x(
1k21k2

 

    = 
1x

)1x)(1x)...(1x)(1x)(1x(
3k22k21k2

 

  Fn | (Fm 2) 

Let gcd (Fm, Fn) = d, then d | Fm , d | Fn  and Fn | (Fm 2) 

  d | (Fm 2) and therefore d | [Fm  (Fm 2)] i.e., d | 2 
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 d = 1 or 2.  But d  2 since all Fermat‟s number are odd.  

Hence d = 1 and this proves the theorem.  

Corollary 1 (Euclid) :- The number of primes is infinite.  

Proof :- Let n be any natural number.  Consider F1, F2,…Fn.  Each of Fi > 1 

and so each Fi has a prime factor.  Let p1 | F1, p2 | F2,…pn | Fn ,  where p1, 

p2…pn are primes. 

Since all Fermat numbers are relatively prime i.e., (Fi , Fj) = 1 so pi  pi            

for i  j 

So all the pi‟s are distinct primes.  Thus given any natural number n, there 

exists at least n different primes and so the number of primes is infinite.  

Corollary 2 :-  pn+1  
n22 +1 = Fn, where pi denotes the i th prime in 

ascending order 

Proof :- Since each Fi is divisible by a different prime and F1 < F2 < F3 <…< 

Fn, so there exists at least n primes  Fn. 

But all Fermat numbers are odd and prime 2 is less than all odd primes so at 

least (n+1) primes are less than Fn,  i.e., pn+1  Fn 

Example :- Prove that for n  2, 10 | Fn 7  

or    Fn  7 (mod 10) 

Solution :- We shall prove the exercise by induction on n. 

For n = 2, F2 = 
222 +1 = 17 

and  10 | (17 7) 

   exercise is true for n = 2 

Assume that exercise is true for n = k  

i.e.,   10 | (Fk 7) 

i.e.,  10 | )712(
k2  

i.e.,  10 | )62(
k2  

i.e.,  
k22 6 = 10r,       for r Z     

  …(1) 

Now   2k21k2 )2(2 = (10r + 6)
2
 

   = 100 r
2
 + 120r + 36. 

   = 10(10r
2
 + 12r + 3) + 6 
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   = 10r
1
 + 6 where r

1
 = 10r

2
 + 12r + 3 

  
1k22 6 = 10r

1
     10 | (

1k22 6) 

 10 | [
1k22 + 1  7] 

 10 | (Fk+1 7) 

Thus by mathematical induction exercise is true for all natural numbers n. 

Mersenne Numbers  

Let p be any prime then number of the form  

 Mp = 2
p

1 are called Mersenne numbers.  A Mersenne number which 

is also a prime is called a Mersenne prime. 

Theorem 1.9 Let a  2 and n  2 be natural number.  Let a
n

1 be a prime.  

Then a = 2 and n = p for some prime number p    or   Any prime number of the 

type a
n

1 must be a Mersenne prime 

Proof :- Since a
n

1 = r is a prime so it cannot have any factor q such that 1 < 

q < r 

Now a
n

1 = (a 1) (a
n 1

 + a
n 2 

+…+ a
2 

+ a +1) 

i.e.,  (a 1) | (a
n

1)
 

But a  2, n  2 

If a > 2 then a 1 >1 is a factor of a
n

1 giving a contradiction  

  a = 2 

Again suppose n is composite 

 there exists p, q with 1 < p < n, 1 < q < n such that n = pq
  

Now   a
n

1
 
= a

pq
1 = (a

q
)
p

1
p
 

          = (a
q

1) [(a
q
)
p 1

 + (a
q
)
p 2

 + …+ a+1) 

Now since a = 2, 1 < q < n 

  1 < a
q

1 < a
n

1,  is a factor of a
n

1
 

This implies that a
n

1 is composite which is a contradiction. So n must be 

prime. 

Remark :- Converse of above theorem need not be true  

For example. 

  2
11

1 is not a prime.  So 2
p

1 need not be a prime for all 

primes p  
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Remark :- In 1644, Mersenne conjectured that Mp is prime for  

  p = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257 

and composite for all other primes up to 257 

 Later on it was discovered that he has made some mistakes.  In fact, 

today, we know that Mp is prime for  

  p = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 257, 521, 607, 1279, 

2281. 

as and so on and composite for all other primes  2281 

Thus he had made five mistakes i.e., for  

  p = 61, 67, 89, 107 and 257, i.e., Mp is prime for  

  61, 89, 107 but composite for  

  p = 67, 257. 

Theorem 1.10 If a  2 and n  2 and a
n
 + 1 is a prime, then n = 2

k
 for some k 

 1 and a is even. 

Proof :- If a is odd then a  2  a  3 and so a
n
 +1 is an even number which 

is greater than or equal to 4 and so can not be a prime number. So for a
n
 + 1 to 

be a prime, a must be even.  

Next we claim that no odd prime divides n, if possible, let an odd prime p 

divides n, then n = pq where 1 < q < n and p is an odd prime.  Therefore a
n
+1 

= a
pq

 +1 = (a
q
)
p
 +1

p
.   

    = (a
q
+1) (a

(p 1)
  a

(p 2)
 +… 1) 

Also  1 < a
q
 +1 < a

n
 +1, so that a

q
 +1 is a proper divisor of a

n
 +1 

  a
n
 + 1 can not be a prime which is a contradiction.  

 n must be a power of 2. [no odd prime divides n    only 2 | n    n = 2
k
] 

Theorem 1.11 Let n >1 be a natural number, then n is composite iff n 

contains a prime factor           p n  

Proof :- Let n be composite and p be the smallest prime divisor of n where n 

= pq. Then q  p  Therefore n = pq  p
2
      

     [ q  p]  

  p
2
  n     p n  

 Thus to determine whether n is a prime number or not, it is sufficient 

to find out all primes  n  and check whether any one of these primes 

divides n or not. If there is no divisor among these primes then n must be a 

prime number itself.  In this sieve it is essential to find out all primes  n .  
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Farey Series  

Let n  1 be any natural number.  For every n, the set of fractions h/k such that 

0  h/k  1, 1  k  n written in ascending order of magnitude is called Farey 

series of order n and will be denoted by Fn.  

Construction of Farey Series :- 

F1 
1

0
     

1

1
 

F2 
1

0
  

2

1
   

1

1
 

F3 
1

0
 

3

1
 

2

1
 

3

2
  

1

1
 

F4 
1

0
 
4

1
 

3

1
 

2

1
 

3

2
 

4

3
 

1

1
 

Theorem 1.12 If 
'k

'h
,

k

h
 are two consecutive members of Fn then  

(a) (k + k ) > n 

(b) k  k  if n > 1 

Proof :- W.L.O.G. we assume that  

  
'k

'h

k

h
 

We claim  
'k

'h

'kk

'hh

k

h
      

  …(1) 

Now  
'kk

'hh

k

h
  h k  < kh   

'k

'h

k

h
 

and the last inequality is true by assumption.  In a similar way,  

  
'k

'h

'kk

'hh
 

so that the inequalities (1) are satisfied.   

Proof (a) :- If possible, let (k + k )  n. Since h  k and h   k    h + h   k + 

k  

  
'kk

'hh
 Fn 
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 A fraction 
'kk

'hh
 lies between  two consecutive fractions

'k

'h
,

k

h
 of Fn 

which is a contradiction  

So  (k + k ) > n 

Proof (b) :- If possible, let k = k  where h/k and h /k  are two consecutive 

fractions of Fn for some n.  We note that 
1

1
and

1

0
 are the only two fractions 

with denominator 1. 

Then 
k

'h

'k

'h
1

k

h
 

  h < h  < k 

But h, h , k are integers, so h + 1  h   k 1 < k    

  …(II) 

Now we claim  

  
k

'h

k

1h

1k

h

k

h
     

  …(III) 

To prove this we note 
1k

h

k

h
 and 

k

'h

k

1h
 are clear 

So it remains to prove that 
k

1h

1k

h
 

or  hk < (h+1) (k 1) 

or  hk < hk + k h 1 

i.e.,  (k h 1) > 0. i.e., k > h +1 which is true by (II)  

 All the inequality in (III) are proved thus we have a fraction 
1k

h
 in 

Fn which lies between two consecutive fractions 
k

h
 and 

k

'h
, which is a 

contradiction.  So, we can not have k = k  if n > 1 

Theorem 1.13 Let h/k and h /k  be two successive members of Fn 

  
'k

'h

k

h
 

Then   h k  h k  = 1      …(I) 

Proof :- Since h/k < h /k     
k

h
 is not the last function of fn    
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  0  1
k

h
      …(II) 

Also   g.c.d.(h, k) = 1 

  integers x & y such that  

  kx  hy = 1      …(III) 

Now let (x0, y0) be a solution of (III).  Then clearly (x0 + rh, y0 + rk) is also a 

solution of (III) for every integer r.  Then taking different values of r, the 

entire real line is divided into intervals of length k each  

 

Choose a value of r such that  

  0  n  k < y = y0 + rk  n    …(IV) 

and such that  

  (x = x0 + rh, y = y0 + rk) is a solution of (III) 

Now dividing (III) by k, we get  

  x = 
k

h

k

1
y so that 0 <

k

1
  x < 1+y 

Thus   1  x  y  n 

Further from (III), g.c.d (x, y) = 1 so that  

  
y

x
 Fn 

Now dividing by ky in (III), we get 

  
k

h

ky

1

k

h

y

x
 

 In Fn, 
y

x
occur after h/k  

We claim, 
'k

'h

y

x
 

 Suppose it is not true.  Then x/y must occur after h /k , as h/k and h /k  

are consecutive fraction of Fn.  So that we must have x/y > h /k  > h/k  

Now  
y'k

1

y'k

y'hx'k

'k

'h

y

x
    …(V) 

as x/y > h /k  and so the numerator must be positive  

Similarly, h /k   h/k = 
'kk

1

'kk

'hkk'h
    …(VI) 

           
y0 rk y0 k y0 y0+k y0+rk 
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Adding (V) & (VI) we get 

  
y'kk

n

y'kk

yk

'kk

1

y'k

1

k

h

y

x
    [ By (IV)] 

          > 
yk

1
    ( k   n) 

But by (III), ,
yk

1

k

h

y

x
 which is a contradiction  

So, we must have 
'k

'h

y

x
 

Since y > 0, k  > 0, gcd(x,y) = 1, gcd (h , k ) = 1 

So, we must have  

  x = h . y = k  

But (x, y) satisfies (III). So we must have k h   hk  = 1, which proves (I) 

Remark :- 1. The chice of r gives us an actual method to find next fraction 

h /k  of Fn, if fraction h/k is given  

2. h/k < h /k   1 h /k  < 1 h/k 

Further h/k and h /k  are consecutive fraction of Fn.  So 1 h /k  and 1 h/k are 

also consecutive fraction of Fn, in reverse order.  

Theorem 1.14 Let 
'k

'h
,

k

h
be two consecutive terms of Fn such that 

'k

'h
,

''k

''h
,

k

h
be 

consecutive terms of Fr such that r > n.  Then  

  
'kk

'hh

''k

''h
  

Proof :- Since 
''k

''h
,

k

h
 are consecutive terms of Fr with 

''k

''h

k

h
 and so 

 h k  hk  = 1      …(I) 

Also 
'k

'h
,

''k

''h
 are consecutive terms of Fr and 

'k

'h

''k

''h
  

 and so h  k   h  k  = 1      …(II) 

From (I) and (II), we get 

  h k  hk  = h k   h k  

 h (k + k ) = k (h + h ) 
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'kk

'hh

''k

''h
 

Now consider (h + h )k  (k + k )h = hk + h k  kh  k h  

        = h k  k h = 1   …(III) 

From (III) we conclude that gcd(h + h , k + k ) = 1 

Also gcd(h , k ) = 1 as 
''k

''h
 Fr and so 

  
'kk

'hh

''k

''h
  h  = h + h  and k  = k + k . 

Theorem 1.15 Let 
'k

'h
and

k

h
be two consecutive Farey fractions with 

'k

'h

k

h
,  

then 
'kk

'hh
 is the unique fraction with the smallest denominator among all 

fractions between .
'k

'h
and

k

h
 

Proof :- Let 
y

x
 be any fraction such that  

   
'k

'h

y

x

k

h
 

Then   
k

h

y

x

y

x

'k

'h

k

h

'k

'h
 

   = 
ky

hykx

y'k

x'ky'h
 

Since 
'k

'h

y

x
 ,

y

x

'k

'h
>0 and so (h y  k x)  1 as h , k , x, y are all integers. 

Similarly (kx  hy) 1 

  
y'kk

'kk

ky

1

y'k

1

k

h

'k

'h
     …(1) 

But 
'kk

1

'kk

h'kk'h

k

h

'k

'h
, since 

k

h
and

'k

'h
 are consecutive Farey 

fractions,        …(2) 

From (1) and (2) 
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y'kk

'kk

'kk

1
 y  (k + k )    …(3) 

Since we know  

  
'k

'h

'kk

'kh

k

h
, so 

there exist a fraction lying with 
k

h
 and 

'k

'h
 whose denominator is k + k  

So if x/y is a fraction lying between 
'k

'h
and

k

h
, we should not have y > (k+k ).   

So we must have, y = k + k  in (3).  But the equality in (3) will hold only when 

equality holds in (I) through out.    We have  

  h y  k x = 1   and kx  hy = 1 

or  h y  k x = kx  hy  (k + k )x = (h + h )y 

  y = k + k  

Theorem 1.16    If Fn = 
r

r

2

2

1

1

b

a
,...,

b

a
,

b

a
 

Then (i) r = 1 +
n

1j

(j) 

(ii)  
r

1i

n

1ji

i )j(υ1
2

1

b

a
 and 

(iii)   
1r

1j

(bj  bj+1)
1
 = 1 

Proof :- (i) r = 1+
n

1j

(j) 

We shall prove the result by induction on n and we know that 
1

1
and

1

0
 are the 

only terms in F1 so that the result is true for n = 1.  Assume that the result is 

true for all natural number <n. 

Consider Fn.  Now Fn contains all terms of Fn 1 plus those fractions h/k such 

that gcd(h,n)=1,   

 By definition the number of extra terms is (n)  

 Total number of terms on Fn = the number of terms in Fn 1 + (n) 
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   = 1 +
1n

1j

(j) + (n) 

   = 1 +
n

1j

(j) 

(ii)   
n

1ji

i
r

1i

)j(υ1
2

1

b

a
  

We know 
k

h
 Fn  

k

h
1  Fn 

 So, we write the terms 
i

i

b

a
(i = 1, 2,…,r) in a row  

r

r

3

3

2

2

1

1

b

a
,...,

b

a
,

b

a
,

b

a
 and 

1  
r

r

2

2

1

1

b

a
1,...,

b

a
1,

b

a
, in the second row, we write 1

i

i

b

a
 underneath 

i

i

b

a
 

As 
i

i

b

a
 runs over terms of Fn, 1

i

i

b

a
 must also run over terms of Fn in the 

opposite order.  Now adding the two rows horizontally. 

 So if  S = 
r

1i i

i

b

a
 then 2S = r  S = r

2

1
 = 

n

1j

)j(1
2

1
 

(iii) We know that the last term of function is 
1

1
 and the first term is 

1

0
 so that  

0
b

a
and1

b

a

1

1

r

r  

 Now 1 = 
2r

2r

1r

1r

1r

1r

r

r

r

r

b

a

b

a

b

a

b

a

b

a
 

   +
12

12

3r2r

3r2r

bb

aa
...

bb

ba
+ 

1

1

b

a
      

 But we know that if 
'k

'h
,

k

h
 are consecutive terms with 

'k

'h

k

h
, then h  

k  hk  = 1 

Let us calculate, 
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1ii

i1i1ii

1i

1i

i

i

bb

baba

b

a

b

a
 

   = 
1iibb

1
(bi bi 1)

1
 

Therefore, 1 =
1r

1j 1

11
1jj

b

a
)bb(     

 0
b

a

1

1  

     = 
1r

1j

(bj bj+1)
1
 

Definition :- Let 
'k

'h
&

k

h
 be two consecutive Farey fractions of function such 

that 
'k

'h

k

h
 

Then 
'kk

'hh
 is called a mediant of order n.  

Note that g.c.d. (h + h , k + k ) = 1 and (k + k )  n + 1 

so the mediant of order n does not belong to Fn.  

Further, we know 

  
'kk

'hh

k

h
<

'k

'h
 

The mediant 
n1

10

1n

1
 lying between 

n

1
and

1

0
 is called the first mediant 

of order n and the mediant  

  
1

1
&

n

1n
betweenlying

1n

1)1n(

1n

n
 

is called the last mediant of order n.  If we represent all Farey fractions of 

order n on the unit circle, the totally of all these points on the unit circle is 

called Farey Dissection of the unit circle of order n.  

Definition :- The arc of the unit circle bounded by mediant of order n of next 

mediant of order n is called a Farey arc of order n.  

Remark :- Let 
4

4

3

3

2

2

1

1

b

a
,

b

a
,

b

a
,

b

a
 be consecutive Farey fractions of order n. 
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Then   
3

3

32

32

2

2

21

21

1

1

b

a

bb

aa

b

a

bb

aa

b

a
< 

4

4

43

43

b

a

bb

aa
 

Then the Farey arc bounded by 
32

32

21

21

bb

aa
&

bb

aa
 contains a Farey fraction 

2

2

b

a
 and the Farey arc bounded by 

43

43

32

32

bb

aa
&

bb

aa
contains the Farey 

fraction 
3

3

b

a
and so on.  

Thus each Farey arc contains one & only one Farey fraction. 

The Farey arc bounded by the last mediant n/n+1 and the first mediant 1/n+1 

contains by convention the Farey fraction 
1

0
  

Theorem 1.17 Let x =
k

h
 Fn (n > 1) 

Let x be represented by the point Px on the unit circle.  Suppose Px lies on the 

Farey arc bounded by the points P , P , where  and  are the mediants.  

Then the length of each of the arcs P  Px and P  Px lies between  

  
)1n(k

1
&

)1n2(k

1
 

Proof :- We shall distinguish two cases  

Case I :-  x = 
1

1
or

1

0
 

Then x lies on the Farey are bounded by .
1n

1
&

1n

n
  and the length of  

P  Px =
1n

1
 = length of Px P  

Case II  x  
1

0
 & x  

1

1
 

Then x = 
k

h
 is neither the first fraction nor the last fraction of Fn.  So  Farey 

fractions 
2

2

1

1

k

h
&

k

h
 such that  

  
2

2

1

1

k

h

k

h

k

h
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Then 
k

h
 lies on the Farey arc bounded by  

   = 
2

2

1

1

kk

hh
and

kk

hh
 =  

Thus   P Px = 
)kk(k

)hh(k)kk(h

kk

hh

k

h

1

11

1

1  

            = 
)kk(k

1

)kk(k

hkkh

11

11  

Since 
k

h
&

k

h

1

1  are consecutive fraction of function with  

  
k

h

k

h

1

1  and k  k. 

 maximum value of k + k1 is 2n 1 and (k + k1)  n + 1 

 
)1n2(k

1
  P Px  

)1n(k

1
 

Similarly, 
)1n2(k

1
  Px P   

)1n(k

1
. 

Remark :- We have already proved that given any real number  and an 

integer t  1, there exists integers x & y such that  

  | x y| < 
t

1
 & 0 < x  t. 

Theorem 1.18 Given any real number  and an integer t  1,  integers x & y 

such that 0  x < t and | x y|  1/t+1 

Proof :- Theorem is obvious if 
1t

1
 | x y| 

   = |( +n)x  (nx+y)| 

So if theorem is true for , the above expression shows that it is also true for 

all real number  + n, where n is any integer. 

So w.l.o.g. assume 0 <  < 1.  i.e., we shall consider only the fractional part of 

 if 0 <  < 1 is not satisfied.  Since t  1, we consider Farey series Ft.  For        

t = 1, theorem is obvious. 
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Now assume t > 1.  Since 0 <  < 1, there are two Farey fractions 
2

2

1

1

k

h
&

k

h
 

such that 
2

2

1

1

k

h
α

k

h
, and  mediants  such that either   

1k

1hP P  or  

    P  

2k

2hP  

where   P , 

1k

1hP , 

2k

2hP  

represent the points on the unit circle respectively 

 If  

1k

1hP P , then 

1k

1hP  P   
)1t(k

1

1

 and 1  k1  t 

Since 
1

1

k

h
 is a Farey fraction of order t. 

Then  
)1t(k

1

k

h
α

11

1  

or  |  k1  h1|  
1t

1
 

Similarly, if   P

2k

2hP , we can show 

  |  k2  h2|  
1t

1
 

Hence the theorem. 

Approximation of Irrational numbers by rationals. 

Pigeon hole Principle :- This principle states that if (n+1) objects are to be 

divided into n classes (may be empty) then at least one class will contain at 

least two objects 

Definition :- Let  be any real number.  Then we define  

  { } = Fractional part of  

          =   [ ] 

where [ ] is greatest integer   .  Then by definition  

  0  { } < 1    

Theorem 1.19 Let  be any given real number, then for every integer t > 0, 

there exists integer x, y such that  
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  | x y| < 
t

1
 and 0 < x  t 

Proof :- Take the interval [0, 1). Divide this interval into t subintervals i.e.  

 .1,
t

1t
...

t

2
,

t

1
,

t

1
,0   All these subintervals are mutually 

disjoint.  

Consider the real numbers,  

  {0 }, {1, },… {t }    …( ) 

 These are (t +1) real numbers and we have only t sub-intervals.  So at 

least one sub-interval consists at least two of (t + 1) real nos given in ( ) 

 So there exists two distinct integers i & j such that 

  |{j }  {i  }| < 1/t and  0  i < j  t 

Now by definition {j } = j  y1 for some integer y1 and {i  } = i   y2 

for some integer y2 

  
t

1
>|{j  }  {i  }| = |(j y1)  (i y2)| 

   = |(j  i)   (y1  y2)| 

Set x = j  i and y = y1 y2  Since 0  i < j  t, so 0 < j i  t i.e. 0 < x  t 

and 

  | x y| < 1/t 

Remark :- Given real  and integer t > 0, we can find integers x & y such that 

  | x y| < 1/t,     g.c.d. (x, y) = 1 & 0 < x  t 

Proof :- By the theorem, we can find integers x1 & y1 such that  

  |  x1 y1| < 
t

1
 and 0 < x1  t 

If g c d (x1, y1) = 1, we are through, so let  gcd (x1, y1) = d > 1 and  let  x1 = dx 

& y1 = dy 

Then   gcd (x, y) = 1 
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Now  | x y| = 
dt

1
|yxα|

d

1
11 < 1/t. 

Combining above theorem with remarks, we have  

Theorem 1.20 Let  be any given real number and t > 0 be any given integer.  

Then there exists integers x and y such that gcd (x, y) = 1, 0 < x  t and  

  | x y| < 1/t 

Corollary :- Given any >0, however small, there exists integers x  and y 

such that x > 0 

and   
x

y
α <  

(i.e. real number s are dense in rationals) 

Proof :- Since  > 0 is given choose an integer t such that t > 1/  Now there 

exists integers x & y,   x > 0 such that  

 

  | x  y| < 1/t <  

  
x

y
α < /x <  

Theorem 1.21 Given  > 0, there exists integers x and y such that  

  
x

y
α < 

2x

1
 & gcd (x, y) = 1 

Proof :- We know that we can find integers x and y such that gcd(x, y) = 1, 0 

< x  t (where t > 0 is any integer) and 

  | x y| < 1/t 

Then  
x

y
α < 

tx

1
  

2x

1
 since x  t 

Theorem 1.22 Let  be any rational number then  only a finite number of 

pairs of integers (x, y) such that    

x > 0, gcd(x, y) = 1. 

and              
x

y
α  < 1/x

2
 

Proof :- Since  is rational, let  = h/k where k > 0 & gcd (h, k) = 1 then  
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0 = | k h | < 1/x
2
 

Thus there exists at least one pair (h, k) satisfying the given condition. 

Let   
x

y
α < 1/x

2
 such that x > 0 & (x, y) = 1   

  …(1) 

Then   | x y| < 1/x 

  x 
x

1
< y < x + 1/x 

Here y lies in an interval of length 
x

2
 2, and so given x, y can take at most 3 

values. 

Further, setting  = 
k

h
 in (1) we get 

  
kx

|kyhx|

x

y

k

h

x

1
2

 

If hx  ky  0, then |hx  ky|  1 

  
kx

1

x

1
2

  k > x 

Also,  x > 0 

  0 < x < k 

and so x can take at most (k 1) values. 

 Thus the pair (x, y) can take at most 3(k 1) values  

Theorem 1.23 Let  be any irrational number. Then  infinitely many pairs 

(x, y) satisfying  

  
x

y
α <

2x

1
, x > 0 and gcd (x, y) = 1  …(1) 

Proof :- We know that there exists at least one pair (x, y) satisfying (1) 

If possible, let there be only a finite number of pairs (x, y) satisfying (1) Let 

these pairs be  

 (x1, y1), (x2, y2),…,(xr, yr) 

Let  i > | xi  yi|           (i = 1, 2,… ,r)  
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Then each i > 0 since  is irrational.  Let  < min ( 1, 2… r). Take t > 

1/ .  Then there exists integers x, y such that  

  0 < x  t, gcd (x, y) = 1 & | x y| < 1/t <  

Also  
x

y
α < 

2x

1

tx

1
    ( 0 < x  t) 

 This pair (x, y) also satisfies (1)  But | x  y| <  and so this pair (x, y)  

(xi, yi) for any i which is a contradiction  

 Combining all these results we get the following theorem    

Theorem 1.24 Let  be any given real number then  

(1) Given integer t > 0, there exists a pair of integers (x, y) such that 0 < x  t, 

gcd(x, y) = 1 and  

  | x y|  1/t 

(2) Let  be any given real no. then  pairs (x, y) such that x > 0, gcd (x, y) = 

1 & 
x

y
α  < 1/x

2
.  Further  the number of above pairs is finite if  i rational 

and the number of pairs is infinite if  is irrational.  

Hurwitz’s Theorem  

Theorem 1.25  Given any irrational number , there exist infinitely many 

pairs (h, k) of integers such that  

  
2k5

1

k

h
ξ      …(I) 

Proof :- Since 
2k5

1

k

h
ξ ,   

2k5

1

k

hnk
)nξ(  

So w.l.o.g. we assume that 0   < 1.  Further  is irrational, so   0, so we 

assume 0 <  < 1 

Let n N.  Consider Farey series of order n. 

Since  is irrational,  two consecutive Farey fraction 
d

c
&

b

a
 of order n such 

that  

  
d

c
ξ

b

a
 

Then either  < 
db

ca
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or   > 
db

ca
 

First we shall prove that in either case at least one fraction out of a/b, 
d

c
 & 

cb

ca
 satisfy (1) 

 Suppose none of these fraction satisfy (1).  Now to prove Hurtwitz 

theorem, we first prove a Lemma.  

Lemma :- If x and y are positive integers then the following two inequalities  

  
22 y

1

x

1

5

1

xy

1
     …(2)  

and   
22 )yx(

1

x

1

5

1

)yx(x

1
   …(3)  

can not hold simultaneously.  

Proof of Lemma :- If possible, let both the inequalities (2) and (3) hold. 

Then, we get 

  5  xy  x
2
 +y

2
     …(4) 

and  5  x(x +y)  x
2
 +(x +y)

2
    …(5) 

Adding (4) and (5) we get 

  5 (x
2
 +2xy)  3x

2
 + 2y

2
 + 2xy 

or  (3 5 ) x
2
 + 2y

2
 2( 1 + 5 ) xy  0 

Multiplying by 2, we get 

  (6 2 5 ) x
2
 + 4y

2
 4( 5 1)xy  0 

  (( 5 1) x 2y)
2
  0 

But a square quantity can not be less than zero i.e. 

  (( 5 1)x 2y)
2  

= 0 
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  ( 5 1)x 2y =0 

  5  is a rational number which is not so. Thus (2) and (3) can 

not hold simultaneously.  Hence the lemma. 

Now to prove the theorem, we shall distinguish two cases  

Case I    < 
db

ca
 

Then we get 
2b5

1

b

a
ξ  

But   
2b5

1

b

a
ξ

b

a
ξξ

b

a
   …(6) 

Also   <
2)db(5

1

db

ca

db

ca

db

ca
 …(7) 

and   < 
2d5

1
ξ

d

c

d

c
ξ

d

c
   …(8) 

Adding (6) and (8) we get 

  
bd

1

bd

adbc

b

a

d

c

d

1

b

1

5

1
22

  …(9) 

    ( 
d

c
&

b

a
are consecutive 

Farey fractions) 

Adding (6) and (7) we get 

  
)db(b

)db(a)ca(b

b

a

db

ca

)db(

1

b

1

5

1

22
 

   = 
)db(b

1

)db(b

adbc
    …(10) 

But we have already proved that not both of the inequalities  

  
22 y

1

x

1

5

1

xy

1
. 

and  
22 )yx(

1

x

1

5

1

)yx(x

1
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can hold simultaneously.  So (9) and (10) violate the above Lemma and so in 

this case at least  one of 
db

ca
,

d

c
,

b

a
 must satisfy (1) 

Case II 
db

ca
 <  

Since 
d

c
ξ

b

a
.  So (6), (8) and (9) also holds in this case 

However  
db

ca
 , so  

  
2)db(5

1

db

ca
ξ

db

ca
ξ    …(11)  

Adding (8) and (11) we get 

  
db

ca

d

c

)db(

1

d

1

5

1
22

 

   = 
)db(d

adbc

)db(d

)ca(d)db(c
 

   = 
)db(d

1
     …(12) 

 Now (9) and (12) violate the condition of the Lemma, so at least one 

of 
db

ca
,

d

c
,

b

a
 must satisfy (1) in this case also. 

Thus  at least one fraction 
k

h
 satisfying (1) and 

k

h
 is either equal to 

db

ca
or

d

c
or

b

a
 

Since ,
d

c
ξ

b

a
 so 

  
b

a

db

ca

db

ca

d

c

b

a

d

c

k

h
ξ  

   = 
)db(b

1

)db(d

1

b

a

db

ca

db

ca

d

c
 

But (b + d)  n +1, since 
d

c
&

b

a
 are consecutive Farey fractions. 
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1n

2

)1n(b

1

)1n(d

1

k

h
ξ    ( b  1, d  1) 

Now to establish that (1) is satisfied by infinitely many rationals 
k

h
, suppose 

there are only a finite number of 
k

h
 satisfying (1) 

Let   = min
k

h
ξ ,  where minimum ranges over the finitely many 

rational numbers satisfying (1).  Since  is irrational this minimum must be 

bigger than zero, i.e.  > 0.  Choose a rational number n such that  

  (n+1) > 
ε

2
. 

For this number n, as shown above  a rational number 
1

1

k

h
 satisfying (1) such 

that  

  
1n

2

k

h
ξ

1

1 <  

and so 
1

1

k

h
 must be different from the finitely many rational number 

considered above, which is a contradiction and so there must exist infinitely 

many rational number h/k satisfying (1) 

 This proves Hurwitz‟s theorem. 

Theorem 1.26 Prove that 5  occurring in the statement of Hurwitz‟s theorem 

is best possible in the sense that if 5  is replaced by any larger real number 

say m then  an irrational number  such that  

  
2km

1

k

h
ξ         …(1) 

does not hold for infinitely many rational number h/k. 

Proof :- Take  = 
2

51
 

then  > 1 and 5ξ
2

51
ξ  
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We shall prove that if m is any real number with  = 
2

51
 and (1) is 

satisfied by infinitely many rational numbers ,
k

h
 the m 5  

So we assume that (1) is satisfied by infinitely many rational numbers 
k

h
 

Now (x ) (x ξ ) = (x ) (x + 5 ) = x
2

x 1   …(2) 

Now for all integers h, k,       k > 0 

  
22

2

k

1
1

k

h

k

h
5ξ

k

h
.ξ

k

h
 | h

2
 hk k

2
| 

Now, since any rational number h/k is not a root of x
2

x 1 = 0 so |h
2
  hk k

2
| 

 1 

  
2k

1
5ξ

k

h
ξ

k

h
    …(3) 

Since  infinitely many rational numbers 
k

h
 satisfying (1),  sequence 

,...3,2,1i,
k

h

i

i
 

of rational numbers satisfying (1) 

Then   
2
ii

i

km

1
ξ

k

h
 

or  |hi   ki| < 
ikm

1
  

But we know 

  |x a| <    a  <x < a +  

   ki 
imk

1
< hi <  ki +

ikm

1
 

Then for each value of ki, there exists a finite number of hi‟s 

Since (1) is satisfied by all s'
k

h

i

i ,   so  ki  as i . 

Further  5ξ
k

h
ξ

k

h

k

1

i

i

i

i

2
i
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          5
k

h

k

h

i

i

i

i
 

          5
mk

1

km

1
2
i

2
i

    

 (
i

i

k

h
 satisfy (1)) 

Multiply by mki
2
 

  m  5
mk

1
2
i

    m  5 , for all i large enough. 

Theorem 1.27               e is irrational 

Proof :- By definition  

  e = 1 +
3|

1

2|

1

1|

1
+….. 

If possible let e be rational and let e = ,
b

a
 b > 0 ad g.c.d. (a, b) = 1.  Now 

consider  
b|

1
...

2|

1

1

1
1eb| =  

then  is an integer since,  e = a/b is rational  

Also by definition of e,  > 0. 

   = .....
2b|

1

1b|

1
b|   

   = ...
)2b)(1b(

1

1b

1
  

      < 
2)1b(

1

1b

1
 

      = 1
b

1

1b

1
1

)1b(1
     [ b  1] 

Thus 0 <  < 1 is a contradiction since no integer lies between 0 and 1, so e is 

irrational.  
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Theorem 1.28   is irrational  

Let us first prove the following lemma  

Lemma :- Let f(x) = 
n|

)x1(x nn

 

then f(0), f(1) and f
(i)

(0), f
(i)

(1) are all integers for all i  0.  Also 0 < f(x) < 

n|1  whenever x (0, 1). 

Proof of Lemma :- Clearly f(0) = f(1) = 0 (By definition of f(x)) 

We can rewrite f(x) as  

  f(x) = 
n2

ni

i
i xc

n|

1
 

Let i  1.  Now in f
(i)

(x), for i < n, we do not have any constant degree term 

and so  

  f
(i)

(0) = 0 for i < n 

Further f(x) is of degree 2n, so 

  f
(i)

(x) = 0 for i > 2n 

So let   n  i  2n 

Then   f
(i)

(0) = 
n|

i|n2

ni

ci 

which is an integer since n  i  2n 

 f
(i)

(0) is an integer for all integers i  0 

Also by definition,  f(x) = f(1 x)      

   

 f
(i)

(1 is also an integer  i  0. 

Proof of Theorem :- To prove the theorem, it is enough to prove that 
2
 is 

irrational for if 
2
 is irrational then  can not be rational.  If possible, let 

2
 = 

b

a
 where g.c.d. (a, b) = 1, b > 0 

Define a function  

G(x) = b
n
{

2n  
f(x)  

2n 2
 f (x) + 

2n 4
 f

(IV)
(x) +…+  ( 1)

n
 f

(2n)
(x)} 
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Then by lemma f
m

(0) & f
m

(1) are integers  m  0, so G(0) and G(1) are 

integers.  Now consider 

 
dx

d
(G (x) sin  x  G(x) cos x) 

 = G (x) sin x +  G (x) cos x,  G (x) cos  x + 
2
 G(x) sin x 

 = (G (x) + 
2
 G(x)) sin x     …(1) 

Now   

       G (x) = b
n
 {

2n
 f (x) 

2n 2
 f

(IV)
(x) + 

2n 4
 f

(VI)
(x) +…+ ( 1)

n
 f

(2n+2)
(x)) 

Also 

2
G(x) = b

n
{

2n+2
 f(x) 

2n
 f (x) + 

2n 2
 f

(IV)
(x) +…+( 1)

n
 

2
 f

(2n)
(x)} 

Adding we get 

  G (x) + 
2
 G(x) = b

n
 {

2n+2
 f(x) + ( 1)

n
 f

(2n+2)
(x)} 

But f(x) is of degree 2n, so f
(2n+2)

(x) = 0 and so  

  G
II
(x) + 

2
G(x) = 

2n+2
 b

n
 f(x)    …(2) 

But   
2
 = 

b

a
 

  
2n+2

 b
n
 = a

n
 

2
      …(3) 

 From (1), (2) and (3) we get  

  
dx

d
(G (x) sin x   G(x) cos  x) 

   = a
n
 

2
 f(x) sin x 

  a
n 2

 
1

0

)x(f sin x dx 

   = [G (x) sin x  G(x) cos x 1
0]   

              = G(1) cos  +  G(0) cos 0 

   =  (G(0) + G(1)) 

  G(0) + G(1) = a
n

1

0

)x(f sin x dx   …(4) 

Now 
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 sin x is positive in (0, 1) and 0 < f(x) < n|1  in (0, 1) 

 So by First mean value theorem of integral calculus, we have  

  0 < a
n

1

0

)x(f  sin x <
1

0

n

πsin
n|

πa
x dx 

   =
n|

a n

[  cos  x 1
0]  

   = 2
n|

a n

< 1 

for n large enough since 
0n n|

a n

 converges to e
a
 and to its nth term must tend 

to zero.  But L.H.S. of (4) is an integer and so we get contradiction.  
2
 must 

be irrational. 

Fibonacci Sequence 

Definition :-    A sequence in which first two terms are unity and then each 

term is the sum of the two that immediately precede it, is called Fibonacci 

sequence.  Mathematically, this sequence can be formulated as 

  u1 = u2 = 1 ; un = un 1 + un 2  for  3.  Some initial terms of this 

sequence are  

  1, 1, 2, 3, 5, 8, 13, 21,……………….  

Lucas Sequence 

Definition :- A sequence in which first two terms are 1 and 3 respectively 

and then each term is the sum of the two that immediately precede it, is called 

Lucas sequence. Mathematically, this sequence may be formulated as : 

  L1 = 1, L2 = 3, Ln = Ln 1 + Ln 2 for n  3  

i.e. Lucus sequence is, 

  1, 3, 4, 7, 11, 18, 29, 47,……….. 

Note 1. Fibonacci numbers are sometimes denoted by Fn instead of un etc. 

Note 2. Some authors use the term Fibonacci series and Lucas series in place 

of Fibonacci sequence and Lucas sequence.  One should not get confused in 

two.  

Some identities on Fibonacci and Lucas sequences :-  

(I) u1 + u3 + u5 +… + u2n 1 = u2n 

(II) u2 + u4 + u6 +…+ u2n = u2n+1 1 
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(III) L1 + L2 + L3 +…+ Ln = Ln+2 3, n  1 

(IV) L1 + L3 + L5 +…+ L2n 1 = L2n  2, n  1 

(V) L2 + L4  +  L6 +…+ L2n = L2n+1 1, n  1 

(VI) Ln = un+1 + un 1 = un + 2un 1, n  2 

(VII) Ln = un+2  un 2, n  3 

Proof :- (1) We have 

  u1 = u2    (both are 1) 

Also,  u3 = u4 u2   ( u4 = u3 + u2) 

Similarly, u5 = u6  u4 

  u7 = u8  u6 

  …………… 

  …………… 

  u2n 3 = u2n 2  u2n 4  

  u2n 1 = u2n  u2n 2 

Adding all these equations, we get 

  u1 + u3 + u5 +…+ u2n 1 = u2n (all other terms cancel) 

(II) We have  

  u2 = u2 

Also,  u4 = u5  u3   ( u5 = u4 + u3) 

Similarly, u6 = u7  u5 

  u8 = u9  u7 

  ………….. 

  ………….. 

  u2n 2 = u2n 1  u2n 3 

  u2n = u2n+1  u2n 1 

Adding all these equation, we get 
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  u2 + u4 + u6 +…+  u2n = u2+ u3 + u2n+1 

  u2 + u4 + u6 +…+  u2n = 1 2 + u2n+1 

     = u2n+1 1. 

(III) We shall prove the result by induction on n.  For n = 1,  

  L.H.S. = L1 = 1 

and  R.H.S. = L3 3 = 4 3 = 1 

Thus, the identity holds for n = 1. 

Let us assume that, the identity holds for n = k i.e.  

  L1 + L2 +…+ Lk = Lk+2 3    …( ) 

Now for n = k + 1, we have 

  L1 + L2 +…+ Lk + Lk+1 = Lk+2 3 + Lk+1  [By ( )]  

or  L1 + L2 +…+ Lk + Lk+1 = Lk+3 3 

or  L1 + L2 +…+ Lk + Lk+1 = L(k+1)+2 3 

Thus, the identity holds for n = k + 1.  Hence by Principle of mathematical 

induction, the identity holds for all natural numbers n.  

(IV) We have 

  L1 = L1  

Also,  L3 = L4  L2     ( L4 = L3 + L2) 

Similarly, L5 = L6  L4 

  L7 = L8  L6 

  …………… 

  …………… 

  L2n 3 = L2n 2  L2n 4 

  L2n 1 = L2n  L2n 2 

Adding all these equations we get  

  L1 + L3 + L5 +…+ L2n 1 = L1  L2 + L2n 

         = 1  3 + L2n 
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         = L2n 2 

(V) We have L2 = L2 

Also,  L4 = L5  L3    ( L5 = L4 + L3) 

Similarly, L6 = L7  L5 

  L8 = L9  L7 

  …………… 

  L2n 2 = L2n 1  L2n 3 

  L2n = L2n+1  L2n 1 

Adding all these equations, we get 

  L2 + L4 +…+ L2n = L2  L3 + L2n+1 

         = 3 4 + L2n+1 = L2n+1 1. 

(VI) we shall prove the identity by induction on n. 

For n = 2,  L. H. S. = L2 = 3 

and  R. H. S. = u3 + u1 = 2+1 = 3 

Thus, the identity holds for n = 2 

Let us assume that the identity holds for all natural numbers k < n  

i.e.  Lk = uk+1 + uk 1  k < n 

Now consider,  

  Ln = Ln 1 + Ln 2    (by definition) 

       = (un + un 2) + (un 1 + un 3) 

    (by induction hypothesis for n  1 and n 2) 

  Ln = (un + un 1) + (un 2 + un 3) 

       = un+1 + un 1 = (un + un 1) + un 1 = un + 2 un 1 
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Hence the identity is established. 

(VII) We shall prove the identity by induction on n. 

For n = 3, L. H. S. = L3 = 4 

 R. H. S. = u5  u1 = 5 1 = 4 

Thus, the identity holds for n = 3 

Let us assume, that the identity holds for all natural numbers k < n. 

i.e. Lk = uk+2  uk 2  k < n 

Now, consider,  

  Ln = Ln 1 + Ln 2 = (un+1  un 3) + (un  un 4) 

    (by induction hypothesis, for n  1, n  2) 

       = (un+1 + un)  (un 3 + un 4) 

       = un+2  un  2 

     Hence the identity is established.  

Theorem 1.29.  Prove that for the Fibonacci sequence,  

  gcd (un, un+1) = 1 for every n  1 

Proof :- Let, if possible, gcd (un, un+1) = d > 1 

  d | un, d | un+1   d | (un+1  un) 

             d | un 1 

Again, d | un, d | un 1   d | (un  un 1) 

           d | un 2 

Continuing like this, we can show that  

  d | un 3, d | un 4,… and finally d | u1 

But u1 = 1 which is certainly not divisible by any d > 1. 
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Thus d = 1 and the proof is completed.  

Lemma :- Prove that  

  um+n = um 1 un + um un+1     

  …(1) 

Proof :- For fixed m, we shall prove the result (1) by induction on n.  

For n = 1, (1) becomes, um+1 = um 1 u1 + um u2 

             = um 1 + um     ( u1 = u2 = 1) 

which is true by definition and the result is true for n = 1.  Let us assume that 

result is true for n = 1, 2,…, k and now we shall prove it for n = k + 1. 

By induction hypothesis, we have  

  um+k = um 1 uk + um uk+1 

and  um +(k 1) = um 1 uk 1 + um uk 

Adding these two, we get. 

  um+k + um + (k 1) = um 1 (uk + uk 1) + um (uk+1 + uk) 

         = um 1 uk+1 + um uk+2 

So that the result holds for n = k + 1 

Hence by induction principle the result is true for all the integers n.  Now by 

changing m and by the above discussion, we conclude that the result (1) holds 

for all positive integers m and n. 

Remark 1. If b | c, then gcd (a +c, b) = gcd (a, b) 

Remark 2. If gcd (a, c) = 1, then gcd (a, b c) = gcd (a, b) 

Theorem 1.30   Prove that for m  1, n  1, umn is divisible by um. 

Proof :- We shall prove the result by induction on n.  The result is trivial for n 

= 1.  Let us assume, that the result is true for n = 1, 2,…, k i.e. umn is divisible 

by um for         n = 1, 2,…k.  Now we shall prove that um(k+1) is divisible by um. 

We have, 

  um (k+1) = umk+m = umk 1 um + umk um+1   …(1) 

Now, by induction hypothesis, umk is divisible by um, so that R.H.S. of (1) and 

hence L.H.S. of (1) is divisible by um i.e. um(k+1) is divisible by um.  The proof 

is thus completed using principle of mathematical induction.  

Lemma :- If m = qn+r, then prove that  

  gcd (um, un) = gcd (ur, un) 

Proof :- We have  

  gcd(um, un) = gcd (uqn+r, un) 
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          = gcd(uqn 1 ur + uqn ur+1, un)   

  …(1) 

Now by above theorem un | uqn   un | uqn ur+1, 

so that by remark 1 stated above, we have  

  gcd(uqn 1 ur + uqn ur+1, un) = gcd(uqn 1 ur, un) 

So that (1) becomes : 

  gcd (um, un) = gcd (uqn 1 ur, un)    

  …(2) 

Now, we claim that,  

  gcd(uqn 1, un) =1. 

Let gcd (uqn 1, un) = d   d | uqn 1 and d | un 

Now, d | un and un | uqn   d | uqn i.e. d is a common divisor of two successive 

Fibonacci numbers namely, uqn and uqn 1 but successive Fibonacci number are 

coprime. So d = 1, the claim is thus completed.  Hence using remark (2) stated 

above, we have 

  gcd(uqn 1 ur, un) = gcd (ur, un) 

So that (2) becomes : 

  gcd(um, un) = gcd (ur, un) and proof is completed.  

Theorem 1.31 The greatest common divisor of two Fibonacci numbers is 

again a Fibonacci number.  More specifically,  

  gcd(um, un) = ud where d = gcd(m, n) 

Proof :- W.L.O.G let us assume that m  n.  Applying the division algorithm 

to m and n, we get the following system of equations.  

  m = q1n + r1  0 < r1 < n   

  n = q2 r1 + r2  0 < r2 < r1 

  r1 = q3 r2 + r3  0 < r3 < r2 

  …………….  ………… 

  …………….  ………… 

  rn 2 = qn rn 1 + rn 0 < rn < rn 1 

  rn 1 = qn+1 rn + 0  
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Now, by above lemma, we have  

 gcd(um, un) = gcd )u,ugcd()u,u(
2r1rn1r

 

 …, = gcd )u,u(
nr1nr    …(1) 

Now from the last equation of above system, we have  

  rn | rn 1 i.e. rn 1 is an integral multiple of rn and hence
1nr

u  is 

divisible by 
nr

u  (we have proved the theorem that umn is divisible by um  m 

 1, n  1) 

Hence gcd )u,u(
nr1nr

 = 
nr

u  

So that (1) implies that gcd(um, un) = 
nr

u     …(2) 

But it should be noted that in above system of equations rn is the last non zero 

remainder in the division algorithm for m and n so that  

  gcd(m, n) = rn 

Hence (2) provides that gcd(um, un) = ugcd(m, n) 

This completes the proof. 

Corollary (1) :- Prove that if gcd(m, n) = 1, then gcd (um, un) = 1 

Proof :- Taking d = 1 in the above theorem and noting that  

  u1 = 1, we get the result.    

Corollary (2) :- In the Fibonacci sequence, um | un if and only if m | n. 

Proof :- Firstly, let m | n, then n = mk for any integers k.  But we know that 

um | umk    um | un. 

Conversely, let um | un then gcd(um, un) = um.  But by above theorem, gcd(um, 

un) = ugcd(m, n) 

 gcd(m, n) = m  m | n. 

Theorem 1.32 Prove that every positive integer can be represented as a finite 

sum of Fibonacci numbers, none used more than once.  Or Prove that every 

positive integer can be written as a sum of distinct Fibonacci numbers. 

Proof :- Clearly, we have  

  1 = u1 ; 2 = u3 ; 3 = 1 + 2 = u1 + u3 etc. 
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To prove the result for every natural number, we shall show that each of the 

integers 1, 2, 3,…, un 1 is a sum of numbers from the set {u1, u2,…, un 2} and 

we shall prove this by induction on n.  

 Let us assume that the result holds for n = k i.e. each of the integers 1, 

2, 3,…, uk 1 is a sum of numbers from the set {u1, u2… uk 2} Now choose N 

such that  

  uk 1 < N < uk+1 

From this, we have N  uk 1 < uk+1  uk 1 = uk 

 N  uk 1 < uk 

 N  uk 1  uk 1 

So by induction hypothesis N  uk 1 is representable as a sum of distinct 

numbers from the set  {u1, u2,…, uk 2}.  This implies that N is representable as 

a sum of distinct numbers from the set   {u1, u2,…, uk 2}.  This implies that N 

is representable as a sum of distinct numbers from the set  {u1, u2,…, uk 2, 

uk 1}.  Consequently each of the integers 1, 2, 3,… uk+1 1 can be expressed 

as a sum of numbers from the set {u1, u2, …, uk 2, uk 1}.  This completes the 

induction step and hence the theorem. 

System of Linear Congruences 

Definition :- Let m be a fixed positive integer.  Two integers a and b are said 

to be congruent modulo m denoted by a  b (mod m) if m divides a b i.e. a  

b = km for some integer k. 

Theorem 1.33 Let a, b, c, d, m be integers (m > 0), then  

(i) If a  b (mod m), b  c(mod m), then a  c(mod m) 

(ii) If a  b (mod m), c  d(mod m), then a + c  b + d (mod m) 

(iii) If a  b (mod m), c  d(mod m), then ac  bd (mod m) 

(iv) If a  b(mod m), d | m (d > 0), then a  b (mod d) 

(v) If a  b(mod m), then ac  bc(mod cm), c > 0 

Proof :- (i) Given that a  b(mod m)   m | (a b) 

   b  c (mod m)   m | (b c) 

  m | [(a b) + (b c)]   m | (a c) 

          a  c(mod m) 

(ii)  a  b(mod m)   m | (a b) 

  c  d(mod m)   m | (c  d) 

  m | [(a b) + (c d)]   m | [(a+c)  (b+d)] 



                                                             ANALYTICAL NUMBER THEORY  44 

 (a + c)  (b + d) (mod m) 

(iii)  a  b (mod m)   m | (a b) 

 c  d(mod m)   m | (c-d) 

 a  b = mk and c d = mk  for some integers k, k   

 a = b + mk and c = d + mk  

Multiplying these two, 

  ac = bd + bm k
1
 + dmk + m

2
 kk  

 ac = bd + m(bk  + dk + mkk ) 

 ac  bd = mk  where k  = bk  + dk + mkk  is an integer. 

 m | (ac  bd) 

 ac  bd(mod m) 

(iv) a  b(mod m)   m | (a b) 

Also d | m and m | (a b)   d | (a b) 

Hence a  b(mod d) 

(v)  a  b(mod m) 

 m | (a b)   mc | (a b) c   mc | (ac bc) 

 ac  bc(mod mc) 

Theorem 1.34 Let f(x) be a polynomial with integral coefficients and a  b 

(mod m), then  

f(a)  f(b) (mod m) 

Proof :- Let f(x) = a0 x
n
 + a1 x

n 1
 +…+ anx,  where a0, a1,…, an are integers. 

Since  a  b(mod m), so we must have    …(1) 

 

  a
2
  b

2
(mod m)     …(2) 

  a
3
  b

3
(mod m)     …(3) 

  ……………… 

  ……………… 

  a
n
  b

n
(mod m)     

 …(n) 

Multiplying equation (1) by an 1, (2) by an 2,…, (n) by a0 we get 

  an 1 a  an 1 b(mod m) 

  an 2 a
2
  an 2 b

2
(mod m) 
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  an 3 a
3
  an 3 b

3
(mod m)    …( ) 

  ……………………….. 

  ……………………….. 

  a0 a
n
  a0 b

n
 (mod m)   

Also, we know that  

  an  an(mod m) 

Adding this with all the congruences in ( ), we get 

  an + an 1 a +…+ a0 a
n
  an + an 1 b +…+ a0 b

n
 (mod m) 

 f(a)  f(b) (mod m) 

Theorem 1.35 Prove that  

(i)  ax  ay(mod m)      x  y mod
)m,agcd(

m
   

(ii) If ax  ay(mod m) and (a, m) = 1 then x  y (mod m) 

(iii)  x  y (mod mi) for i = 1, 2,…, r iff,  x  y(mod [m1, m2,…, mr]) 

where [m1, m2,…, mr] denotes the  cm of m1, m2,…, mr. 

Proof :- (i) Given that, ax  ay (mod m)   m | (ax ay) 

 ax  ay = mz for some integer z 

 z
)m,agcd(

m
)yx(

)m,agcd(

a
 

So that, we get that  

  )yx(
)m,agcd(

a

)m,agcd(

m
    …(1) 

But we know that, gcd
)m,agcd(

m
,

)m,agcd(

a
 = 1 

 (1) implies that, 

  )yx(
)m,agcd(

m
    (Using the result that if a | bc and 

(a, b) = 1 then a | c) 

  x  y mod
)m,agcd(

m
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Conversely, let x  y
)m,agcd(

m
mod  

 )yx(
)m,agcd(

m
 

 m | gcd(a, m) (x y) 

 m | a(x y)   ( gcd(a, m) | a) 

 ax  ay(mod m) 

(ii) This is a special case of part (i), by taking gcd(a, m) = 1, we get the result 

(iii) Let x  y(mod mi) for i = 1, 2,…, r 

 mi | (x y) for i = 1, 2,…, r 

i.e., x y is a common multiple of m1, m2,…, mr but [m1, m2,…, mr] is least 

common multiple of m1, m2,.., mr so by definition of cm, [m1, m2,…, mr] is a 

divisor of (x y) 

i.e.  x  y(mod [m1, m2,…, mr]) 

Conversely, let x  y (mod [m1, m2,…, mr]) 

Now mi | [m1, m2,…, mr] 

So  x  y(mod mi)   

This completes the proof. 

Definition :- (Complete Residue System) 

 A set {a1, a2,…, am} of integers is said to be complete residue system 

mod m if  

(i) ai  aj(mod m) for i  j 

(ii) For each integer n, there exists a unique ai such that n  ai (mod m) 

For example,  

 The set {1, 2,…, m 1, m} is a complete residue system mod m. 

Definition :- (Reduced Residue System)  

 A set {b1, b2,…, bk} of integers is said to be reduced residue system 

mod m if  

(i) (bi, m) = 1, i = 1, 2, …, k 

(ii) bi  bj (mod m) for i  j 

(iii) If n is any integer which is coprime to m, then there exists a unique bi 

such that                            n  bi(mod m) 
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Remark :- It is clear from the two definitions that a reduced residue system 

mod m can be obtained by deleting those members from a complete residue 

system mod m which are not relatively prime to m. 

Theorem 1.36 Let {r1, r2,…, rn} be a complete (or reduced) residue system 

mod m and let (a, m) = 1 then (ar1, ar2,…, arn} is a complete (or reduced) 

residue system mod m. 

Proof :- If (ri, m) = 1, then (ari, m) = 1 

Clearly, the number of ar1, ar2,…, arn and of r1 r2,…, rn is same.  Thus, we 

need only to show that ari  arj (mod m) if i  j. 

Let, if possible, ari  arj (mod m), i  j 

then  ri  rj(mod m), i  j  ( (a, m) = 1) 

a contradiction, since {r1, r2,…, rn} is a complete (or reduced) residue system.  

This completes the proof  

Remark :- In the case of complete residue system, we also have the following 

result.  

 Let {r1, r2,…, rn} be a complete residue system mod m and let (a, m) = 

1, then for any integer b, the set {ar1 + b, ar2 + b,…, arn+b} is also a completes 

residue system.  This result does not hold in case of reduced residue system.  

Definition :- (Euler‟s -Function) 

Let m be any positive integer, then Euler‟s  function is defined as : 

(1) = 1 and     

(m) = number of natural number less than m which are relatively 

prime to m.  

For example,  

  (2) = 1, (3) = 2, (4) = 2, (10) = 4 etc.  

Remark :- From the definitions of Euler‟s -function and reduced residue 

system, it is clear that reduced residue system mod m contains always (m) 

elements. 

Theorem 1.37 (Euler’s theorem)  Prove that if (a, m) = 1 

then  a
(m)

  1 (mod m) 

Proof :- Let r1, r2,…, r (m) be reduced residue system mod m.  Since (a, m) = 

1.  So ar1, ar2,…, ar (m)
 
is also a reduced residue system mod m.  Hence, by 

definition, corresponding to each ri, there is one and only one arj such that  

  ri  arj(mod m) 

Further, different ri will have different corresponding arj.  This implies that the 

numbers ar1, ar2,…, ar (m) are just the residue modulo m of r1, r2,…, r (m) but 

not necessarily in the same order.  Thus multiplying these, we obtain : 
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)m(

1j

(arj) 
)m(

1i

ri (mod m)   

This implies that  

  a
(m)

 
)m(

1j

rj 
)m(

1j

rj (mod m) 

Now (rj, m) = 1, so cancelling rj, we get 

  a
(m) 

  1 (mod m) 

This completes the proof. 

Corollary (Fermat’s theorem) :- Let p be a prime such that p | a, then prove 

that,  

  a
p 1

  1(mod p) 

Proof :- Since p is prime, so every natural number less than p is coprime to p 

so that (p) = p 1.  Now given that p is prime and p |  a      (p, a)  = 1 

Hence by Euler‟s theorem,  

  a
(p)

  1(mod p) 

 a
p 1

  1 (mod p) 

This completes the proof 

Remark :- Some time Fermat‟s theorem is stated as “Let p be a prime such 

that p | a, then                 a
p
  a (mod p)” which is a trivial conclusion of above. 

Theorem 1.38 If (a, m) = 1, then there is an x such that  

ax  1 (mod m) and conversely.  Further this x is unique upto congruence i.e. 

any two such x are congruent (mod m). 

Proof :- If (a, m) = 1, then there exists x and y such that  

ax + my = 1   m | (ax 1)   ax  1(mod m) 

Conversely, let ax  1(mod m), the there is a y such that ax + my = 1 so that 

(a, m) = 1 

Now let ax1  1(mod m) and ax2  1(mod m)  

 ax1  ax2(mod m) 

But (a, m) = 1, so it follows that  

  x1  x2(mod m) 

This completes the proof. 

Theorem 1.39 (The Chinese Remainder Theorem). Let m1, m2,…, mr 

denote r positive integers that are relatively prime in pairs i.e. (mi, mj) = 1, i  
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j and let a1, a2,…, ar denote any r integers.  Consider the following 

congruences : 

  x  a1 (mod m1) 

  x  a2(mod m2)      

  …( ) 

  ……………… 

  x  ar(mod mr) 

then the congruences in ( ) have a common solution.  Further if x0 and x1 are 

two common solutions then x0  x1(mod m) where m = m1 m2…mr or we can 

say that if x0 and x1 are two common solutions, then x1 = x0 + km for some 

integer k. 

Proof :- Let m = m1 m2…mr 

then clearly, 
jm

m
is an integer and j

j

m,
m

m
 = 1 

Also, we observe that 
jm

m
is divisible by mi for i  j 

Now, since j

j

m,
m

m
= 1. So by last theorem, for each j there exists an 

integer bj 

such that  
jm

m
bj  1(mod mj) 

  
jm

m
 bj aj  aj(mod mj)     …(1) 

Also, since 
jm

m
 is divisibly by mi (i  j), so we must have 

  
jm

m
bj = 0 (mod mi) for i  j   …(2) 

Now, Put x0 = 
r

1j
jj

j

ab
m

m
 

         = 
1m

m
b1 a1 + 

r

22

2 m

m
...ab

m

m
br ar 

then clearly we must have 



                                                             ANALYTICAL NUMBER THEORY  50 

  x0  
1m

m
b1 a1(mod m1)    …(3) 

   ( all other terms of x0 are 

divisible by m1 by (2)   

Putting j = 1 in (1), 

  
1m

m
b1 a1  a1(mod m1)    …(4) 

Combining (3) and (4), we get that 

  x0  a1(mod m1) i.e. x0 is the solution of first congruence in ( ) 

Again, we must have  

  x0  
2m

m
b2 a2(mod m2)    …(5) 

  ( all other terms of x0 ax 

divisible by m2 by (2)) 

Putting j = 2 in (1) and combining with (5), we get 

 x0  a2(mod m2) i.e. x0 is the solution of second congruence in ( ) 

Continuing like this, we obtain that  

  x0  ai(mod mi) for i = 1, 2,.., r. 

So that x0 is common solution of congruences in ( ).  Now, let x0 and x1 be 

two solutions of congruences in ( ), then,  

  x0  ai(mod mi)  for i = 1, 2,…, r 

and  x1  ai(mod mi)  for i = 1, 2,…, r 

combining, x0  x1(mod mi) 

 m1 | (x0 x1), m2 | (x0 x1),…, mr | (x0 x1) 

But (mi, mj) = 1 for i  j so 

  m1 m2…mr | (x0  x1)     [ If a | c, b | c and (a, b) 

= 1 then ab | c] 

 m | (x0 x1) 

 x0  x1(mod m) 

This completes the proof.  

Remark :- Converse of Fermat‟s theorem need not be true. 

The converse of Fermat‟s theorem is not true i.e. if m   a and a
m 1

 1(mod m), 

the m is not necessarily a prime. 
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For example, let m = 561 = 3.11.17 so m is not a prime.  Now, let a be any 

integer such that gcd (a, 561) = 1  

  gcd (a, 3) = 1, gcd(a, 11) = 1, gcd(a, 13) = 1 

i.e. 3   a. 11    a. 13   a, so by Fermat‟s theorem,  

  a
2
  1(mod 3)    ( (3) = 2) 

  (a
2
)
280

 = a
560

  1 (mod 3) 

Similarly, a
10

  1(mod 11)    ( (11) = 10) 

 a
560

  1 (mod 11) 

and  a
16

  1 (mod 17) 

 a
560

  1 (mod 17) 

using Chinese Remainder Theorem 

  A
560

  1 (mod 561) 

Thus, the converse of Fermat‟s theorem is not true.  In this regard, we prove 

the following theorem. 

Theorem 1.40 For every odd a > 1, there exists infinitely many composite m 

satisfying,  

  a
m 1

  1 (mod m) 

Proof :- Let a > 1 be given odd number, choose an odd prime which does not 

divide a(a
2

1) [we note that there are many such primes] 

Take,  m = 
1a

1a
.

1a

1a

1a

1a pp

2

p2

 

So that m is clearly composite. 

Now,   m 1 = 
1a

aa
1

1a

1a

2

2p2

2

p2

 

  (a
2

1) (m 1) = a
2p

  a
2
 = a(a

p 1
1) (a

p
 + a)   

  …(1) 

Since a and a
p
 are both odd so a

p
 + a is even.  

Also,  p | (a
p 1

1)    (by Fermat‟s theorem) 

and   a
2

1 | (a
p 1

1)    ( p  1 is even) 

Further, by choice of p, gcd (p, a
2

1) = 1 

 p (a
2

1) | (a
p 1

1)   2p (a
2

1) | (a
p 1

1) (a
p
 + a)  ( a

p
 + a is even) 

 2p (a
2

1) | (a
2

1) (m 1)     [By (1)] 
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 2p | (m 1)     an integer  such that m = 1 + 2p .  Now from (1), 

we have 

   a
2p

 = (a
2

1) (m 1) + a
2
 

         = (a
2

1)m  (a
2

1) + a
2
 

          1 (mod m) 

 a
2p

  1 (mod m) 

 a
m 1 

 1 (mod m) 

This is true for every choice of p and hence theorem is proved. 

Remark :- The following theorem gives the correct converse of Fermat 

theorem., and is known as “Limited Converse of Fermat theorem”, or 

“Modified Converse of Fermat theorem”.  But before that, we make a 

definition.  

Definition (order of a mod m) 

Let m  2 be an integer and let (a, m) = 1, then by Euler‟s theorem we have 

a
(m)

  1 (mod m). 

Now, let S = {n N, a
n
  1(mod m)}, then S  , since (m) S.  So by Law 

of well ordering S has a smallest element, say d.  Then we say d is the order of 

a mod m and we write 
a
mord = d. 

Theorem 1.41 (Limit converse or Modified converse of Fermat theorem) 

If m  2, a
m 1

  1 (mod m) and a
x
  1 (mod m) for any proper divisor x of 

m 1, then m is prime. 

Proof :- Since a
m 1

  1(mod m)   (a, m) = 1 

Now, let 
a
mord = d, then d | (m 1) and a

d
  1(mod m).  But no proper divisor x 

of m 1 satisfies a
x
  1(mod m)    d = m 1 

Also, by Euler theorem, a
(m)

  1 (mod m) 

 d | (m)   (m 1) | (m)   m 1  (m) 

Also for m  2, (m)   m 1 

  (m) = m 1   m is a prime.  

Here, we give some examples based on Chinese Remainder Theorem 

Example :- Find the least positive integer x such that  

  x  5(mod 7), x  7(mod 11), x  3 (mod 13) 

Solution :- We have by comparing with Chinese remainder theorem  

  a1 = 5, a2 = 7, a3 = 3 

  m1 = 7, m2 = 11, m3 = 13 
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Clearly m1, m2, m3 are pairwise coprime and  

  m = 7.11.13 = 1001 

Now, we find the values of b1, b2, b3 using  

  
jm

m
bj  1(mod mj) 

For j = 1, 
1m

m
b1  1(mod m1) 

 
7

1001
b1  1(mod 7) 

 143 b1  1(mod 7) 

   3b1  1(mod 7) 

which gives b1 = 5 

For j = 2, 
2m

m
b2  1(mod m2) 

 91 b2  1(mod 11) 

 3 b2  1(mod 11)      

which gives  b2 = 4 

For j = 3,  
3m

m
b3  1(mod m3) 

 77 b3  1(mod 13) 

 b3  1 (mod 13) 

which gives b3 = 12 

Hence the common solution is 

  x0 = 
3

22

2

11

1 m

m
ab

m

m
ab

m

m
 b3 a3 

      = 143.5.5 + 91.4.7 + 77.12.3 = 8895 

If x is another solution of given system of congruences then we must have : 

        x  8895(mod 1001) 

Also  8895  887(mod 1001)    

This gives x  887 (mod 1001) 
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Hence the required solution is 887. 

Remark :- 1. In the Chinese Remainder Theorem, the hypothesis that mj‟s 

should be pairwise coprime is absolutely essential.  When this hypothesis 

fails, the existence of a solution x of the simultaneous system is no longer 

guaranteed.  Further if such an x does exist, then it is unique modulo [m1, 

m2,…, mr] and not modulo m, where [m1, m2,…, mr] denotes the cm of m1, 

m2,…, mr 2. In case of no solution of given system, we call the system is 

inconsistent. 

Example :- Show that there is no x for which both  

  x  29(mod 52) and x  19(mod 72) hold simultaneously. 

Solution :- We have that, 52 = cm [13, 4] 

Thus the congruence x = 29(mod 52) is equivalent to the simultaneous 

congruences, 

  x  29(mod 4) and x  29(mod 13)  

which reduces to : x  1(mod 4) and x  3 (mod 13) 

Also, we have that, 72 = cm [9, 8] 

Thus the congruence x  19 (mod 72) is equivalent to  

  x  19(mod 9) and x  19(mod 8) 

By the Chinese Remainder theorem, we know that the constraints (mod 13) 

and (mod 9) are independent of those (mod 8), since 8, 9, 13 are pairwise 

coprime.  We observe that there is no x for which both x  1(mod 4) and x  

3(mod 8) holds.  Thus the given system is inconsistent. 

Example :- Determine whether the system  

  x  3 (mod 10), x  8(mod 15), x  5(mod 84) 

has a solution and find the solution if exists.  

Solution :- We have that the congruence, x  3 (mod 10) is equivalent to  

  x  3(mod 5) and x  3 (mod 2) 

which give  x  3 (mod 5) and x  1(mod 2)   …(1) 

Again, the congruence, x  8(mod 15) is equivalent to  

  x  8 (mod 5) and x  8(mod 3) 

which give : x  3(mod 5) and x  2(mod 3)   …(2) 

Also we have that the congreunce x  5 (mod 84) is equivalent to  

  x  5 (mod 4), x  5 (mod 3), x  5(mod 7) 

which give  x  1(mod 4), x  2(mod 3), x  5 (mod 7)   …(3) 
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Thus, the given system is equivalent to a system of seven congruences given 

by (1), (2) and (3). 

 Now, we observe that the congruence x  1 (mod 2) in (1) and the 

congruence x  1(mod 4) in (3) are consistent but the second one implies the 

first so that the first one may be dropped.  Further, we see that the congruence 

x  3 (mod 5) is common in (1) and (2) and the congruence x  2 (mod 3) is 

common in (2) and (3) so we take them once 

Hence, we conclude that the system of seven congruences reduces to system 

of four congruences given by  

  x  1 (mod 4),  x  2(mod 3) 

  x  3(mod 5),   x  5(mod 7)    …( ) 

Since the moduli 3, 4, 5, 7 are pairwise coprime so by Chinese Remainder 

theorem the given system is consistent.  The solution is calculated as follows : 

From ( ), we have  a1 = 1,  a2 = 2, a3 = 3,  a4 = 5 

   m1 = 4, m2 = 3, m3 = 5, m4 = 7 

So m = 4.3.5.7 = 420 

Now, we find the values of b1, b2, b3, b4 as under.  

We know that 
jm

m
bj  1(mod mj) 

  
1m

m
b1  1 (mod m1)   105 b,  1 (mod 4) 

or  b1  1 (mod 4) 

which gives b1 = 5 

Again 
2m

m
b2  1 (mod m2)   140 b2  1 (mod 3) 

             2 b2  1 (mod 3) 

which gives, b2 = 2 

Similarly we find b3 = 4, b4 = 2 

Hence the solution is 

  x0 = 
4

33

3

22

2

11

1 m

m
ab

m

m
ab

m

m
ab

m

m
 b4a4 

      = 105.5.1 + 140.2.2 + 84.4.3 + 60.2.5 = 2693 

Let x be the another solution then  

  x  2693 (mod 420) 
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which gives x = 173    

This completes the solution.  

Congruences with prime power moduli 

Theorem 1.42 Let f be a polynomial with integer coefficients, let m1, m2,…, 

mr be positive integers relatively prime in pairs, and let m = m1m2…mr. 

Then the congruence 

  f(x)  0 (mod m)     …(1) 

has a solution if, and only if, each of the congruences 

  f(x)  0 (mod mi) (i = 1, 2,…, r)   …(2) 

has a solution. Moreover, if v(m) and v(mi) denote the number of solutions of 

(1) and (2), respectively, then  

  v(m) = v(m1) v(m2)…v(mr).    …(3) 

Proof :- If f(a)  0 (mod m) then f(a)  0 (mod mi) for each i.  Hence every 

solution of (1) is also a solution of (2). 

 Conversely, let ai be a solution of (2).  Then by the Chinese remainder 

theorem there exists an integer a such that  

  a  ai (mod mi) for i = 1, 2,…, r   …(4) 

so 

  f(a)  f(ai)  0 (mod mi). 

Since the moduli are relatively prime in pairs we also have f(a)  0 (mod m).  

Therefore if each of the congruences in (2) gives rise to a unique integer a 

mod m satisfying (4).  As each ai runs through the v(mi) solutions of (2) the 

number of integers a which satisfy (4) and hence (2) is v(m1)…v(mr).  This 

proves the theorem. 

Theorem 1.42 shows that the problem of solving a polynomial congruence 

  f(x)  0(mod m) 

can be reduced to that of solving a system of congruences 

  f(x)  0 )p(mod i
i    (i = 1, 2,…, r), 

where m = r
r

1
1 p...p .  Now we show that the problem can be further reduced 

to congruences with prime moduli plus a set of linear congruences.  

Let f be a polynomial with integer coefficients, and suppose that for some 

prime p and some   2 the congruence 

  f(x)  0(mod p )     …(1) 

has a solution, say x = a, where a is chosen so that it lies in the interval 
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  0  a < p . 

This solution also satisfies each of the congruences f(x)  0 (mod p ) for each 

 < .  In particular, a satisfies the congruence 

  f(x)  0 (mod p
1
).     …(2) 

Now divide a by p
1
 and write 

  a = qp
1
 + r, where 0  r < p

1
.   …(3) 

The remainder r determined by (3) is said to be generated by a.  Since r  a 

(mod p
1
) the number r is also a solution of (2).  In other words, every 

solution a of congruence (1) in the interval 0  a < p  generates a solution r of 

congruence (2) in the interval 0  r < p
1
. 

Now suppose we start with a solution r of (2) in the interval 0  r < p
1
 and 

ask whether there is a solution a of (1) in the interval 0  a < p  which 

generates r.  If so, we say that r can be lifted from p
1
 to p .  The next 

theorem shows that the possibility of r being lifted depends on f(r) mod  p  on 

the derivative f (r) mod p. 

Theorem 1.43 Assume   2 and let r be a solution of the congruence 

  f(x)  0 (mod p
1
)     …(4) 

lying in the interval 0  r < p
1
. 

(a) Assume f (r)  0 (mod p).  Then r can be lifted in a unique way from p
1
 

to p .  That is, there is a unique a in the interval 0  a < p  which generates r 

and which satisfies the congruence 

  f(x)  0 (mod p ).     …(5) 

(b) Assume f (r)  0 (mod p).  Then we have two possibilities :  

If f(r)  0 (mod p ), r can be lifted from p
1
 to p  in p distinct ways. 

If f(r)  0 (mod p ), r cannot be lifted from p
1
 to p . 

Proof :- If n is the degree of f we have the identity (Taylor‟s formula) 

   f(x + h) = f(x) + f (x)h + n
)n(

2 h
!n

)x(f
...h

!2

)x(''f
 …(6) 

for every x and h.  We note that each polynomial f
(k)

(x)/k ! has integer 

coefficients. Now take x = r in (6), where r is a solution of (4) in the interval 0 

 r < p
1
, and let h = qp

1
 where q is an integer to be specified presently.  

Since   2 the terms in (6) involving h
2
 and higher powers of h are integer 

multiples of p .  Therefore (6) gives us the congruence  

  f(r + qp
1
)  f(r) + f (r) qp

1
 (mod p ). 
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Since r satisfies (4) we can write f(r) = kp
1
 for some integer k, and the last 

congruence becomes 

  f(r + qp
1
)  {qf (r) + k}p

1
 (mod p ). 

Now let 

  a = r + qp
1
.      …(7) 

Then a satisfies congruence (5) if,  and only if, q satisfies the linear 

congruence  

  qf  (r) + k  0 (mod p).    …(8) 

If f (r)  0 (mod p) this congruence has a unique solution q mod p, and if we 

choose q in the interval 0  q < p then the number  a given by (7) will satisfy 

(5) and will lie in the interval 0  a < p . 

On the other hand, if f (r)  0 (mod p) then (8) has a solution q if, and only if, 

p|k, that is, if and only if f(r)  0 (mod p ).  If p |  k there is no choice of q to 

make a satisfy (5).  But if p | k then the p values q = 0, 1…, p  1 give p 

solutions a of (5) which generate r and lie in the interval 0  a < p .  This 

completes the proof.  
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Unit-2 
 

Quadratic Residues and Non-Residues  

 

 
Definition :- Let p be an odd prime and let (a, p) = 1.  Then a is said to be a 

quadratic residue (mod p) if  an integer x such that  

  x
2
  a (mod p) 

otherwise we say that a is a quadratic non-residue (mod p). 

Remark :- If a is a quadratic residue (mod p)  x (1  x  p 1) such that x
2 

 

a(mod p) 

Definition :- (Legendre symbol) 

The Legendre Symbol denoted by 
p

a
, where (a, p) = 1 is defined as  

p

a
 = 1 if a is a quadratic residue (mod p) and  

   
p

a
= 1, if a is a quadratic non-residue (mod p).   

Remark :- If a  b (mod p), clearly 
p

b

p

a
 provided (a, b) = 1 

Theorem 2.1 Let p be an odd prime and let gcd (a, p) = 1 then  

  
)1p(

2

1

a.
p

a
1p| (mod p) 

Proof :- Let S = {1, 2,…, p 1} is a reduced set of residues (mod p). 

Consider any x such that  

  1  x  p 1 then  

 xS = {x, 2x,…, (p 1)x} 

is also a reduced set of residues (mod p) 

 So there exists y in S such that xy  a (mod p) 

 Now distinguish two cases 
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Case I :- 
p

a
= 1 then  x such that 1  x  p 1 such that  

  x
2
  a (mod p) 

Let us find out all the solutions of the quadratic congruence 

  X
2
  a (mod p)       

  …(I) 

 Then (I) has at least one solution X = x.  We know two solutions x1 

and x2 are said to be same if x1  x2 (mod p).  Let x1 & x2 be two solutions of 

(I) then 

  x1
2
  a (mod p) 

and  x2
2
  a (mod p) 

  x1
2
  x2

2
 (mod p) 

  p divides (x1
2
  x2

2
) 

  p | (x1 + x2) (x1 x2) 

Then   p | (x1 + x2)  or p | (x1 x2)  ( p is a prime) 

 either x1 + x2  0 (mod p) 

or  x1  x2  0 (mod p) 

Further  x2  x1  p x1 (mod p) 

or  x2  x1 (mod p) 

 Thus x and p x are two solutions of (1) (mod p) since x is a solutions 

of (1) (mod p) 

Further  x  p x       

 |  p is odd 

So (I) has exactly two solutions (mod p) 

 Let us take y1 in S such that y1  x & y1  (p x) 

Now consider the set y1 S.  Then y1 S is also a reduced residue system            

(mod p).  So  y2 in S such that 

  y1 y2  a(mod p) 

and further y1  y2 since otherwise y1 will also be a solution of (1).  Thus for 

y1  x, y1  p x, the remaining (p 3) elements in S can be divided into 
2

3p
 

pairs (y1, y2) such that  

  y1 y2  a(mod p) 

So 
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  1.2.3………(p 1) = x. (p x) (y1, y2)  

    x
2
. 2

3p

a (mod p) 

    
)1p(

2

1

a  (mod p)  ( x
2
  a(mod p)) 

    
p

a
2

1p

a  (mod p)   1
p

a
  

Case II 
p

a
= 1 

Then the congruence (1) has no solutions.  So if we take y1 S, we know  y2 

 S such that  

  y1 y2  a(mod p) amd y1  y2 

Thus we divide S into (p 1)/2 pairs (y1, y2) such that y1 y2  a(mod p) 

  )1p(|   2

1p

a  (mod p)   2

1p

a
p

a
(mod p) 1

p

a
 

Thus theorem is proved completely. 

Wilson’s Theorem  

Theorem 2.2 If p is any prime, then 1p|   1(mod p) 

Proof :- If p = 2 or p = 3; theorem is clearly true. 

 So let p  5.  Taking a = 1 in the last theorem we note 1
p

1
 for all 

prime p.   

Then we get  

  1p|   1 (mod p) 

Converse of Wilson’s Theorem :- The converse of Wilson‟s theorem is also 

true.  Given that 1n|  1 (mod n), they must be a prime. 

Proof :- If possible, suppose n is not a prime.  Then there exists a divisor d of 

n such that  

  1 < d < n,  then d | 1n|  

  1n|   0 (mod d) 

On the other hand 
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  1n|   1 (mod n) 

  1n|   1 (mod d) 

  1  0 (mod d)   d | 1 which contradicts that d>1. 

 So n must be a prime number. 

Theorem 2.3 (Euler’s Criterion) :- Let p be an odd prime and let gcd (a, p)  

1.  Then 

  
)1p(

2

1

a
p

a
 (mod p). 

Proof :- We know  

  
)1p(

2

1

a
p

a
1p| (mod p) 

We also know )1p(|   1 (mod p)  

  1  
)1p(

2

1

a
p

a
(mod p) 

Multiplying by 
p

a
 we get 

  
)1p(

2

1
)1p(

2

12

aa
p

a

p

a
 (mod p) 

Theorem 2.4 1 is a quad reside of primes of the form 4k + 1 & a quad non-

residue of primes of the form 4 k + 3. 

Proof :- By Euler‟s Criterion 

  
)1p(

2

1

)1(
p

1
 (mod p) 

  
)1p(

2

1

)1(
p

1
p  

The value of the quantity in brackets is either 0 or 2.  But p is an odd prime 

and it divides the quantity in brackets, so we must have 

  0)1(
p

1 )1p(
2

1
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)1p(

2

1

)1(
p

1
 

When p = 4k+1, 1)1()1(
p

1 k22

k4

 

and when p = 4k + 3,  

  1k22

2k4

)1()1(
p

1
= 1 

Theorem 2.5 Let a & b be integers such that gcd (ab, p) =1, then  

  
p

b

p

a

p

ab
 

Proof :- By Euler‟s criterian,  

  
)1b(

2

1
)1p(

2

1
)1p(

2

1

ba)ab(
p

ab
(mod p)  …(1) 

But gcd (ab, p) = 1   p | (a b) 

  b | a and p | b. 

  g c d(a, p) = 1 = gcd(b, p) 

By Euler‟s criterion,  

  )1p(2/1a
p

a
(mod p)    …(2) 

and  
)1p(

2

1

b
p

b
(mod p)     …(3) 

From (2), (3), we get  

  
p

ab

p

b

p

a
 (mod p) 
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p

ab

p

b

p

a
p  

  
p

b

p

a

p

ab
   (  p is an odd prime) 

Corollary :- The product of two quadratic residues (mod p) or two quadratic 

non-residues (mod p) is a quadratic residues (mod p) where as the product of a 

quadratic residue (mod p) and a quadratic non-residue (mod p) is quadratic 

non-residue (mod p) 

Theorem 2.6 Let p be an odd prime and let p does not divide product ab 

where a & b are integers.  Then   
p

a

p

ab2

 

 

Proof :- Since p | ab  b | a & p | b 

  p |  b
2
, 

  
p

b

p

a

p

ab 22

 

              = 
p

a
       

 [  ( + 1)
2
 = 1 

Theorem 2.7 Given any odd prime p, there are 
2

1
(p 1)quadratic residue & 

2

1
(p 1) quadratic non-residues. 

Proof :- Let a be any quadratic residue then  x (1  x  p 1) such that  

  x
2
  a (mod p) 

But   x
2
  (p x)

2
 (mod p) 

Therefore  1
2
  (p 1)

2
 (mod p) 

  2
2
  (p 2)

2
 (mod p) 
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  …………………… 

  …………………… 

222

2

1p

2

1p
p

2

1p
 (mod p) 

Thus there are a maximum of 
2

1p
quadratic residue (mod p) 

But for 1  i, j  ,
2

1p
i  j 

  i
2
  j

2
 (mod p) 

since if i
2
  j

2
 (mod p)   p | (i

2
  j

2
) 

  p | (i+j)(i j)   p | (i+j)  or p | (i j) 

which is not possible under the given condition.  So there are exactly 
2

1
 (p 1) 

quadratic residues.  

The remaining 
2

1p
 numbers must be quadratic non residues 

Theorem 2.8 Given any prime p of the for 4k+1,  x and on integers m such 

that  

  1 + x
2
 = mp where 1  m < p 

Proof :- Since 1 is a quadratic residue of primes of the form 4k+1,  x such 

that  

  x
2
  1 (mod p) 

 W.L.O.G, we can assume 1  x  
2

1p
. 

Then  an integer m such that  

  mp = x
2
 +1  1 +

2

2

1p
< p

2
 

  m < p 

Clearly  m > 0 

  1  m < p 

Theorem 2.9 Given any prime p, there exist x  0, y  0 and m (1  m < p) 

such that 1 + x
2
 + y

2
 = mp 
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Proof :- If p = 2, theorem is trivially true  

 1 + 1
2
 = 2 = 1. 2 

So let p be an odd prime. 

Consider S = 
2

1p
,........,2,1,0x;x2  

  T = 
2

1p
....,,2,1,0y;y1 2  

Here elements of S are mutually incongruent (mod p). 

Similarly elements of T are mutually incongruent. S contains 
2

1p
 elements 

and T also contain 
2

1p
 elements.  

 SUT contains p + 1 district element .  But there are only p residue classes 

(mod p) 

Therefore at least two elements of SUT must be congruent to each other               

(mod p).  However, no element of S is congruent to another element of S and 

no element of T is congruent to another element of T.   So atleast one element 

of S must be congruent to an element of T i.e., 

   x, y such that 0  x  p 1/2  and  0  y  p 1/2 such that  

  x
2
  1 + y

2
 (mod p) 

or  1 + x
2
 + y

2
  0 (mod p) 

So,  an integer m such that  

  1 + x
2
 + y

2
 = mp 

Clearly m > p 

Now  mp = 1+x
2
+ y

2
  1 +

22

2

1p

2

1p
 

   < 1 + 
2

22

p
4

p

4

p
 

  m< p  and so 1  m < p which proves the theorem  

Definition :- Let m  2 be any given integer and let gcd (a, m) = 1 for some 

integer a.  Then by Euler Fermat theorem,  

  a
(m)

  1 (mod m) 
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Now take S = {n N; a
n
  1 (mod m)} 

then  S   since (m) S. So by L. W. O., S has a smallest element say „d‟.  

Then we say d is the order of a (mod m) and we write d = a
mord   (order a mod 

m) 

Theorem 2.10 Let a
mord  = d then 

  a
n
  1 (mod m) 

  d | n.  In particular d | (m) 

Proof :- Since a   1 (mod m), so if d | n, then 

  a
n
  1 (mod m) 

Now let a
n
  1 (mod m).  By division algorithm theorem, write  

  n = dq + r,   0  r < d 

then  

   1  a
n
 = a

dq+r
 = a

dq
  a

r
 

              = (a
d
)
q
 . a

r
 

    a
r
 (mod m)  ( a

d
  1 (mod m)) 

So if r  0, then we get a number r < d such that a
r
  1 (mod m) which 

contradicts the definition of d 

  r = 0  d | n 

Theorem 2.11 Let a
mord = d.  Then for any positive integer k,  

  
)k,dgcd(

d
ord

ka
m  

Proof :- Let gcd (d, k) = g and rord
ka

m  

Then  1  (a
k
)
r
  a

kr
 (mod m) 

  d | kr        

  

  r
g

k

g

d
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But   gcd
g

k
,

g

d
= 1 

 r|
q

d
  

q

d
 r.  Now since gcd (d, k) = q 

 q | d, q | k 

Let k = qk1 

Now  1kdd1kq/d1qkq

d

k )a(a)a()a(  

             1 (mod m) 

  r  
g

d
   [By definition of order] 

So   r
g

d
 

or   r = 
q

d
 

Hence the theorem. 

Gauss’s Lemma 2.12 Let p be an odd prime and let gcd (a, p) = 1. 

Let  S = 
2

1p
...,,2,1  

Let  be the number of elements in the set S such that least positive residue of 

aS > p/2.   

Then  
p

a
= ( 1)  

Proof :- Consider any integer n where gcd (n, p) = 1 Apply division algorithm 

to n & p,  q & r such that n = qp + r where 0  r  (p 1).  Since gcd (n, p) = 1 

 p | n  r  0 

  1  r  p 1 

Since p is odd, p/2 is not an integer.  So either r < p/2 or r > p/2.  If r < p/2, we 

leave it as it is  If r > p/2, write r = p r  where 1  r  < p/2, 

Thus  n = qp + (p r ) = (q+1) p r   r  (mod p). 
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Now we consider least positive residues of every element of aS.  We are given 

that  of those elements have least positive residues > p/2.  Let k be the 

elements of aS with least positive residues < p/2. 

Then  k +  =
2

1p
 

If the least positive residues <p/2 are r1, r2,…, rk and the least positive residues 

> p/2 are 
2

1p
r1thatsuchr,...,r,r ''1

2
'

1  then 

  ''
2

'
1k1 r,...,rr,r,...,r  

are the residues of elements of aS in some order such that 

  1  r  
2

1p
and 1  r   

2

1p
. 

Since S is a subset of a reduced residue set {1, 2,…, p 1} and gcd (a, p) = 1, 

so {a, 2a,…, (p 1)a} is also a reduced residue set.  Then first of all  

  ri 
'
jr  for i  j 

If possible, let ri = '
jr  for some pair (i, j) 

Then  xi S and xj S such that  

  axi  ri (mod p) & axj  '
jr  (mod p) 

But  ri = '
jr  

  axi   axj (mod p) 

This means a(xi + xj)  0(mod p) 

  p | a(xi + xj) 

But  gcd (a, p) = 1 

  p | (xi + xj)   

But   1 < xi  
2

1p
   

and  1  xj  
2

1p
 

  2  xi + xj  p 1 
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  p |  (xi + xj) 

which is a contradiction and so {r1, r2,…, rk, 
'
μ

'
2

'
1 r,...,r,r } are all distinct.  

But   + k =
2

1p
 

So there are 
2

1p
 distinct numbers lying between 1 & 

2

1p
 

So   r1,…, rk, 
'
μ

'
1 r,...,r  

are the natural numbers 1 to 
2

1p
 in some order.  Therefore 

  
2

1p  = r1,…rk, 
'
μ

'
1 r,...,r (mod p) 

Then by definition of r1,…, rk, 
'
μ

'
1 r,...,r  

  
2

1p   a  2a…
2

1p
. a( 1)  (mod p) 

             = ( 1)  2

1p

a
2

1p (mod p) 

But   gcd 1p,
2

1p  

  ( 1) 2

1p

a  1 (mod p) 

But by Euler‟s criterion, 

  
p

a
a 2

1p

mod p) 

  ( 1) 1
p

a
(mod p) 

  
p

a
 ( 1)  (mod p) 
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But the value of 
p

a
 ( 1)  is either 2 or 0 or 2 and p is an odd prime 

  
p

a
= ( 1)  

Application of Gauss‟s Lemma :- 

Theorem 2.13 For every odd prime p, 

  
p

2
= ( 1)

[1/4(p+1)]
 

where [x] means greatest integer  

Proof :- Let S = 
2

1p
,...,2,1  

Then   2S = {2, 4,…, p 1}   

Let x S, then the number of elements of 2S with least positive value <
2

p
 is x 

<
4

p
. 

But x is an integer  x =[p/4] 

 The number of elements of 2S with least positive value > p/2 is 
4

p

2

1p
 

(i) If p is of the form 4k+1, then  

   = 
4

p

2

1p
 

     = 
4

1k4

2

11k4
 

     = 2k  k = k = 
4

1p

4

1p
 

(ii) If p is of the form, 4k + 3 then  

   = 
4

3k4

2

13k4

4

p

2

1p
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     = 2k + 1  k = k + 1= 
4

1k
 

Thus in both cases,  = 
4

)1p(
 

So by Gauss‟s Lemma 

  
)1p(

4

1

μ )1()1(
p

2
 

Corollary :- 2 is a quadratic residue of primes of the form 8k + 1 and 

quadratic non residues of primes of the form 8k  3. 

Proof :- Let p = 8k + 1 

 

Then   11k8
4

1
)1k(

4

1
 = 2k 

Therefore, in these two cases 

  
4

1p

)1(
p

2
 = ( 1)

2k
 =1 

Let   p = 8k  3 

Then   )4k8(
4

1
)1p(

4

1
 = 2k+1 

and if p = 8k 3 

Then  13k8(
4

1
)1p(

4

1
 

         = )2k8(
4

1
 = 2k 1 

Therefore in these two cases 
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  1
p

2
 

Therefore 2 is a quadratic non residue. 

Corollary 2:- For every odd prime p 

  
8

12p

)1(
p

2
 

Proof :- We know 2 is a quadratic residue of primes of the form 8k  1 & a 

quadratic non-residue of primes of the form 8k  3. 

 

Let  p = 8k  1 

Then  
8

11k16k64

8

1)1k8(

8

1p 222

 

    = 8k
2
  2k 

   = an even number 

  8

12p

)1( = 1 = 
p

2
 

Let              p = 8k  3 

Then   
8

1)3k8(

8

1p 22

 

   = 
8

19k48k64 2

 

   = 
8

8k48k64 2

 

   = 8k
2
  6k + 1 

   = An odd number. 
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Therefore 
p

2
1)1( 8

12p

 

Thus in all cases 

  8

12p

)1(
p

2
 

Quadratic Law of Reciprocity :- For Legendre Symbols  

Statement :- Let p & q be distinct odd primes then 

  
'q'p2

1q

2

1p

)1()1(
p

q

q

p
 

where   p  = 
2

1q
'q,

2

1p
   

Alternative statements :- 

(i) Let p or q be a prime of the form 4k + 1.  Then either p  is even or q  is 

even  

 p q  is even 

 

  
p

q

q

p
1

p

q

q

p
 

(ii) If both p & q are of the form 4k + 3 then both p  & q  are odd.   

Therefore 1
p

q

q

p
 

  
p

q

q

p
 

So sometimes Quadratic Law of Reciprocity is also asked in the following 

form. 

Theorem 2.14 Let p & q be two distinct odd primes.  Then  
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p

q

q

p
 if either of p & q is of the form 4k + 1 

 

and  
p

q

q

p
 if both of p & q are of the form 4k + 3. 

Proof :- By Gauss‟s Lemma 

  v)1(
p

q
 

where v is the number of integers x 
2

1p
x1  such that  

  qx = py + r where 
q

p
 < r < 0 

Since q > 0, x > 0 and r < 0 

  (p y) > 0   y  1 

Further 

  p y = qx  r <
2

p

2

p
q

2

1p
 (q + 1) 

  y < 
2

1q
 

  y  
2

1q
 

Similarly 
q

p
= ( 1)  where  is the number of integers y 

2

1q
y1   

such that py = qx + s where 
2

q
< s < 0 

Therefore 
p

q

q

p
= ( 1)

+v     
…(1) 

where  + v is the number of pairs of integers (x, y) such that 1  x  
2

1p
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  1  y  
2

1q
 

and  
2

q
spyqxr

2

p
 

Now, let us consider the following sets of pairs of integers (x, y) 

  S = 
2

1q
y1;

2

1p
x1:)y,x(  

  S1 = 
2

p
)pyqx;S)y,x(  

  S2 = 
2

q
pyqx

2

p
;S)y,x(  

  
2

q
)pyqx(;S)y,x(S'

1  

Then  #(S) = #(S1) + #(S2) + # )S( '
1     …(II) 

Consider a mapping  from S defined by  

  ((x, y)) = y
2

1q
,x

2

1p
 

Since  1  x  
2

1q
y1&

2

1p
 

  1  
2

1p
x

2

1p
 

and  1  
2

1q
y

2

1q
 

 So that  is a mapping from S to S.  Now, let  (x, y)  S1 

Then, by definition  

  ((x, y)) = y
2

1q
,x

2

1p
= (x , y ) (say) 
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Now  qx   py  = q y
2

1q
px

2

1p
 

      = 
2

p

2

q
 (qx  py) 

       
2

p

2

p

2

q
 (  (x, y)  S1) 

      = q/2 

  (x , y )  '
1S  

This means  

  # (S1)  #( '
1S )      …(III) 

Now, let  (x, y) '
1S  

then   qx   py  = q y
2

1q
px

2

1p
  

      = 
2

p

2

q
 (qx  py) 

       
2

q

2

p

2

q
   [  (x, y) '

1S  

      = p/2 

  (x , y )  S1 

  # ( '
1S )  # (S1)      …(IV) 

From (III) & (IV) we get 
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  # (S1) = #( '
1S )      …(V) 

Therefore from (II) & (V) we get 

  #(S)  #(S2) (mod 2) 

But   #(S) = p . q  

  # (S2) =  + v 

            p  q  (mod 2) 

 From (I); 
p

q

q

p
 = ( 1)

p q
 

Example :- Evaluate 

  
257

202
 

or   Determine whether 202 is a quadratic residue of 257 or not? or 

Determine 

  x
2
  202 (mod 257) is solvable or not. 

Solution :- 202 = 2 101 

  
257

101

257

2

257

202
 

  1
257

2
 since 

  257  1 (mod 8) 
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101

257

257

101

257

202
    

 
p

q

q

p
  

   = 
101

55
 

   = 
101

11

101

5
 

But    1
5

1

5

101

101

5
 

and   
11

101

101

11
      [ 

By Reciprocity law 

    = 
11

2
 

   = 1 

  
257

202
= 1 

Alternative 
257

55

257

202
 

   = 
257

11

257

5

257

1
 

 

 1
5

2

5

257

257

5
1

257

1
1

11

4

11

257

257

11
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257

202
= (1) ( 1) (1) = 1 

Example :- 
401

25

401

26

401

650
 

   = 
401

13

401

2

401

25
 

   = 
401

13
 

   = 
11

13

13

11

13

401
 

   = 1
11

2
 

Theorem 2.15 If p is an odd prime & gcd (a, 2p) = 1 

then  
p

a
= ( 1)

t
 

where  t = 
p

aj1p

1j

 

Also  8

12p

)1(
p

2
 

Proof :- Let S =
2

1p
...,,2,1  

Let   r1,…, r  and '
μ

'
1 r...,r  
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be the least positive remainders of the elements of the set aS, which are < p/2 

and > p/2 respectively. 

Then as shown in the proof of Gauss‟s Lemma  

  r1,…, r , p '
μ

'
1 rp,...,r  

are all distinct.  

Since   +  = 
2

1p
.  Therefore r1,…, r , p 1

μ
'
1 rp...r  are the integers 

1, 2,…, 
2

1p
 in some order so that  

  
2

1p

1j

j    = r1 + r2 +…+ r  + 
μ

1s

(p  '
jr ) 

   = p + 
λ

1i

μ

1j

'
ji rr     …(I) 

Further by definition of r1, … r , '
μ

'
1 r,...,r  

  
2

1p

1j

μ

1j

'
j

λ

1i
i

2

1p

1j

rr
p

aj
p)aj(    …(II)   

Subtracting (I) from (II), we get 

  (a 1)
2

1p

1j

μ

1j

'
j pμr2tpj  where t = 

2

1p

1j p

aj
  …(III) 

But  
2

1p

1j

2

8

1p
j  

  (a 1) 
μ

1j

'
j

2

r2)μt(p
8

1p
   …(IV) 

Since g.c.d. (a, 2p) = 1 
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  a is odd. 

  (a 1) is even.  Also 
8

1p2

 is an integers as p is odd 

 From (IV), we get 

  t    0 (mod 2) as p is odd  

    t (mod 2) 

By Gauss‟s Lemma 

  μ)1(
p

a
 

Therefore  t)1(
p

a
 

Now set a = 2 in (II) Since for j = 1, 2,…, 
2

1p
 

  0
p

ji
 for all j   t = 0 

 From (III), e get 
μ

1j

2

1b

1j

ji2pμj   

  
2

1p

1j

j   p (mod 2) 2\ RHS   2\LHS 

But    p  1 (mod 2) 

    
2

1p

1j

2

8

1p
j  (mod 2) 

 By Gauss‟s Lemma  

  2

12p

μ )1()1(
p

2
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The Jacobi Symbol :- Let Q > 1 be an odd integer and Q = q1 q2…qs its 

prime factorization where q1, q2,…, qs are odd primes, not necessarily distinct.  

Then the Jacobi symbol, denoted by 
Q

P
, is defined as : 

  
s

1j s21i q

P
...

q

P

q

P

q

P

Q

P
 

where 
jq

P
 is the Legendre symbol. 

Remarks 1. If Q itself is an odd prime then the Jacob symbol and Legendre 

symbol are same  

(2) If gcd(P, Q) > 1, then 0
Q

P
 

For,  gcd(P, Q) > 1   qi | P for some i (1  i  j) 

The corresponding Legendre symbol 
iq

P
 = 0 and hence 

Q

P
 = 0 

(3) If gcd(P, Q) = 1, then 
Q

P
 =  1 

(4) If P is a quadratic residue mod Q, then P is a quadratic residue mod each 

prime qj dividing Q, so that 1
q

P

j

 for each j and hence 
Q

P
 = 1.  

However 
Q

P
= 1 does not imply that P is a quadratic residue of Q. 

Theorem 2.16 Let Q and Q  be odd and positive, then  

(1) 
Q

P

'QQ

P

'Q

P
 

(2) 
Q

'PP

Q

'P

Q

P
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(3) If gcd(P, Q) = 1, then 1
Q

P

Q

P

2

2

 

(4) If gcd(PP , QQ ) = 1, then 
'Q

'P

QQ

PP

21

21

 

(5) P   P (mod Q)   
Q

P

Q

'P
 

Proof :- (1) Since Q and Q  are odd, so QQ  is odd.  Let Q = q1 q2…qr and Q  

= q 1 q 2…q s where q1, q2…, qr, q 1…, q s are all odd primes, not necessarily 

distinction then, we have, 

  QQ  = q1 q2…qr q1  q2 …qs  

Hence, by definition  

  
'q

P
...

'q

P

'q

P

q

P
...

q

P

q

P

'QQ

P

s21r21

 

              = 
s

1j j

r

1i i 'q

P

q

P
 

              = 
'Q

P

Q

P
 

(2) we have : 

  
r21 q

'PP
...

q

'PP

q

'PP

Q

'PP
 

              = 
i

r

1i i

r

1i i q

'P

q

P

q

'PP
  

             
p

ab

p

b

p

a
,symbolLegendrein  
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              = 
r

1i i

r

1i i q

'P

q

P
 

              = 
Q

'P

Q

P
 

(3) We have  

Q

P

Q

P

Q

PP

Q

P2

  [By part (2)] 

               = 1  

 1
Q

P
1)Q,P(  

Similarly 1
Q

P

Q

P

Q

P

2
 

(4) we have 

  
21

2

21

1

21

21

QQ

P

QQ

P

QQ

PP
   [By part (2)] 

      = 
2

2

1

2

2

1

1

1

Q

P

Q

P

Q

P

Q

P
  [By part (1)] 

      = 
221

2

2

1

1

1

Q

P

Q

P

Q

P

Q

P

Q

P
 [By part (2)] 

      = 
1

1

Q

P
1.1.1.1.

'Q

'P
  [By part (3)] 

(5) We have 

  P   P (mod Q) and Q = q1 q2…qr 

  P   P(mod qi)  i = 1, 2,…, r 

But in the case of Legendre symbol, we know that  
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if   a  b (mod p), then 
p

b

p

a
 

Hence,  
ii q

P

q

'P
 for i = 1, 2,…, r 

 
Q

P

Q

'P

q

P

q

'P r

1i i

r

1i i

 

This completes the proof.  

Theorem 2.17 If Q is positive and odd, then  

(1)   
Q

1
= ( 1)

(Q 1)/2
 and 

(2)   
Q

2
= 8)12Q()1(  

Proof :- We have 

  
s

1j jq

1

Q

1
     …(1) 

where Q = q1 q2…qs,       qi s are prime, not necessarily distinct.  

Now in the case of Legendre‟s symbol, we had proved that,  

p

1
= ( 1)

(p 1)/2
 

 
jq

1
=

2)1jq(
)1(  1  i  s 

Hence, (1) becomes:  

  

s

1j

2/)1jq(
2/)1jq(s

1j

)1()1(
Q

1
  …(2) 
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Now, if a and b are odd, then  

  
2

)1b)(1a(

2

1b

2

1a

2

1ab
 

Since a and b are odd, so (a 1) and (b 1) are even, hence 
2

)1b)(1a(
 is a 

multiple of 2.  This implies that 

  
2

1b

2

1a

2

1ab
 (mod 2) 

Applying this repeatedly, we obtain  

  
2

1q...qq

2

1q
...

2

1q

2

1q s21s21
 (mod 2) 

 
2

1Q

2

1qs

1j

j
(mod 2) 

 
s

1j

i

2

1Q

2

1q
+ 2  for some integer . 

Putting in (2), we obtain  

  2

1Q
2

2

1Q

)1()1(
Q

1
 

     This proves part (1) 

(2) we have 

  
j

s

1j q

2

Q

2
     …(1) 

But in the case of Legendre‟s symbol, we had proved that 

  8)12p()1(
p

2
 

  
8)12

j
q(

j

)1(
q

2
  1  j  s 
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so that (1) becomes :  

  

s

1i

8/)12
j

q(
8/)12

j
q(s

1j

)1()1(
Q

2
  …(2) 

Now, if a and b are odd, then  

8

)1b)(1b)(1a)(1a(

8

)1b)(1a(

8

1b

8

1a

8

1ba 222222

 

Since a, b are odd, so a 1, a + 1, b 1, b + 1 are all even and hence 

8

)1b)(1a( 22

 is a multiple of 2 

 
8

1ba

8

1b

8

1a 2222

(mod 2) 

Applying this repeatedly, we obtain  

  
8

1q...qq

8

1q 2
s

2
2

2
1s

1j

2
j

(mod 2) 

 
s

1j

22
j

8

1Q

8

1q
 (mod 2) 

  
s

1j

22
j

8

1Q

8

1q
+ 2  for some integer . 

Hence, (2) yields : 

  8

12Q
2

8

12Q

)1()1(
Q

2
 and the proof is completed.  

Theorem 2.18 If P and Q are odd and positive and if gcd(P, Q) = 1, then : 

  
2

1Q
.

2

1P

)1(
P

Q

Q

P
 

(This is quadratic law of reciprocity for Jacobi symbol) 
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Proof :- Writing  P = 
s

1j
i

r

1i
i qQandp , we have  

  
s

1j

r

1i j

is

1j j q

p

q

P

Q

P
    …(1) 

By quadratic Law of reciprocity for Legendre Symbol we have 

  
2

1jq

2

1ip

i

j

j

i
)1(

p

q

q

p
 

  
2

1jq

2

1ip

i

j

j

i
)1(

p

q

q

p
 

Putting this value in (1), we have : 

  
2

1iq

2

1ip

i

jr

1i

s

1j

)1(
p

q

Q

P
 

           = 
2

1jq

2

1ipr

1i

s

1j)1(
P

Q
    …(2) 

But, we have  

  
2

1p

2

1p

2

1q

2

1p is

1j

ir

1i

jir

1i

s

1j

 

and we had earlier proved  

  
2

1P

2

1pir

1i

(mod 2) 

and  
2

1Q

2

1q js

1j

 (mod 2) 

which yields that 
2

1P

2

1pir

1i

+ 2  
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and  
2

1Q

2

1q js

1j

 + 2  

For some integers  and  

Putting these in (2), we obtain : 

  2

1Q
.

2

1P

)1(
P

Q

Q

P
 

or we can write 

  2

1Q
.

2

1P

)1(
P

Q

Q

P
 

This completes the proof 

Example :- Find the value of 
61

42
 or 

Check whether 42 is a quadratic residue or quadratic no-residue mod 61. 

Solution :- We have 

  
61

7

61

3

61

2

61

1

61

7321

61

42
 …( ) 

Now, we have 

  1)1(
61

1
2

60

   

 2

1p

)1(
p

1
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  1)1(
61

2
8

1261

  

 8

12p

)1(
p

2
  

  )2/60()2/2()1(
3

61

61

3
  

2

1q
.

2

1p

)1(
p

q

q

p
.yreciprocitquadraticofLawby  

           = 1
3

1

3

160

3

61
 

and finally,    
2

60
.

2

6

)1(
7

61

61

7
 

          = 
7

5

7

556

7

61
 

          = 
5

25

5

7
)1(

5

7
2

6
.

2

4

 

          = 1)1(
5

2
8

125

 

Putting all these in ( ), we have 

  
61

42
= (1) ( 1) (1) ( 1) = 1 

Hence 42 is quadratic residue mod 61. 

Alternatively, 
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61

19

61

1961

61

42
 

Since 19 and 61 are odd primes and 61 is of the form 4k + 1, so by quadratic 

Law of recipricity,  

  
19

4

19

457

19

61

61

19
 

            = 8

1219

8

1219

)1.()1(
19

2

19

2
 

                      = 1 

Hence ,1
61

42
 so 42 is quadratic residue mod 61. 

The arithmetic in Zp 

We know that a linear congruence ax  b mod (n) has a unique solution mod 

(n) if gcd(a, n) = 1.  Now if n is a prime p, then gcd(a, n) = gcd (a, p) is either 

1 or p; in the first case, we have a unique solution mod (p), while in the 

second case (where p | a), either every x is a solution (when p | b) or no x is a 

solution (when p | b). 

One can view this elementary result as saying that if the polynomial ax  b 

has degree d = 1 over Zp (that is, if a 0 mod (p)), then it has at most one root 

in Zp.  Now in algebra we learn that a non-trivial polynomial of degree d, with 

real or complex coefficients, has at most  d distinct roots in R or C; it is 

reasonable to ask whether this is also true for the number system Zp, since we 

have just seen that it is true when d = 1.  Our first main theorem, due to 

Lagrange, states that this is indeed the case.  

Theorem 2.19 Let p be prime, and let f(x) = adx
d
 +…+ a1x + a0 be a 

polynomial with integer coefficients, where ai  0 mod (p) for some i.  Then 

the congruence f(x)  0 mod (p) is satisfied by at most d congruence classes 

[x]  Zp. 

Proof :-We use induction on d.  If d = 0 then f(x) = a0 with p not dividing a0, 

so there are no solutions of f(x)  0, as required.  For the inductive step, we 

now assume that d  1, and that all polynomials g(x) = bd 1 x
d 1

 +…+ b0 with 

some bi  0 have at most d 1 roots [x]  Zp. 
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 If the congruence f(x)  0 has no solutions, there is nothing left to 

prove, so suppose that [a] is a solution; thus f(a)  0, so p divides f(a).  Now  

  f(x) f(a) = 
d

0i

ii
i

d

0i

ii
i

d

0i

i
i

d

0i

i
i )ax(a)ax(aaaxa . 

For each i = 1,…, d we can put  

  x
i
  a

i
 = (x a) (x

i 1
 + ax

i 2
 +…+ a

i 2
 x + a

i 1
), 

so that by taking out the common factor x a we have 

  f(x)  f(a) = (x a)g(x) 

for some polynomial g(x) with integer coefficients, of degree at most d 1.  

Now p cannot divide all the coefficients of g(x) : if it did, then since it also 

divides f(a), it would have to divide all the coefficients of f(x) = f(a) + (x a) 

g(x), against our assumption.  We may therefore apply the induction 

hypothesis to g(x), so that at most d 1 classes [x] satisfy g(x)  0.  We now 

count classes [x] satisfying f(x)  0 : if any class [x] = [b] satisfies f(b)  0, 

then p divides both f(a) and f(b), so it divides f(b)  f(a) = (b a) g(b); since p 

is prime, Lemma 2.1(b) implies that p divides b a or g(b), so either [b] = [a] 

or g(b)  0.  There are at most d 1 classes [b] satisfying g(b)  0, and hence at 

most 1 + (d 1) = d satisfying f(b)  0, as required. 

Remarks :- 

1. Note that this theorem allows the possibility that ad = 0, so that f(x) has 

degree less than d; if so, then by deleting adx
d
 we see that there are strictly 

fewer than d classes [x] satisfying f(x)  0.  The same argument applies if 

we merely have ad  0 mod (p). 

2. Even if ad  0, f(x) may still have fewer than d roots in Zp : for instance 

f(x) = x
2
 + 1 has only one root in Z2, namely the class [1], and it has no 

roots in Z3. 

3. The condition that ai  0 for some i ensures that f(x) yields a non-trivial 

polynomial when we reduce it mod (p).  If ai  0 for all i then all p classes 

[x]  Zp satisfy f(x)  0, so the result will fail if d < p. 

4. In the theorem, it is essential to assume that the modulus is prime : for 

example, the polynomial f(x) = x
2
  1, of degree d = 2, has four roots in 

Z8, namely the classes [1], [3], [5] and [7].  

A useful equivalent version of Lagrange‟s Theorem is the contrapositive : 

Let f(x) = adx
d
 +…+ a1x + a0 be a polynomial with integer coefficients, and let 

p be prime.  If f(x) has more than d roots in Zp, then p divides each of its 

coefficients ai. 
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Lagrange‟s Theorem tells us nothing new about polynomials f(x) of degree d 

 p : there are only p classes in Zp, so it is trivial that at most d classes satisfy 

f(x)  0.  The following result, useful in studying polynomials of high degree, 

is known as Fermat‟s Little Theorem though it was also known to Leibniz, 

and the first published proof was given by Euler.  

Theorem 2.20 If p is prime and a  0 mod (p), then a
p 1

  1 (mod p). 

Proof :- The integers 1, 2,…, p 1 form a complete set of non-zero residues 

(mod p).   

If a  0 (mod p) then xa  ya implies x  y, so that the integers a, 2a,…, 

(p 1)a lie in distinct classes (mod p).  None of these integers is divisible by p, 

so they also form a complete set of non-zero residues.  It follows that a, 2a,…, 

(p 1)a are congruent to 1, 2,…, p 1 in some order. (For instance, if p = 5 and 

a = 3 then multiplying the residues 1, 2, 3, 4 by 3 we get 3, 6, 9, 12, which are 

respectively congruent to 3, 1, 4, 2.)  The products of these two sets of 

integers must therefore lie in the same class, that is,  

 1  2  …  (p 1)  a  2a … (p 1)a (mod p), 

or equivalently  

  (p 1)!  (p 1)! a
p 1

 (mod p). 

Since (p 1)! is coprime to p, divide through by (p 1)! and deduce that a
p 1

  1 

mod (p). 

This theorem states that all the classes in Zp except [0] are roots of the 

polynomial x
p 1

 1.  For a polynomial satisfied by all the classes in Zp, we 

simply multiply by x, to get x
p

x : 

 Corollary :- It p is prime then a
p
  a mod(p) for every integer a. 

Proof :- If a  0 then by above theorem a
p 1

  1, so multiplying each side by 

a gives the result.  If a  0 then a
p
  0 also, so the result is again true. 

Note :- This corollary shows that if f(x) is any polynomial of degree d  p, 

then by repeatedly replacing any occurrence of x
p
 with x we can find a 

polynomial g(x) of degree less than p with the property that f(x)  g(x) for all 

integers x.  In other words, when considering polynomials (mod p), it is 

sufficient to restrict attention to those of degree d < p.  Similarly, the 

coefficients can also be simplified by reducing them (mod p). 

These two results are very useful in dealing with large powers of integers.  

Example :- Let us find the least non-negative residue of 2
68

 (mod 19).  Since 

19 is prime and 2 is not divisible by 19, we have p = 19 and a = 2, so that 2
18

 

 1 (mod 19).  Now 68 = 18  3 + 14, so 

  2
68

 = (2
18

)
3
  2

14
  1

3
  2

14
  2

14
 (mod 19). 
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Since 2
4
 = 16  3 (mod 19), we can write 14 = 4  3 + 2 and deduce that  

  2
14

 = (2
4
)
3
  2

2
  ( 3)

3
  2

2
  27  4  8  4  32  6 

mod(19), so that 2
68

  6 (mod 19).  

Example :- We will show that a
25

  a is divisible by 30 for every integer a.  

By factorising 30, we see that it is sufficient to prove that a
25

  a is divisible 

by each of the primes p = 2, 3 and 5. Let us deal with p = 5 first,  applying 

abve Corollary twice, we have 

  a
25

 = (a
5
)
5
  a

5
  a (mod 5), 

so 5 divides a
25

  a for all a.  Similarly a
3
  a (mod 3), so 

  a
25

 = (a
3
)
8
 a = a

8
 a = a

9
 = (a

3
)
3
  a

3
  a (mod 3), 

as required.  For p = 2 a
2
  a (mod 2)  

  a
25

 = (a
2
)
12

 a  a
12

 a = (a
2
)
6
 a  a

6
 a = (a

2
)
3
a 

             a
3
a = a

4
 = (a

2
)
2
 

             a
2
  a (mod 2). 

Example :- Let us find all the roots of the congruence 

  f(x) = x
17

 + 6x
14

 + 2x
5
 + 1  0 (mod 5). 

Here p = 5, so by replacing x
5
 with x we can replace the leading term x

17
 = 

(x
5
)
3
 x

2
 with x

3
x

2
 = x

5
, and hence with x.  Similarly x

14
 is replaced with x

2
, 

and x
5
 with x, so giving the polynomial x + 6x

2
 + 2x + 1.  Reducing the 

coefficients (mod 5) gives x
2
 + 3x + 1.  Thus f(x)  0 is equivalent to the 

much simpler congruence  

  g(x) = x
2
 + 3x + 1  0 (mod 5). 

Here we can simply try all five classes [x]  Z5, or else note that g(x)  

(x 1)
2
; either way, we find that [x] = [1] is the only root of g(x)  0, so this 

class is the only root of f(x)  0. 

As another application of Fermat‟s Little Theorem, we prove a result known 

as Wilson‟s Theorem, though it was first proved by Lagrange in 1770 : 

Corollary :- An integer n is prime if and only if (n 1)!  1 (mod n) 

Proof :- Suppose that n is a prime p.  If p = 2 then (p 1)! = 1  1 (mod p), as 

required, so we may assume that p is odd.  Define 
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  f(x) = (1 x) (2 x)…(p 1 x) + 1 x
p 1

, 

a polynomial with integer coefficients.  This has degree d < p 1, since when 

the product is expanded, the two terms in f(x) involving x
p 1

 cancel.  If a = 1, 

2, …, p 1 then f(a)  0 mod (p): the product (1 a) (2 a)…(p 1 a) vanishes 

since it has a factor equal to 0, and 1 a
p 1

  0 by Fermat‟s Little Theorem.  

Thus f(x) has more than d roots (mod p), so its coefficients are all divisible by 

p.  In particular, p divides the constant term (p 1)! + 1, so (p 1)!  1.  

For the converse, suppose that (n 1)!  1 (mod n).  We then have (n 1)!  

1 (mod m) for any factor m of n.  If m < n then m appears as a factor of 

(n 1)!, so (n 1)!  0 (mod m) and hence 1  0 (mod m).  This implies that m 

= 1, so we conclude that n has no proper factors and is therefore prime.  

Theorem 2.21 Let p be an odd prime.  Then the quadratic congruence x
2
 + 1  

0 (mod p) has a solution if and only if p  1 (mod 4). 

Proof :- Suppose that p is an odd prime, and let k = (p 1)/2.  In the product 

  (p 1)! = 1  2 …  k  (k + 1) … (p 2)  (p 1), 

we have p 1  1, p 2  2,…, k + 1 = p  k  k (mod p), so by replacing 

each of the k factors          p  i with i for i = 1, …, k we see that 

  (p 1)!  ( 1)
k
.(k!)

2
 (mod p). 

Now Wilson‟s Theorem gives (p 1)!  1, so ( 1)
k
 (k!)

2
  1 and hence (k!)

2
 

 ( 1)
k+1

.                        If p  1 (mod 4) then k is even, so (k!)
2
  1 and 

hence x = k! is a solution of x
2
 + 1  0 (mod p). 

On the other hand, suppose that p  3 (mod p), so that k = (p 1)/2 is odd.  If x 

is any solution of x
2
 + 1  0 (mod p), then x is coprime to p, so Fermat‟s Little 

Theorem gives x
p 1

  1 (mod p).  Thus 1  (x
2
)
k
  ( 1)

k
  1 (mod p), which 

is impossible since p is odd, so there can be no solution. 

Units in Zn 

Definition :- A multiplicative inverse for a class [a]  Zn is a class [b]  Zn 

such that [a] [b] = [1].  A class [a]  Zn is a unit if it has a multiplicative 

inverse in Zn.  (In this case, we sometimes say that the integer a is a unit (mod 

n), meaning that ab  1 (mod n) for some integer b.) 

Lemma :-[a] is a unit in Zn if and only if gcd(a, n) = 1. 

Proof :- If [a] is a unit then ab = 1 + qn for some integers b and q; any 

common factor of a and n would therefore divide 1, so gcd(a, n) = 1.  

Conversely, if gcd(a, n) = 1 then 1 = au + nv for some u and v, so [u] is a 

multiplicative inverse of [a]. 

Example :- The units in Z8 are [1], [3], [5] and [7] : in fact [1] [1] = [3] [3] = 

[5] [5] = [7] [7] = [1], so each of these units is its own multiplicative inverse.  
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In Z9, the units are [1], [2], [4], [5], [7] and [8]: for instance [2] [5] = [1], so 

[2] and [5] are inverses of each other.  

The group of units of Un 

Theorem 2.22 For each integer n  1, the set Un forms a group under 

multiplication mod (n), with identity element [1]. 

Proof :- We have to show that Un satisfies the group axioms, namely closure, 

associativity, existence of an identity and of inverses.  To prove closure, we 

have to show that the product [a] [b] = [ab] of two units [a] and [b] is also a 

unit.  If [a] and [b] are units, they have inverses [u] and [v] such that [a] [u] = 

[au] = [1] and [b] [v] = [bv] = [1]; then [ab] [uv] = [aubv] = [au] [bv] = [1]
2
 = 

[1], so [ab] has inverse [uv], and is therefor a unit.  This proves closure.  

Associativity asserts that [a] ([b][c]) = ([a] [b]) [c] for all units [a], [b] and [c]; 

the left-and right-hand sides are the classes [a(bc)] and [(ab)c], so this follows 

from the associativity property a(bc) = (ab)c in Z.  The identity element  of Un 

is [1], since [a][1] = [a] = [1][a] for all [a]  Un.  Finally, if [a]  Un then by 

definition there exists [u]  Zn such that [a] [u] = [1]; now [u]  Un (because 

the class [a] satisfies [u][a] = [1]), so [u] is the inverse of [a] in Un. 

Definition :- We say that a group G is abelian if its elements commute, that is, 

gh = hg for all g, h  G.  

Lemma :- Un is an abelian group under multiplication mod (n). 

Proof of Lemma :-Let [a], [b] Zn, then we have to prove that [a] [b] = [b] 

[a]  

Now  [a] [b] = [a b] = [b a]   (by commutativity in Z)  

             = [b] [a] 

          

Definition :- If G is a finite group with an identity element e, the order of an 

element g G is the least integer k > 0 such that g
k
 = e; then the integers l such 

that g
l
 = e are the multiples of k. 

Example :- In U5 the element 2 has order 4: its powers are 2
1
  2, 2

2
  4, 2

3
  

3 and 2
4
  1 (mod 5), so k = 4 is the least positive exponent such that 2

k
 = 

1(the identity element) in U5.  Similarly, the element 1 has order 1, while the 

elements 3 and 4 have orders 4 and 2 respectively. 

Example :- In U8, the elements, 1, 3, 5, 7 have orders 1, 2, 2, 2 respectively.  

Lemma :- If l and m are coprime positive integers, then 2
l
  1 and 2

m
 1 are 

coprime. 

Proof :- Let n be the highest common factor of 2
l
 1 and 2

m
 1.  Clearly n is 

odd, so 2 is a unit  (mod n).  Let k be the order of the element 2 in the group 

Un.  Since n divides 2
l
 1 we have 2

l
 = 1 in Un, so k divides l.  Similarly k 

divides m, so k divides gcd(l, m) = 1.  Thus k = 1, so the element 2 has order 1 

in Un.  This means that 2
1
  1 mod(n), so n = 1, as required.  
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Corollary :- Distinct Mersenne numbers are coprime. 

Proof :- In above lemma if we take l and m to be distinct primes we see that 

Ml = 2
l

1 and            Mm = 2
m

1  are coprime.  

Primitive roots  

Definition :- If Un is cyclic then any generator g for Un is called a primitive 

root (mod n).  This means that g has order equal to the order (n) of Un, so 

that the powers of g yield all the elements of Un.  For instance, 2 and 3 are 

primitive roots (mod 5), but there are no primitive roots (mod 8) since U8 is 

not cyclic.  

Finding primitive roots in Un (if they exist) is a non-trivial problem, and there 

is no simple solution.  One obvious but tedious method is to try each of then 

(n) units a  Un in turn, each time computing powers a
i
 (mod n) to find the 

order of a in Un; if we find an element a of order (n) then we know that this 

must be a primitive root.  The following result is a rather more efficient test 

for primitive roots : 

Theorem 2.23 An element a  Un is a primitive root if and only if a
(n)/q

  1 in 

Un for each prime q dividing (n). 

Proof :- If a is a primitive root, then it has order |Un| = (n), so a
i
  1 for all i 

such that 1  i < (n); in particular, this applies to i = (n)/q for each prime q 

dividing n. 

Conversly, if a is not a primitive root, then its order k must be a proper factor 

of (n), so (n)/k > 1.  If q is any prime factor of (n)/k, then k divides (n)/q, 

so that a
(n)/q

 = 1 in Un, against our hypothesis.  Thus a must be a primitive 

root. 

Example :- Let n = 11, and let us see whether a = 2 is a primitive root (mod 

11).  Now (11) = 11 1 = 10, which is divisible by the primes q = 2 and q = 5, 

so we take (n)/q to be 5 and 2 respectively.  Now 2
5
, 2

2
  1 (mod 11), so 

above theorem implies that 2 is a primitive root (mod 11).  To verify this, note 

that in U11 we have 

  2
1
 = 2, 2

2
 = 4, 2

3
 = 8, 2

4
 = 5, 2

5
 = 10,       

  2
6
 = 9, 2

7
 = 7, 2

8
 = 3, 2

9
 = 6, 2

10
 = 1; 

thus 2 has order 10, and its powers give all the elements of U11.  If we apply 

above theorem with  a = 3, however, we find that 3
5
 = 243  1 (mod 11), so 3 

is not a primitive root (mod 11): its powers are 3, 9, 5, 4 and 1. 

Example :- Let us find a primitive root (mod 17).  We have (17) = 16, which 

has only q = 2 as a prime factor.  Above theorem therefore implies that an 

element a  U17 is a primitive root if and only if a
8
  1 in U17.  Trying a = 2 
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first, we have 2
8
 = 256  1 (mod 17), so 2 is not a primitive root.  However, 3

8
 

= (3
4
)
2
  ( 4)

2
 = 16 1 (mod 17), so 3 is a primitive root. 

Example :- To demonstrate the above theorem  also applies when n is 

composite, let us take n = 9.  We have (9) = 6, which is divisible by the 

primes q = 2 and q = 3, so that (n)/q is 3 and 2 respectively.  Thus an element 

a  U9 is a primitive root if and only if a
2
, a

3
  1 in U9.  Since 2

2
,  2

3
  1 

(mod 9), we see that 2 is a primitive root. 

Theorem 2.24 If p is prime, then the group Up has (d) elements of order d 

for each d dividing p 1.  Before proving this, we deduce. 

Proof of the Theorem :- For each d dividing p 1 let us define 

  d = {a  Up| a has order d} and (d) = | d|, 

the number of elements of order d in Up.  Our aim is to prove that (d) = (d) 

for all such d.  The order of each element of Up divides p 1, so the sets d 

form a partition of Up and hence  

 

  

99

(d) = p 1. 

Also  
1| pd

(d) = p 1, 

so  
1| pd

( (d)  (d)) = 0. 

If we can show that (d)  (d) for all d dividing p 1, then each summand in 

this expression is non-negative; since their sum is 0, the summands must all be 

0, so (d) = (d), as required.  

The inequality (d)  (d) is obvious if d is empty, so assume that d 

contains an element a.  By the definition of d, the powers a
i
 = a, a

2
,…, a

d
 (= 

1) are all distinct, and they satisfy (a
i
)
d
 = 1, so they are d distinct roots of the 

polynomial f(x) = x
d
 1 in Zp; But f(x) has at most deg(f) = d roots in Zp, so 

these are a complete set of roots of f(x).  We shall show that d consists of 

those roots a
i
 with gcd(i, d) = 1.  If b  d then b is a root of f(x). so b = a

i
 for 

some i = 1, 2,…, d.  If we let j denote gcd(i, d), then  

  b
d/j

  = a
id/j

 = (a
d
)
i/j

 = 1
i/j

 = 1 

in Up; but d is the order of b, so no lower positive power of b than b
d
 can be 

equal to 1, and hence j = 1.  Thus every element b of order d has the form a
i
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where 1  i  d and i is coprime to d.  The number of such integers i is (d), so 

the number (d) of such elements b is at most (d), and the proof is complete.       

Corollary :- If p is prime then the group Up is cyclic. 

Proof :- Putting d = p 1 in above therorem we see that there are (p 1) 

elements of order p 1 in Up.  Since (p 1)  1, the group contains at least one 

element of this order.  Now Up has order (p) = p 1, so such an element is a 

generator for Up, and hence this group is cyclic.  

Example :- Let p = 7, so Up = U7 = {1, 2 3, 4, 5, 6}.  The divisors of p 1 = 6 

are d = 1, 2, 3 and 6, and the sets of elements of order d in U7 are respectively 

{1}, {6}, {2, 4} and {3, 5}; thus the numbers of elements of order d are 1, 1, 2 

and 2 respectively, agreeing with the values of (d).  To verify that 3 is a 

generator, note that 

  3
1
 = 3, 3

2
 = 2, 3

3
 = 6, 3

4
 = 4, 3

5
 = 5, 3

6
 = 1 

in U7, so every element of U7 is a power of 3. 

The group ep
U , where p is an odd prime  

Theorem 2.25 If p is an odd prime, then ep
U  is cyclic for all e  1.  

Proof :- We have already proved the case e = 1, so we may assume that e  2.  

We use the following strategy to find a primitive root mod p
e
: 

(a) first we pick a primitive root g (mod p)  

(b) next we show that either g or g + p is a primitive root mod (p
2
); 

(c) finally we show that if h is any primitive root mod p
2
, then h is a primitive 

root mod p
e
 for all     e  2. 

Since p is prime, so we have a primitive root g (mod p).  Thus g
p 1

  1 (mod 

p), but g
i
 1 (mod p) for 1  i < p 1.  We now proceed to step (b). 

Since gcd(g, p) = 1 we have gcd (g, p
2
) = 1, so we can consider g as an 

element of 2p
U .  If d denotes the order of g (mod p

2
), then Euler‟s theorem 

implies that d divides (p
2
) = p(p 1).  By definition of d, we have g

d
  1 (mod 

p
2
), so g

d
  1 (mod p); but g has order p 1 (mod p), so p 1 divides d.  Since p 

is prime, these two facts imply that either d = p(p 1) or d = p 1.  If d = 

p(p 1) then g is a primitive root (mod p
2
), as required, so assume that d = p 

1.  Let  h = g + q.  Since h  g (mod p), h is a primitive root (mod p), so 

arguing as before we see that h has order p(p 1) or p 1 in 2p
U .  Since g

p 1
  

1 (mod p
2
), the Binomial Theorem gives 

h
p 1

 = (g + p)
p 1

 = g
p 1

 + (p 1) g
p 2

p +…  1 pg
p 2

 (mod p
2
), 
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where the dots represent terms divisible by p
2
.  Since g is coprime to p, we 

have pg
p 2

  0 (mod p
2
) and hence h

p 1
 1 (mod p

2
).  Thus h does not have 

ord a p  1 in 2p
U so it must have order p(p 1)  and is therefore a primitive 

root.   This completes step (b).   

Now we consider step (c).  Let h be any primitive root (mod p
2
).  We will 

show, by induction on e, that h is a primitive root mod (p
e
) for all e  2.  

Suppose, then, that h is a primitive root mod (p
e
) for some e  2, and let d be 

the order of h (mod p
e+1

).  An argument similar to that at the beginning of step 

(b) shows that d divides (p
e+1

) = p
e
 ((p 1) and is divisible by (p

e
) = p

e 1
 

(p 1), so d = p
e
 (p 1) or d = p

e 1
 (p 1).  In the first case, h is a primitive root 

(mod p
e+1

), as required, so it is sufficient to eliminate the second case by 

showing that )1p(1eph  1 (mod p
e+1

). 

Since h is a primitive root mod (p
e
), it has order (p

e
) = p

e 1
 (p 1) in ep

U , so 

)1p(2eph   1 (mod p
e
).  However p

e 2
 (p 1) = (p

e 1
), so )1p(2eph  1 (mod 

p
e 1

) by Euler‟s Theorem.  Combining these two results, we see that 

)1p(2eph = 1 + kp
e 1

 where k is coprime to p, so the Binomial Theorem gives  

  )1p(1eph  = (1 + kp
e 1

)
p
 

       = 1 + p
1  kp

e 1
 + p

2 (kp
e 1

)
2
 +… 

       = 1 + kp
e
 + 

2

1
k

2
 p

2e 1
 (p 1) +… 

The dots here represent terms divisible by (p
e 1

)
3
 and hence by p

e+1
, since 3(e 

1)  e + 1 for e  2, so 

  )1p(1eph  1 + kp
3
 + 

2

1
k

2
p

2e 1
 (p 1) (mod p

e+1
). 

Now p is odd, so the third term k
2
 p

2e 1
(p 1)/2 is also divisible by p

e+1
, since 

2e  1  e + 1 for e  2.  Thus 

  )1p(1eph  1 + kp
e
 mod (p

e+1
). 

Since p does not divide k, we therefore have )1p(1eph  1 mod (p
e+1

), so step 

(c) is complete.  (Notice where we need p to be od: if p = 2 then the third term 

k
2
 p

2e 1
(p 1)/2 = k

2
2

2e 2
 is not divisible by 2

e+1
 when e = 2, so the first step of 

the induction argument fails.) 

Example :- Let p = 5.  We have seen that g = 2 is a primitive root (mod 5), 

since it has order  (5) = 4 as an element of U5. If we regard g = 2 as an 
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element of 2p
U  = U25, then by the above argument its order d in U25 must be 

either p(p 1) = 20 or p 1 = 4.  Now 2
4
 = 16 1 (mod 25), so d  4 and hence 

d = 20.  Thus g = 2 is a primitive root (mod 25).  (One can check this directly 

by computing the powers 2, 2
2
,…, 2

20
 (mod 25), using 2

10
 = 1024  1 (mod 

25) to simplify the calculations.)  Suppose instead that we had chosen g = 7; 

this is also a primitive root (mod 5), since  7  2 (mod 5), but it is not a 

primitive root (mod 25): we have 7
2
 = 49  1 (mod 25), so 7

4
  1 and hence 

7 has order 4 in U25.  Step (b) guarantees that in this case, g + p = 12 must be a 

primitive root.   

The group e2
U  

Theorem 2.26 The group e2
U is cyclic if and only if e = 1 or e = 2.  

Proof :- The groups U2 = {1} and U4 = {1, 3} are cyclic, generated by 1 and 

by 3, so it is sufficient to show that e2
U  has no elements of order (2

e
)  = 2

e 1
 

by showing that  

  
2e2a   1 (mod 2

e
)      

  …(1) 

for all odd a.  We prove this by induction on e.  For the lowest value e = 3, by 

(1) we have that                 a
2
  1 (mod 8) for all odd a, and this is true since if 

a = 2b + 1 then a
2
 = 4b(b+1) +1 1 (mod 8).  If we assume (1) for some 

exponent e  3, then for each odd a we have  

  
2e2a  = 1 + 2

e
k 

for some integer k.  Squaring, we get 

  
2)1e(2a = (1 + 2

e
k)

2
 = 1 + 2

e+1
 k + 2

2e
 k

2
 = 1 + 2

e+1
(k + 2

e 1
 k

2
) 

 1 (mod 2
e+1

),  

which is the required form of (1) for exponent  e + 1.  Thus (1) is true for all 

integers e  3, and the proof is complete.  

Lemma :-  2
n+2

 
n25(| 1) for all n  0. 

Proof :- We use induction on n.  The result is trivial for n = 0.  Suppose it is 

true for some n  0.  Now 

  
1n25 1 = ),15)(15(1)5(

n2n22n2  



PRIMES IN CERTAIN ARITHMETICAL PROGRESSIONS AND SYSTEM OF CONGRUENCES 103 

with 2
n+2

 | (
n25 1) by the induction hypothesis, and with 2 | (

n25  + 1) since 
n25   1 (mod 4).  Combining the powers of 2 we get 2

n+3
 | (

1n25 1) as 

required. 

Theorem 2.27 If e  3 then e2
U  = {  5

i
 | 0  i < 2

e 2
}. 

Proof :- Let m be the order of the element 5 in e2
U .  By Euler‟s Theorem, m 

divides (2
e
) = 2

e 1
, so m = 2

k
 for some k  e 1.  Above theorem  implies that 

e2
U  has no elements of order   2

e 1
 so k  n 2.  Putting n = e 3 in the above 

theorem we see that 2
e 1

 | (
3e25 1), so 

3e25  1 (mod 2
e
) and hence k > e  

3.  Thus k = e 2, so m = 2
e 2

.  This means that 5 has 2
e 2

 distinct powers 5
i
 (0 

 i < 2
e 2

) in e2
U .  Since 5  1 (mod 4), these are all represented by integers 

congruent to 1 mod (4). This accounts for exactly half of the 2
e 1

 elements 1, 

3, 5,…,  2
e
 1 of e2

U , and the other half, represented by integers congruent to 

1 (mod 4), must be the elements of the form 5
i
.  This shows that every 

element has the form  5
i
 for some i = 0, 1,…, 2

e 2
1, as required.  

The existence of primitive roots 

Lemma :- If n = rs where r and s are coprime and are both greater than 2, then 

Un is not cyclic.  

Proof of Lemma :- Since gcd(r, s) = 1 we have (n) = (r) (s) .  Since r, s > 

2, both (r) and (s) are even.  So (n) is divisible by 4.  It follows that the 

integer e = (n)/2 is divisible by both (r) and (s).  If a is a unit (mod n), then 

a is a unit (mod r) and also a unit (mod s), so a
(r)

  1 (mod r) and a
(s) 

 1 

(mod s) by Euler‟s Theorem.  Since (r) and (s) divide e, we therefore have 

a
e
  1 (mod r), that is a

e
  1 (mod s).  Since r and s are coprime, this implies 

that a
e
  1 (mod rs), that is a

e
  1 (mod n).  Thus every element of Un has 

order dividing e, and since e < (n), this means that there is no primitive root 

(mod n).
 
  

Theorem 2.28 The group Un is cyclic if and only if  

  n = 1, 2, 4, p
e
 or 2p

e
, 

where p is an odd prime.     

Proof :- The cases n = 1, 2 and 4 are trivial, and we have dealt with the odd 

prime-powers, so we may assume that n = 2p
e
 where p is an odd prime.  Now 

(n) = (2) (p
e
) = (p

e
).  Therefore there is a primitive root g (mod p

e
).  Then 

g + p
e
 is also a primitive root (mod p

e
), and one of g and g + p

e
 is odd, so there 

is an odd primitive root h (mod p
e
).  We will show that h is a primitive root 

(mod 2p
e
).  By its construction, h is coprime to both 2 and p

e
, so h is a unit 

(mod 2p
e
).  If h

i
  1 (mod 2p

e
), then certainly h

i
  1 (mod p

e
); since h is a 

primitive root (mod p
e
), this implies that (p

e
) divides i.  Since (p

e
) = (2p

e
), 



                                                             ANALYTICAL NUMBER THEORY  104 

this shows that (2p
e
) divides i, so h has order (2p

e
) in ep

U
2

 and is therefore 

a primitive root.   

Conversely, if n 1, 2, 4, p
e
 or 2p

e
, then either  

(a) n = 2
e
 where e  3, or  

(b) n = 2
e
 p

f
 where e  2, f  1 and p is an odd prime, or  

(c) n is divisible by at least two odd primes. 

We have already proved that in case (a), Un is not cyclic.   

In case (b), in the above lemma,  we can take r = 2
e
 and s = p

f
, while in 

case (c) we can take r = p
e 
| n for some odd prime p dividing n, and s = n/r.  In 

either case, n = rs where r and s are coprime and greater than 2, so above 

lemma shows that Un is not cyclic.   

Example :- We know that g = 2 is a primitive root (mod 5
e
) for all e  1.  

Now g is even, so   h = 2 + 5
e
 is an odd primitive root (mod 5

e
).  Using the 

above theorem we see that h is also a primitive root (mod 2.5
e
).  For instance, 

7 is a primitive root (mod 10), and 27 is a primitive root (mod 50). 

The group of quadratic residues  

Definition :- An element a  Un is a quadratic residue (mod n) if a = s
2
 for 

some s  Un; the set of such quadratic residues is denoted by Qn.  For small n 

one can determine Qn simply by squaring all the elements s  Un. 

Example 7.1 Q7 = {1, 2, 4}  U7, while Q8 = {1}  U8. 

Theorem 2.29 Let n = n1…nk where the integers ni are mutually coprime, and 

let f(x) be a polynomaial with integer coefficients.  Supose that for each i = 

1,…, k there are Ni congruence classes x  Zn, such f(x)  0 (mod ni).  Then 

there are N = N1…Nk classes x  Zn such that f(x)  0 (mod n). 

Proof :- Since the moduli ni are mutually coprime, we have f(x)  0 (mod n) if 

and only if f(x)  0 (mod ni) for all i.  Thus each class of solutions x  Zn of 

f(x)  0 (mod n) determines a class of solutions x = xi  
inZ  of f(xi)  0 (mod 

ni) for each i.  Conversely, if for each i we have a cass of solutions xi inZ  of 

f(xi)  0 (mod ni), then by the Chinese Remainder Theorem there is a unique 

class x  Zn satisfying x = xi (mod ni) for all i, and this class satisfies f(x)  0 

(mod n).  Thus there is a one-to-one correspondence between classes x  Zn 

satisfying f(x)  0 (mod n), and k-tuples of classes xi  
inZ  satisfying               

f(xi)  0 (mod ni) for all i.  For each i there are Ni choices for the class xi  

inZ , so there are N1…Nk such k-tuples and hence this is the number of classes 

x  Zn satisfying f(x)  0 (mod n). 

Example :- Putting f(x) = x
2

1, let us find the number N of classes x  Zn 

satisfying x
2
  1 (mod n).  We first count solutions of x

2
  1 (mod p

e
), where p 
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is prime.  If p is odd, then there are just two classes of solutions: clearly the 

classes x   1 both satisfy x
2
  1, and conversely if x

2
  1 then p

e
 divides            

x
2
  1 = (x 1) (x+1) and hence (since p > 2) it divides x 1 or x+1, giving           

x  1.  If p
e
 = 2 or 4 then there are easily seen to be one or two classes of 

solutions, but if p
e
 = 2

e
  8 then a similar argument shows that there are four, 

given by x   1 and x  2
e 1

 1; for any solution x, one of the factors x  1 

must be congruent to 2 (mod 4), so the other factor must be divisible by 2
e 1

.  

Now in general let n have prime-power factorization n1…nk, where ni = ie
ip  

and each ei  1.  We have just seen that for each odd pi there are Ni = 2 classes 

in 
inZ  of solutions of x

2
  1 (mod ni) whereas if  pi = 2 we may have Ni = 1, 

2, or 4, depending on ei.  By above theorem there are  N = N1…Nk classes in 

Zn of solutions of x
2
  1 (mod n), found by solving the simultaneous 

congruences x
2
  1 (mod ni).  Substiutiting the values we have obtained for Ni, 

we therefore have   

  

.otherwise2

4mod2nif2

),8(mod0nif2

N

k

1k

1k

 

where k is the number of distinct primes dividing n.  For instance, if n = 60 = 

2
2
.3.5 then k = 3 and there are 2

k
 = 8 classes of solutions, namely x   1, 11, 

19, 29 (mod 60). 

Theorem 2.30 Let k denote the number of distinct primes dividing n.  If a  

Qn, then the number N of elements t  Un such that t
2
 = a is given by  

  

.otherwise2

4mod2nif2

),8(mod0nif2

N

k

1k

1k

 

Proof :- If a  Qn then s
2
 = a for some s  Un.  Any element t  Un has the 

form t = sx for some unique x  Un, and we have t
2
 = a if and only if x

2
 = 1 in 

Un.  Thus N is the number of solutions of x
2
 = 1 in Un, the above example 

gives the required formula for N. 

Theorem 2.31 Qn is a subgroup of Un. 

Proof :- We need to show that Qn contains the identity element of Un, and is 

closed under taking products and inverses.  Firstly, 1  Qn since 1 = 1
2
 with 1 

 Un.  If a, b  Qn then a = s
2
 and b = t

2
 for some s, t  Un, so ab = (st)

2
 with 

st  Un, giving ab  Qn.  Finally, if a  Qn then a = s
2
 for some s  Un; since 

a and s are units (mod n) they have inverses a
1
 and s

1
 in Un, and                       

a
1
 = (s

1
)
2
so that a

1
  Qn. 
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Theorem 2.32 Let n > 2, and suppose that there is a primitive root g (mod n); 

then Qn is a cyclic group of order (n)/2, generated by g
2
, consisting of the 

even powers of g. 

Proof :- Since n > 2, (n) is even.  The elements a  Un are the powers g
i
 for i 

= 1,…, (n), with g
(n)

 = 1.  If i is even, then a = g
i
 = (g

i/2
)
2
  Qn.  Conversely, 

if a  Qn then a = (g
j
)
2
 for some j, so i  2j (mod (n)) for some j; since (n) is 

even, this implies that i is even.  Thus Qn consists of the even powers of g, so 

it is the cyclic group of order (n)/2 generated by g
2
. 

 

Quadratic residues for prime-power moduli 

Theorem 2.33 Let p be an odd prime, let e  1, and let a  Z. Then a  ep
Q if 

and only if a  Qp. 

Proof :- We know that there is a primitive root g (mod p
e
), so with n = p

e
 we 

see that ep
Q  consists of the even powers of g.  Now g, regarded as an element 

of Up, is also a primitive root (mod p), and with n = p we know that Qp also 

consists of the even powers of g.  Thus a  ep
Q  if and only if  a  ep

Q .  This 

completes the proof. 

Note :- For odd primes p, we can find square roots in ep
U  for e  2 by 

applying the iterative method to the polynomial f(x) = x
2
  a: we use a square 

root of a mod (p
i
) to find the square roots mod (p

i+1
).  Suppose that a  Qp, 

and r is a square root of a mod (p
i
) for some i  1; thus r

2
  a  mod (p

i
), say r

2
 

= a + p
i
q.  If we put s = r + p

i
k, where k is as yet unknown, then s

2
 = r

2
 +2rp

i
k 

+ p
2i

k
2
  a + (q + 2rk) p

i
 mod (p

i+1
), since 2i  i + 1.  Now gcd (2r, p) = 1, so 

we can choose k to satisfy the linear congruence q + 2rk  0 (mod p), giving s
2
 

 a (mod p
i+1

) as required.  An element a 1ip
Q  has just two square roots in 

1ip
U  for odd p, so these must be s. It follows that if we have a square root 

for a in Up, then we can iterate this process to find its square roots in ep
U  for 

all e. 

Example :- Let us take a = 6 and p
e
 = 5

2
.  In U5 we have a = 1 = 1

2
, so we can 

take r = 1 as a square root (mod 5).  Then r
2
 = 1 = 6 + 5.( 1), so q = 1 and we 

need to solve the linear congruence 1 + 2k  0 (mod 5).  This has solution k 

 3 (mod 5), so we take s = r + p
i
k = 1 + 5.3 = 16, and the square roots of 6 in 

25
Z  are given by 16, or equivalently 9 (mod 5

2
).  If we want the square 

roots of 6 in 35
Z  we repeat the process: we can take r = 9 as a square root 

(mod 5
2
), with r

2
 = 81 = 6 + 5

2
.3, so q = 3; solving 3 + 18k  0 (mod 5) we 

have k  1, so s = 9 + 5
2
.  ( 1) = 16, giving square roots 16 (mod 5

3
). 
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Theorem 2.34 Let a be an odd integer.  Then  

(a) a  Q2; 

(b) a  Q4 if and only if a  1 (mod 4); 

(c) if e  3, then a  e2
Q  if and only if a  1 (mod 8). 

Proof :- Parts (a) and (b) are obvious: squaring the elements of U2 = {1}  Z2 

and of U4 = {1, 3}  Z4, we see that Q2 = {1} and Q4 = {1}.  For part (c) we 

use the theorem which states that the elements of e2
U  all have the form 5

i
 

for some i; squaring, we see that the quadratic residues are the even powers of 

5.  Since 5
2
  1 (mod 8), these are all represented by integers a  1 (mod 8).  

Now both the even powers of 5 and the elements a  1 (mod 8) account for 

exactly one quarter of the classes in e2
Q ; since the first set is contained in the 

second, these two sets are equal. 

Example :- Q8 = {1}, Q16 = {1, 9}, Q32 = {1, 9, 17, 25}, and so on. 

Note :-  One can find square roots in e2
Q  by adapting the iterative algorithm 

given earlier for odd prime-powers.  Suppose that a  i2
Q  for some i  3, say 

r
2
 = a + 2

i
q.  If we put s = r + 2

i 1
k, then s

2
 = r

2
 + 2

i
rk + 2

2(i 1)
k

2
  a + (q + rk) 

2
i
 (mod 2

i+1
), since 2(i 1)  i + 1.  Now r is odd, so we can choose k = 0 or 1 

to make q + rk even, giving s
2
  a (mod 2

i+1
).  Thus s is a square root of a in 

1i2
U .  There are four square roots of a in 1i2

U , and these have the form t = 

sx, where x = 1 or 2
i
  1 is a square root of 1.  Since a  1 (mod 8), we can 

start with a square root r = 1 for a in 32
U , and then by iterating this process 

we can find the square roots of a in e2
U  for any e.  

Example :- Let us find the square roots of a = 17 (mod 2
5
); these exist since 

17  1 (mod 8).  First we find a square root (mod 2
4
).  Taking r = 1 we have r

2
 

= 1
2
 = 17 + 2

3
. ( 2), so q = 2; taking k = 0 makes q + rk = 2 even, so s = r + 

2
2
k = 1 is a square root of 17 (mod 2

4
).  Now we repeat this process, using r = 

1 as a square root (mod 2
4
) to find a square root s (mod 2

5
).  We have r

2
 = 1 = 

17 + 2
4
. ( 1), so now q = 1; taking k = 1 makes q + rk = 0 even, so s = r + 

2
3
k = 9 is a square root of 17 mod (2

5
).  The remaining square roots t are 

found by multiplying s = 9 by 1 and by 2
4
  1 =  15, so we have 7, 9 as 

the complete set of square roots of 17 (mod 2
5
). 

Quadratic residues for arbitrary moduli 

Theorem 2.35 Let n = n1n2…nk, where the integers ni are mutually coprime.  

Then a  Qn if and only if a  
inQ  for each i. 

Proof :- If a  Qn then a  s
2
 (mod n) for some s  Un.  Clearly a  s

2
 (mod 

ni) for each i, with s coprime to ni, so a 
inQ .  Conversely, if a  

inQ  for 
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each i then there exist elements si  
inU  such that a =  2

is (mod ni).  By the 

Chinese Remainder Theorem there is an element s  Zn such that  s  si                

(mod ni) for all i.  Then s
2
  2

is   a (mod ni) for all i, and hence s
2
  a (mod n) 

since the moduli ni are comprime, so a  Qn. 

We can now answer the questionof whether a  Qn for arbitrary moduli n: 

Theorem 2.36 Let a  Un.  Then a  Qn if and only if  

(1) a  Qp for each odd prime p dividing n, and  

(2) a  1 (mod 4) if 2
2
 | n, and a  1 (mod 8) if 2

3
 | n. 

(Note that condition (2) is relevant only when n is divisible by 4; in all other 

cases we can ignore it.) 

Proof :- By Theorem 2.36, a  Qn if and only if a  ep
Q  for each prime-

power p
e
 in the factorisation of n.  For odd primes p this is equivalent to              

a  Qp, by Theorem 2.33, giving condition (1); for p = 2 it is equivalent to 

condition (2), by Theorem 2.34. 

Example :- Let n = 144 = 2
4
.3

2
.  An element a  U144 is a quadratic residue if 

and only if a  Q3 and a  1 (mod 8); since Q3 = {1}  Z3, this is equivalent 

to a  1 (mod 24), so Q144 = {1, 25, 49, 73, 97, 121}  U144.  Any a  Q144 

must have N = 8 square roots.  To find these, we first find its four square roots 

(mod 2
4
) and its two square roots (mod 3

2
) by the methods described earlier, 

and then we use the Chinese Remainder Theorem to covert each of these eight 

pairs of roots into a square root (mod 144).  For instance, let a = 73; then a  9 

(mod 2
4
), with square roots s  3, 5 (mod 2

4
), and similarly a  1 (mod 3

2
), 

with square roots s   1 (mod 3
2
); solving these eight pairs of simultaneous 

congruences for s, we get the square roots s  19, 35, 37, 53 (mod 144). 
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Unit-3 
 

Riemann Zeta Function and Dirichlet’s Series  

 
Riemann Zeta Function (s) and its convergence  

Definition :- The Riemann zeta function denoted by (s), is defined as  

(s) = 1
n

1
s

1n

 
ss 3

1

2

1
….      where s > 1.   

   

Theorem 3.1 Prove that the function  

  (s) = 1
n

1
s

1n

 
ss 3

1

2

1
…..   …(1) 

converges for all real s > 1 and diverges for all real s  1. 

Proof :- Suppose first that s > 1.  We group the terms together in blocks of 

length, 1, 2, 4, 8,…, giving  

 (s) = 1 +
ssssss 15

1
...

8

1

7

1
...

4

1

3

1

2

1
+… 

Now  
ss 3

1

2

1
 ,2

2

2

2

1

2

1 s1

sss
 

  ,)2(
4

4

4

1
...

4

1

7

1
...

4

1 2s1

sssss
 

  ,)2(
8

8

8

1
...

8

1

15

1
...

8

1 3s1

sssss
 and so on. 

So we can compare (1) with the geometric series 

1 + 2
1 s

 + (2
1 s

)
2
 + (2

1 s
)
3
 +…i.e. 1+ ...

3

1

2

1
ss

1 + 2
1 s

 +
2)s1(2 +……….. 
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This converges since 0 < 2
1 s

 < 1 and hence so does (1) by the comparison 

test.  In fact, this argument shows that 1  (s)  f(s) for all s > 1, where 

  f(s) = .
21

1
)2(

s1
0n

ns1  

If s  +  then 2
1 s

0 and so f(s)  1, giving 
s
lim (s) = 1. 

We now show that (1) diverges for s  1.  This is obvious if s  0, since than 

sn

1
0 as n , so let us assume that s > 0.  By grouping the terms of (1) in 

blocks of length 1, 1, 2, 4,…, we have  

  (s) = 1 + 
sssss 8

1
...

5

1

4

1

3

1

2

1
+… 

If s  1, then  
2

1

4

1

4

1

4

1

3

1
,

2

1

2

1
sss

, 

  
2

1

8

1
...

8

1

8

1
...

5

1
ss

, and so on, so (1) diverges by 

comparison with the divergent series 1 + 
2

1
+ 

2

1
+… In particular, by taking s 

= 1, we see that the harmonic series  

n

1
 diverges. 

Application to prime numbers.  

Theorem 3.2  Using Riemann zeta function, prove that are infinitely many 

primes.  

Proof :- Suppose there are only finitely many primes, say p1, p2,…pk.  For 

each prime p = pi, we have 
p

1
 < 1, so there is a convergent geometric series  

  1 + 
132 p1

1
...

p

1

p

1

p

1
. 

If follows that if we multiply these k different series together, their product  

k

1i
2
ii

...
p

1

p

1
1 = 

k

1i
1

ip1

1
   …(1) 
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is finite.  Now there convergent series all consist of positive terms, so they are 

absolutely convergent.  It follows that we can multiply out the series in (1) 

and rearrange the terms, without changing the product.  If we take a typical 

term 
1e

1p

1
from the first series, 

2e
2p

1
 from the 2

nd
 series, and so on, where 

each ei  0, then their product 

  
1e

1p

1
. 

ke
k

2e
2

1e
1

ke
k

2e
2 p...pp

1

p

1
...

p

1
 

will represent a typical term in the expansion of (1).  By the fundamental 

theorem of arithmetic, every integer n  1 has a unique expansion n = 

ke
k

2e
2

1e
1 p...pp (ei  0) as a product of powers of the primes pi.  Since we are 

assuming that these are the only primes; notice that we allow ei = 0, in case n 

is not divisible by a particular prime pi.  This uniqueness implies that each n 

contributes exactly one term 
n

1
 to (1), so the expansion takes the form  

  
1n

k

1i
2
ii n

1
...

p

1

p

1
1     …(2) 

The right hand side is the harmonic series, which is divergent.  However the 

LHS is finite, so this contradiction proves that there must be infinitely many 

primes.  

(s) as Euler’s product 

Theorem 3.3  If s > 1, then  

  (s) = 
p

sp1

1
, where the product is over all primes p. 

This is, infact, representation of Riemann zeta function as Euler‟s product. 

Proof :- The method is to consider the product pk(s) of the factors 

corresponding to the first k primes, and to show that Pk(s)  (s) as k .  

Let p1, p2…pk be the first k primes.  Now if s > 0 (so that the geometric series 

all converge) then  

 

  Pk(s) = 
k

1i

k

1i
s2

i
s

i
s

i

...
p

1

p

1
1

p1

1
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If we expand this product, the general term in the resulting series is 

ke
k

2e

2
1e

1s
p...ppnwhere

n

1
 and each ei  0.  The Fundamental Theorem of 

Arithmetic implies that each such n contributes just one term to Pk(s), so 

  Pk(s) = 
kAn

sn

1
, 

where   Ak = 0e,p...ppn:n i
ke

k
2e

2
1e

1  is the set of integers n whose 

prime factor are among p1, p2…pk. Each n Ak is divisible by same prime p > 

pk, and so n > pk.  It follows that if s > 1 Then  

  |Pk(s)  (s)| = .
n

1
)s(ξ

n

1

n

1

xpn
s

kpn
s

kAn
s

 

Since s > 1, the partial sum of the series 
sn

1
 converges to (s), so in 

particular 
s

kpn n

1
(s) as k .  Thus |Pk(s)  (s)| 0 as x , so 

Pk(s) (s) as required. 

Evaluation of (2) and (2k).  

Theorem 3.4  If (s) is Riemann zeta function, then (2) = 
6

π 2

 

Proof :- We know that the function sin z  can be expanded as  

  sin z = z
22

2

1n0n n

z
1z

n

z
1   …(1) 

The first product in (1) is over all non zero integers n, and the second product 

is obtained from the first by pairing the factors corresponding to n. 

Also the Taylor series expansion of sin z is  

  sin z = z
5|

z

3|

z 53

…     …(2) 

Comparing the coefficients of z
3
 in (1) and (2), we see that  
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1n

22πn

1
= 

3|

1
 

Multiplying by 
2
, we get 

  (2) = 
6

π 2

. 

Theorem 3.5  If (s) is a Riemann zeta function, then evaluate (2k) where k 

 1. 

Proof :- We know that sin z can be written as  

  sin z = z
22

2

1n n

z
1     …(1) 

Taking log . of (1), we have 

  log sin z = log z +
22

2

1n n

z
1log   

and differentiating term by term  

  cot z = 

1

22

2

22
1n n

z
1

n

z2

z

1
. 

Now  

k

22

2

0k
22

1

22

2

22 n

z

n

z2

n

z
1

n

z2
   

   

      = 2
k2k2

1k2

1k
2k22k2

1k2

0k n

z
2

n

z
 

and then collect powers of z, we get 

 cot z = 
k2k2

1k2

1k 1n n

z
2

z

1
= 

k2

1k2

1k

z)k2(
2

z

1
  …(2) 

which is the Laurent series for cot z 
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We will now compare (2) with a second expansion of cot z.  The exponential 

series 

  e
t
 = 1 + t +

3|

t

2|

t 32

 

implies that  

  ...
3|

t

2|

t
1

t

1e 2t

 

and the reciprocal of this has a Taylor series expansion which can be written 

in the form  

  
0m

mm

1
2

t
t

m|

B
...

3|

t

2|

t
1

1e

t
  …(3) 

for certain constants B0, B1… known as the Bernoulli numbers.  

Now  1
ee

ee

2

t
1

1e

1e

2

t

1e

t
2/t2/t

2/t2/t

t

t

t
 

 = 1
2

ti
coti

2

t
1

2

t
hcot

2

t
 where i = 1 .  Putting z = it/2, we get 

  
i

z
zcotz

1e

t
t

= z cot z + iz. 

Dividing by z and using (3), we have 

  cot z = i + 1m
m

0m

mm

0m

m z
i

2

m|

B
it

m|

B

z

1
 

By comparing the coefficients of (2), we see that if m = 2k  2, 

then   2 ,
i

2

)k2(|

B

π

)k2(ξ
k2

k2

k2
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so that   (2k) = 
k2|

Bπ2)1( k2
k21k21k

   …(4) 

Thus  (2) = 
2
 B2, (4) = 

45

Bπ2
)6(ξ,

3

Bπ 6
6

4
4

 and so on. 

We know that B0 = 1,  B1 = 0B,
6

1
B,

2

1
32  

  B4 = 
42

1
B,0B,

30

1
65  and so on. 

Thus  (2) = 
945

π
)6(ξ,

90

π
)4(ξ,

6

π 642

etc.  

Dirichlet’s Series with simple properties :-  

Definition :- If f is an arithmetic function, then its Dirichlet series is the series  

  F(s) = 
1n

sn

)n(f
 

Example :- If f(n) = u(n), then F(s) = 
sn

)n(u
)s(ξ

n

1
s

 where u(n) = 1           

 n N is the unit function. 

Example :- If f(n) = N(n) then F(s) = 
sn

)n(N
= 

sn

n
1sn

1
= (s 1) 

where N(n) = n for all n. 

Example :- If f(n) = (n), then  

  F(s) = 
)s(ξ

1

n

)n(μ
s

where (n) is Mobius function.  

Notation.    Following Riemann, we let s be a complex variable and write  

   s  =   + it,  

where  and t are real.  Then n
s
 = e

s log n
 =  e

(  + it)log n
 .   This shows that                  | n

s
 | = n  

since | e
i

| =  1 for real   .  

The set of points s =   + it such that  > a is called a half-plane.  We will show that for each 

Dirichlet series there is a half-plane  > c in which the series converges, and another half-
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plane  > a in which it converges absolutely.  We will also show that in the half-plane of 

convergence the series represents an analytic function of the complex variable s.   

The half-plane of absolute convergence of a Dirichlet series  

First we note that if    a we have |n
s
| =  n   n

a
 hence  

   
sn

)n(f
  

an

|)n(f|
 .  

Therefore, if a Dirichlet series  f(n)n
s
 converges absolutely for s = a + ib, then by the 

comparison test it also converges absolutely for all s with   a.   

Theorem  3.6  Suppose the series  | f(n)n
s
 | does not converge for all s or diverge for all s.  

Then there exists  a real number a, called the abscissa of absolute convergence, such that the 

series  f(n)n
s
 converges absolutely if  > a but does not converge absolutely if  < a .   

Proof.  Let D be the set of all real  such that  |f(n)n
s
 | diverges.  D is not empty because the 

series does not converge for all s, and D is bounded above because the series does not diverge 

for all s.   Therefore D has a least upper bound which we call a .  If  < a then   D , 

otherwise  would be an upper bound for D smaller than the least upper bound.  If  > a then 

  D since a is an upper bound for D .  This proves the theorem.  

Note :   If  |f(n)n
s
 | converges everywhere we define a =   .   If the series  | f(n)n

s
 | 

converges nowhere we define a =  +  .  

Example.    Riemann zeta function.   The Dirichlet series 
1n

sn converges absolutely for  

> 1.  When s = 1 the series diverges, so a = 1.  The sum of this series is denoted by (s) and 

is called the Riemann zeta function.   

Example.  If f is bounded, say  | f(n) |  M for all n  1, then  f(n)n
s
  converges absolutely 

for          > 1 ,  so a  1.   In particular if  is a Dirichlet character the L-series L(s, ) =   

(n)n
s
 converges absolutely for  > 1 .   

Example.    The series  n
n
n

s
 diverges for every s so a = +  .   

Example.    The series  n
n
 n

s
 converges absolutely for every s so a =  .   

The Function Defined by a Dirichlet  series 

Assume that  f(n)n
s
 converges absolutely for  > a and let F(s) denote the sum function  

 F(s) =  
1n

sn

)n(f
  for  > a .  

This section derives some properties of F(s).  First we prove the following lemma :  

Lemma 1.  If N  1 and   c > a  we have  

  
Nn

sn)n(f   N
( c)

  
Nn

| f(n) | n
 c
 .  

Proof.  We have  
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Nn

sn)n(f  
Nn

| f(n)| n   = 
Nn

| f(n) | n
c
 n

( c)
  

           N
( c)

 
Nn

| f(n) | n
c
  .  

The next theorem describes the behaviour of F(s) as   +  .  

Theorem 3.7    If F(s) = 
1n

sn

)n(f
  for  > a, then   

    lim  F(  + it) = f(1)  

uniformly for  < t < +  .  

Proof.   Since F(s) = f(1) + 
2n

f(n)n
s
 we need only prove that the second term tends to 0 as           

  +  .  Choose c > a .   Then for   c  the lemma implies  

 

  
2n

sn

)n(f
  2

( c)
 

2n

|f(n)| n
c
 =  

2

A
 

where A is independent of  and t .  Since A/2   0 as a   +  this proves the theorem.  

Examples.   (  + it)  1 and L(  + it,   )  1 as   +  .  

We prove next that  all the coefficients are uniquely determined by  the sum function.  

Theorem 3.8   Uniqueness theorem.  Given two Dirichlet series  

  F(s) =  
1n

sn

)n(f
  and G(s) =  

1n
sn

)n(g
 ,  

both absolutely convergent for  > a .  If F(s) = G(s) for each s in an infinite sequence {sk} 

such that k  +  as k  , then f(n) =  g(n) for every n .   

Proof.   Let h(n) =  f(n)  g(n) and let H(s) =  F(s)  G(s).  Then H(sk) = 0 for each k.  To 

prove that h(n) =  0 for all n we assume that h(n)  0 for some no and obtain a contradiction.  

Let N be the smallest integer for which h(n)  0 .  Then  

  H(s) =  
Nn

sn

)n(h
 =  

sN

)N(h
 + 

1Nn
sn

)n(h
 .  

Hence  

  h(N) =  N
s
H(s)  N

s
  

1Nn
sn

)n(h
.  
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Putting s = sk we have H(sk) = 0  hence  

  h(N) =  ksN
1Nn

ksn)n(h  .  

Choose k so that k > c where c > a .  Then Lemma 1 implies  

 | h(N)|   kN )ck()1N(  
1Nn

cn|)n(h|  =  

k

1N

N
A 

where A is independent of  k .  Letting k   we find k))1N/(N(   0 so h(N) = 0, a 

contradiction.  

The uniqueness theorem implies the existence of a half-plane in which a Dirichlet series does 

not vanish (unless, of course, the series vanishes identically).  

Theorem 3.9   Let F(s) =   f(n)n
s
 and assume that F(s)   0 for some s with  > a .   Then 

there is a half-plane  > c  a in which F(s) is never zero.  

Proof.   Assume no such half-plane exists.  Then for every k =  1,2,… there is a point sk with                 

k > k such that F(sk) = 0 .  Since k  +  as k   the uniqueness theorem shows that f(n) 

= 0 for all n, contradicting the hypothesis that F(s)  0 for some s .  

The half-plane of convergence of a Dirichlet series   

To prove the existence of a half-plane of convergence we use the following lemma :  

Lemma 2.  Let s0 = 0 + it0  and assume that the Dirichlet series  f(n) 0sn  has bounded 

partial sums, say  

  
xn

0s
n)n(f   M  

for all x  1 .  Then for each s with  > 0 we have  

xna

sn)n(f   2M 0a  

0

0 |ss|
1   …(1) 

Proof.   Let a(n) =  f(n) 0sn  and let A(x) = 
xn

).n(a   Then f(n)n
s
 =  a(n)

s0sn  so we can 

apply Abel‟s identity (to be proved in unit v) : For any arithmetical function a(n) and let 

A(x) = 
xn

a(n), 

Where A(x) = 0 if x < 1.  Assume f has a continuous derivative on the interval [y, x], where 0 

< y < x.  Then we have  

  
xny

a(n) f(n) = A(x) f(x)  A(y) f(y) )t(A
x

y

f (t)dt    
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Theorem   (with f(x) = 
s0sx ) to obtain 

 
bna

sn)n(f   = A(b)
s0s

b   A(a)
s0s

a (s s0) 
b

a

1s0st)t(A  dt .  

Since | A(x)|  M this gives us  

 
bna

sn)n(f   M 0b  + M 0a  + |s  s0| M  
b

a

10t  dt 

    2M 0a + |s  s0| M 

0

100 ab
 

    2M 0a  

0

0 |ss|
1  .  

Examples.   If the partial sums 
xn

f(n) are bounded, above Lemma 2 implies that  f(n)n
s
 

converges for  > 0 .  In fact, if we take s0 = 0 = 0 in (1)  we obtain, for  > 0 ,  

  
bna

sn)n(f   Ka   

where K is independent of a .  Let a  +  we find that  f(n)n
s
 converges if  > 0 .  In 

particular, this shows that the Dirichlet series  

  
1n

s

n

n

)1(
 

converges for  > 0  since 
xn

n)1(   1 .   

Theorem 3.10  If the series  f(n)n
s
 converges for s = 0 + it0 then it also converges for all s 

with            > 0 .  If it diverges for s  = 0 + it0 then it diverges for all s with  < 0 .   

   

Proof :-  The second statement follows from the first.  To prove the first statement, choose 

any s with  > 0.Above  Lemma  shows that  

  s

bna

n)n(f   0Ka  
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where K is independent of a.  Since 0a  0 as   + ,  the Cauchy 

condition shows that          f(n) n
s
 converges. 

Theorem 3.11 If the series  f(n)n
s
 does not converge every where or 

diverge everywhere, then there exists a real number c, called the abscissa of 

convergence, such that the series converges for all s in the half-plane  > c 

and diverges for all s in the half-plane  < c. 

Proof :- We argue as in the proof of Theorem 3.6, taking c to be the least 

upper bound of all  for which  f(n)n
s
 diverges. 

Note. If the series converges everywhere we define c = , and if it 

converges nowhere we define c = + . 

Theorem 3.12  For any Dirichlet series with c finite we have 

  0  a  c  1.  

Proof :- It suffices to show that if  f(n) 0sn  converges for some s0 then it 

converges absolutely for all s with  > 0 + 1.  Let A be an upper bound for 

the number | f(n) 0sn |.  Then 

  
00ss0ss n

A

n

1

n

)n(f

n

)n(f
 

so  | f(n)n
s 
| converges by comparison with 0n . 

Example The series  

  
1n

s

n

n

)1(
 

converges if  > 0, but the convergence is absolute only if  > 1.  Therefore in 

this example c = 0 and a = 1. 

Definition :- If f and g are arithmetic functions, then their Dirichlet product or 

convolution, is the arithmetic function f  g given by  

  (f  g)(n) = 
n/d

;
d

n
g)d(f  

equivalently, putting e = ,
d

n
 we have 

  (f  g) (n) = 
nde

f(d) g(e)]. 

Theorem 3.13  Suppose that  
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F(s) = 
1n

s
1n

s n

)n(g
)s(G,

n

)n(f
 and  

H(s) = 
1n

sn

)n(h
 where h = f  g.  Then H(s) = F(s) G(s) for all s such that F(s) 

and G(s) both average absolutely. 

Proof :- If F(s) and G(s) both converge absolutely, then we can multiply these 

series and re arrange their terms to give   

  F(g) G(s) = 
1n

s
1n

s n

)n(g

n

)n(f
 

       = 
1k

s
kmn1m 1n

s k

)n(g)m(f

)mn(

)n(g)m(f
 

       = )s(H
k

)k(h

k

)k)(gf(
s

1k
s

1k

 

Example :- If we take f = , g = u, then  

  h = f  g =   u = I.  where I = identity function and I(1) = 1, 

I(n) = 0  n > 1. 

Now I(1) = 1 and I(n) = 0 for all n > 1 

so  H(s) = 
sn

)n(I
 = 1 for all s. 

We have  F(s) = 
sn

)n(μ
 and 

  G(s) = 
sn

)n(u
= 

sn

1
 = (s), both absolutely convergent for s 

> 1. 

Using above theorem, we have 

  
1n

sn

)n(μ
(s) = 1, so that 

  
1n

sn

)n(μ
= 

)s(ξ

1
 for all s > 1. 

Example :- Let f =  and g = u.  Then G(s) = (s) is absolutely convergent for 

s > 1.                                    Now 1  (n)  n for all n, so F(s) = 
sn

)n(υ
 is 
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absolutely convergent by comparison with  
sn

n
 = (s 1) for s 1 > 1, that is, 

for s > 2 

Also    u = N, so  

  

1n 1n

ss

1n

s n

n

n

)n(N
)s(

n

)n(
= (s 1) 

and hence 
)s(

)1s(

n

)n(

1n

s
 for all s > 2.  

 

Analytic properties of Dircichlet series  

Convergence properties of Dirichlet series can be compared with those of 

power series.  Every power series has a disk of convergence, whereas every 

Dirichlet series has a half-plane of convergence.  For power series the interior 

of the disk of convergence is also the domain of absolute convergence.  For 

Dirichlet series the domain of absolute convergence may be a proper subset of 

the domain of convergence.  A power series represents an analytic function 

inside its disk of convergence.  We show next that a Dirichlet series represents 

an analytic function inside its half-plane of convergence. 

 Analytic properties of Dirichlet series will be deduced from the following 

general theorem of complex function theory which we state as a lemma.  

Lemma 3. Let {fn} be a sequence of functions analytic on an open subset S of 

the complex plane, and assume that {fn} converges uniformly on every 

compact subset of S to a limit function f.  Then f is analytic on S and the 

sequence of derivatives {f n} converges uniformly on every compact subset 

of S to be derivative f . 

Proof :- Since fn is analytic on S we have Cauchy‟s integral formula  

  fn(a) = dz
az

)z(f

i2

1 n

D
 

where D is any compact disk in S, D is its positively oriented boundary, and 

a is any interior point of D.  Because of uniform convergence we can pass to 

the limit under the integral sign and obtain  

  f(a) = dz
az

)z(f

i2

1

D
 

which implies that f is analytic inside D.  For the derivatives we have 
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  dz
)az(

)z(f

i2

1
)a(f

2

n

D

'
n  and

 dz
)az(

)z(f

i2

1
)a('f

2D
  

from which it follows easily that )a('f)a(f '
n  uniformly on every compact 

subset of S as n . 

 To apply the lemma to Dirichlet series we show first that we have 

uniform convergence on compact subsets of the half-plane of convergence. 

Theorem 3.14 A Dirichlet series  f(n)n
s
 converges uniformly on every 

compact subset lying interior to the half plane of convergence  > c. 

Proof:    It is suffice to show that   f(n)n
s
 converges uniformly on every 

compact rectangle           R = [ , ]  [c, d] with  > c.  To do this we use the 

estimate , 

  
0

00s

bna

|ss|
1Ma2n)n(f   …(1) 

where s0 = 0 + it0 is any point in the half-plane  > c and s is any point with 

 > 0.  We choose          s0 = 0 where c < 0 < . 

Then if s  R we have  0    0 and |s0  s| < C, where C is a constant 

depending on s0 and R but not on s.  Then (1) implies 

  0

0

0s

bna

Ba
C

1Ma2n)n(f  

where B is independent of s.  Since 0  0 as a  +  the Cauchy 

condition for uniform convergence is satisfied.  

Theorem 3.15 The sum function F(s) = f(n)n
s
 of a Dirichlet series is 

analytic in its half-plane of convergence  > c, and its derivative F (s) is 

represented in this half-plane by the Dirichlet series  

  F (s) = 
s

1n n

nlog)n(f
,    …(1) 

obtained by differentiating term by term. 

Proof :- We apply above theorem 3.14 and Lemma 3 to the sequence of 

partial sums. 

Notes :- The derived series in (1) has the same abscissa of convergence and 

the same abscissa of absolute convergence as the series for F(s). 
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 Applying Theorem 3.15 repeatedly we find that the kth derivative is 

given by  

  F
(k)

(s) = ( 1)
k
 

s

k

1n n

)n)(logn(f
 for  > c. 

Examples For  > 1 we have  

   (s) = 
s

1n n

nlog
     …(2) 

and 

  s
1n n

)n(

)s(

)s('
.     …(3) 

Equation (2) follows by differentiating the series for the zeta function term by 

term, and (3) is obtained by multiplying the two Dirichlet series  (n) n
s
 

and  n
s
 and using the identity  d | n

 
(d)

 
= log n. 

Dirichlet series with nonnegative coefficients  

          Some functions which are defined by Dirichlet series in their half-plane 

of convergence           > c can be continued analytically beyond the line  = 

c.  For example, Riemann zeta function (s) can be continued analytically 

beyond the line  = 1 to a function which is analytic for all s except for a 

simple pole at s = 1.   The singularity for the zeta function is explained by the 

following theorem of Landau which deals with Dirichlet series having 

nonnegative coefficients. 

Theorem 3.16  Let F(s) be represented in the half-plane  > c by the Dirichlet 

series  

  F(s) = 
s

1n n

)n(f
,     …(1) 

where c is finite, and assume that f(n)  0 for all n  n0.  If F(s) is analytic in 

some disk about the point s = c, then the Dirichlet series converges in the half-

plane  > c    for some  > 0.  Consequently, if the Dirichlet series has a 

finite abscissa of convergence c, then F(s) has a singularity on the real axis at 

the point s = c. 

Proof :- Let a = 1 + c.  Since F is analytic at a it can be represented by an 

absolutely convergent power series expansion about a, 

  F(s) = 
!k

)a(F )k(

0k

(s a)
k
,    …(2) 
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and the radius of convergence of this power series exceeds 1 since F is 

analytic at c, (see the figure 3.1 below).  By theorem 3.16 the derivatives 

F
(k)

(a) can be determined by repeated differentiation of (1).  This gives us  

  F
(k)

(a) = ( 1)
k

1n

f(n) (log n)
k
 n

a
, 

So (2) can be rewritten as  

  F(s) = 
0k 1n !k

)sa( k

f(n) (log n)
k
 n

a
.  …(3) 

Since the radius of convergence exceeds 1, this formula is valid for some real 

s = c   where  > 0 (see figure below). Then a s = 1 +  for this s and the 

double series in (3) has nonnegative terms for n  n0.  Therefore we can 

interchange the order of summation to obtain  

  F(c ) =
1n

an

)n(f

!k

}nlog)1{( k

0k

 = 
1n

an

)n(f
e

(1+ )l og n
  = 

1n
cn

)n(f
. 

In other words, the Dirchlet series  f(n)n
s
 converges for s = c  , hence it 

also converges in the half-plane  > c  . 

 

 

 

 

 

 

 

 
  

Definition :- An arithmetic function f is called multiplicative if f(mn) = f(m) 

f(n) where                      gcd (m, n) = 1. 

Definition :- An arithmetic function f is completely multiplicative if f(mn) = 

f(m) f(n) for all positive integers m and n.  

Euler Products  

c  c    a = 1 + c 

Figure 3.1 
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The product expansions of a function in which the factors are indexed by the 

primes are called Euler products.  For example (s) = 
p

sp1

1
 s > 1, 

where the product is over all primes. 

Theorem 3.17 (a) If f(n) is multiplicative and 
1n

)n(f  is absolutely 

convergent, then 

  
p

2

1n

....))p(f)p(f1()n(f  

(b) If f(n) is completely multiplicative, and 
1n

)n(f  is absolutely convergent, 

then  

  
1n

)n(f = 
p )p(f1

1
. 

Proof :- (a) Let p1, p2,…, pk be the first k primes, and let 

  Pk = 
k

1i

( 1 + f(pi) + f(pi
2
) +…) 

The general term in the expansion of Pk(s) is  

  )p...p(f)p(f)...p(f ke
k

1e
1

ke
k

1e
1 , because f(n) is multiplicative  

Thus   Pk = 
kAn

)n(f  

where   Ak = {n : n = }0e,p...p i
ke

k
1e

1 . 

We have 
kAnkAn1n

k |)n(f|)n(f)n(fP  

               
kpn

|)n(f| , since n > pk for each n  Ak. 

Now |)n(f|
1n

 converges, so as k  we have 

k
pn

|)n(f| 0 and hence  

  
1n

k )n(fP 0; thus Pk 
1n

)n(f  as k . 
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(b) If f(n) is completely multiplicative, then 

  f(p
e
) = f(p)

e
 for each prime power p

e
, so part (a) gives 

  
1n

)n(f  = 
p

(1 + f(p) + f(p
2
) +…) 

    = 
p

 (1 + f(p) + f(p)
2
+…) 

    =
p )p(f1

1
. 

Applying Theorem 3.17, to absolutely convergent Dirichlet series we immediately obtain :  

Theorem 3.18  Assume  f(n)n
s
 converges absolutely for  > a .  If f is multiplicative we 

have  

 
1n

sn

)n(f
 = 

p
s2

2

s
...

p

)p(f

p

)p(f
1   if  > a ,   …(1) 

and if f is completely multiplicative we have  

  
1n

sn

)n(f
 = 

p
sp)p(f1

1
  if  > a  .    …(2) 

It should be noted that the general term of the product in (1)  is the Bells series fp(x) of the 

function f with x =  p
s
 .  

Examples.    Taking f(n) =  1,  (n), (n), (n), respectively, we obtain the following Euler 

products :  

  (s) =  
p

s
1n

s p1

1

n

1
   if  > 1 .  

  
1n

sn

)n(

)s(

1
 =  

p

sp1( )    if  > 1 .  

   
1n

sn

)n(

)s(

)1s(
 = 

p
s1

s

p1

p1
  if  > 2 .  

         (s) (s ) = 
1n

sn

)n(
  = 

p
sas )p1()p1(

1
 if  > max {1, 

1+ Re( )} 

Example :- The mobius function (n) is multiplicative, with (p) = 1 and 

(p
e
) = 0 for all e  2, so  
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1n p
s2

2

ss
...

p

)p(μ

p

)p(μ
1

n

)n(μ
= 

p

(1 p
s
) = 

)s(ξ

1
. for all s > 1.  
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Unit-IV 
 

Diophantine Equations and Quadratic Fields 

 

Diophantine equations 
Definition :- A Diaphantine equation is an equation in more than one 

variables and with integral coefficients such as  

  ax + by = c,    x
3
 + y

3
 = z

3
,       x

2
 + y

2
 = z

2
 

Our problem is to find all the integral solutions of a given Diophantine 

equation. 

To find solutions of diaphantine equation  

 x
2
 + y

2
 = z

2
      …(1) 

Let x = 0, then the equation becomes y
2
 = z

2
   y =  z 

Similarly if y = 0, then x
2
 = z

2 
and x =  z.  Let z = 0   x

2
 + y

2
 = 0   x = 0 

= y 

Thus all the solutions are known if either x = 0 or y = 0 or z = 0 

So we assume neither of x, y, z is equal to zero. 

 Further if (x, y, z) is a solution of (1), (  x,  y,  z) is also a solution 

of (1) for all combinations.  So we assume x > 0, y > 0, z > 0.  Again if (x, y, 

z) is a solution of (1), (dx, dy, dz) is also a solution of (1) for all d.  So W. L. 

O. G. we assume gcd (x, y, z) = 1 

 Let gcd(x, y) = d > 1 

then  d | x, d | y   d
2 

| x
2
,  d

2 
| y

2
 

  d
2 

| x
2
 + y

2
    d

2 
| z

2
   d | z 

  gcd (x, y, z)  d > 1
   

Similarly if gcd (x, z) = d > 1 then gcd(x, y, z)  d > 1 and same holds if gcd 

(x, z) > 1 

So to consider solutions where gcd(x, y, z) = 1, it is enough to assume that 

gcd(x, y) = 1 

Now since gcd(x, y) = 1, so both of x & y can not be even. 

Let both x & y be odd, then  
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  x
2
 = 1 (mod 8), y

2
  1 (mod 8) 

  z
2
 = x

2
 + y

2
  2 (mod 8) 

But there is no integer z with 

  z
2
  2 (mod 8) 

So if (x, y, z) satisfies (1) and gcd(x, y) = 1 then one of x & y must be odd and 

other must be even.  

 W. L. O. G. we assume that x is even and y is odd  

Definition :- A solution (x, y, z) satisfying a Diaphantine equation is called a 

primitive solution if gcd(x, y, z) = 1 

Theorem 4.1 All the positive primitive solutions of  

  x
2
 + y

2
 = z

2
      …(1) 

where x is even, y is odd, is given  

by   x = 2ab, y = a
2
  b

2
, z = a

2
 + b

2
   …(2) 

where a > b > 0 and a and b are of opposite parity and gcd (a, b ) = 1 

Proof :-  Suppose (x, y, z) are given by (2) where a & b satisfy given 

conditions.  Then we shall prove x, y, z are positive primitive solutions of (1) 

Clearly x > 0, y > 0, z > 0 since a > b > 0  

Setting x = 2ab, y = a
2
  b

2
 we get 

  x
2
 + y

2
 = (2ab)

2
 + (a

2
b

2
)
2
 = (a

2
 + b

2
)
2
 = z

2
  

Thus (x, y, z) satisfy (1) 

To prove gcd (x, y, z) = 1, it is enough to prove that gcd (y, z) = 1 where y & 

z are given by (2).  Let  d = gcd (a
2
  b

2
, a

2
 + b

2
) 

Then   d | (a
2
  b

2
) & d | (a

2
 + b

2
) 

  d | (a
2
 + b

2
)  (a

2
  b

2
) 

 d | 2a
2
 & d | 2b

2
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 d | gcd (2a
2
, 2b

2
) 

 d | 2 gcd (a
2
, b

2
) 

But gcd (a, b) = 1   gcd (a
2
, b

2
) = 1     d | 2   d= 1 or 2 

Since a & b are of opposite parity, both of a
2
  b

2
 & a

2
 + b

2
 are odd  

 d  2        d = 1 

Thus if (x, y, z) are given by (2) (x, y, z) is a primitive solution of (1) 

Now let (x, y, z) be any positive primitive solution of (1).  Then we know  

  gcd(x, y) = 1 gcd(y, z) = 1 and gcd (x, z) = 1 

Now from (1), x
2
 = z

2
  y

2
 = (z + y) (z  y)    …(3) 

Since, x is even, y is odd, so from (1) z is also odd 

  z + y & z y are both even  

  
2

yz
&

2

yz
 are natural numbers. (Note that z > y) 

Writing (3) as  

  
2

yz

2

yz

2

x
2

    …(4) 

Now we claim gcd
2

yz
,

2

yz
= d = 1 

Now  
2

yz

2

yz
d

2

yz
d&

2

yz
d  

  d | z & d | y   d = 1 since gcd(y, z) = 1 

Since x is even   
2

x
 is a integer 

So from (4) we see that product of two coprime natural numbers 
2

yz
 & 

2

yz
 is the square of an integer. 
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 Both of 
2

yz
&

2

yz
 are squares uof integers.  

Let   
2

yz
&a

2

yz 2 = b
2
     where a > 0 & b > 0 …(5) 

Since y > 0   a > b > 0 

Also gcd
2

yz
,

2

yz
 = 1   gcd (a

2
, b

2
) = 1 

  gcd(a, b) = 1 

Now from (5) we get z = a
2
 + b

2
 & y = a

2
b

2
    …(6) 

Substituting these values in (1) and noting that x > 0, we get x = 2ab. 

Since y is odd so from (6) we get a & b are of opposite parity.  

This proves the theorem. 

Example :- Find all the solutions of  

  x
2
 + y

2
 = z

2  
where  0 < z  30    ...(I) 

Solution :- First we assume x > 0, y > 0, z > 0, gcd(x, y) = 1 and 2 | x 

then we know that all the solution of (I) are given by  

  x = 2ab, y = a
2
  b

2
, z = a

2
 + b

2
   …(II) 

where a > b > 0, gcd(a, b) = 1 and a & b are of opposite parity 

Now consider 

  0 < a
2
 + b

2
  30 

Then a = 1 is not possible since a > b > 0.  Let a = 2, Then b = 1,  since   a > b > 0 

Then   x = 4, y = 3, z = 5 i.e. (4, 3, 5) is the solution  

Let a = 3 then b = 2 since a > b > 0 and a & b are of opposite parity 

Then  x = 2 3 2 = 12,  y = 5 

Then z = 13 i.e., (12, 5, 13) is the solution  

Let a = 4 then b = 1 or 3, then for b = 1, x = 8, y = 15, z = 17 

So (8, 15, 7) is the required solution  

Now  a = 4, b = 3 

Then  x = 24, y = 7, z = 25 
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i.e.  (24, 7, 25) is the solution  

Now, take a = 5 then b = 2 since a > b, 0, a & b are of opposite parity  

and  (a
2
 + b

2
)  30 

Therefore x = 20, y = 21, z = 29 i.e.,        (20, 21, 29) is a solution  

So, all solutions with x > 0, y > 0, z > 0, x, even and gcd (x, y) = 1 are  

  (4, 3, 5), (12, 5, 13), (8, 15, 17), (24, 7, 25), (20, 21, 29) 

So all solutions of the required type are  

  (  4,  3, 5), (  12,  5, 13), (  8,  15, 17), (  24,  17, 25), (  

20, 21, 29), ( 3, 4, 5), ( 5, 12, 13), ( 15, 8, 17), ( 7, 24, 25), ( 21, 

20, 29), ( 16, 8, 10), ( 8, 16, 10), ( 9, 12, 15), ( 12, 9, 15), ( 12, 16, 

20), ( 16, 12, 20), ( 15, 20, 25), ( 20, 15, 25), ( 18, 24, 30), ( 24, 18, 

30), ( 24, 10, 26), ( 10, 24, 26) 

Example :- Prove that if x, y, z satisfy  

  x
2
 + y

2
 = z

2
 

then (i) xyz  0 (mod 60)     …(I) 

 (ii) xy (x
2
  y

2
)  0(mod 84)    …(II)  

Solution :- W. L. O. G., we assume  

  x > 0, y > 0, z > 0; gcd (x, y) = 1 and 2 | x 

Then we assume know  

x = 2ab, y = a
2
  b

2
, z = a

2
 + b

2
 

where   a > b > 0; gcd (a, b) = 1 & a, b are opposite parity 

Then setting x = 2ab, y = a
2
  b

2
, we get 

  xy = 2ab(a
2
  b

2
)     …(III) 

Since a & b are of opposite parity, one of a & b must be even and other must be odd 

Therefore xy  0 (mod 4)    {from (III)}  …(IV) 

If 3 | a or 3 | b then from (III) 
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  xy  0(mod 3) 

So, assume 3 | a and 3 | b 

Then by Fermat‟s theorem  

  a
2
  1  b

2
(mod 3) 

  a
2
  b

2
  0 (mod 3) 

So in this case also xy  0 (mod 3) So in all cases,  

xy  0 (mod 3)      …(V) 

From (IV) & (V), we get 

  xy   0 (mod 12)     …(VI) 

in all cases 

Now  xyz = 2ab (a
2
  b

2
) (a

2
 + b

2
) 

        = 2ab (a
4
  b

4
)     …(VII) 

If 5/a or 5/b then from (VII) 

  xyz  0 (mod 5)        …(VIII) 

Then from (VI) & (VIII), we get 

  xyz  0 (mod 60) in this case 

So let  5 a and 5 b 

By Fermat‟s theorem  

  a
4
  1  b

4
(mod 5) 

From (VII) xyz  0(mod 5)     …(IX) 

and in this case also from (VI) and (IX) 

  xyz  0(mod 60) 

This proves (i) 

(ii)    xy(x
2
  y

2
)  0(mod 84)  

As in (i), take  x = 2ab, y = a
2
  b

2
 

         xy  0(mod 12)     …( ) 

Now xy(x
2

y) = 2ab (a
2
  b

2
) ((2ab)

2
  (a

2
  b

2
)

2
) 
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   = 2ab (a
2
  b

2
) (4a

2
b

2
  a

4
  b

4
 + 2a

2
b

2
) 

   = 2ab (a
2

b
2
) (6a

2
 b

2
  a

4
  b

4
) 

    2ab (a
2
  b

2
) ( a

2
 b

2
  a

4
  b

4
)(mod 7) 

    2ab(a
2
  b

2
) (a

4
 + b

4
 + a

2
 b

2
) (mod 7) 

     2ab(a
6
  b

6
)  2ab (b

6
  a

6
) (mod 7) …( )  

If 7 | a or 7 | b, thus from ( ) and ( )  

  xy(x
2
  y

2
)  0(mod 84) 

If 7 | a and 7 | b then by Fermat‟s theorem  

  b
6
  a

6
  1(mod 7) 

and again from ( ),  

  xy(x
2
  y

2
)  0 (mod 84) 

Hence the result 

Fermat’s Last Theorem :- This states that x
n
 + y

n
 = z

n
 (n  3) has no 

solutions for which (x,y,z)  0  

We shall give the proof of the result that  

  x
4
 + y

4
 = z

4
 

has no solution for which (x, y, z)  0.  In fact we shall prove a little more we 

shall prove 

Theorem 4.2  x
4
 + y

4
 = u

2
 has no non-trivial solutions.  …(1) 

Proof :- If possible suppose the given equation has solutions.  

W. L. O. G assume x > 0, y > 0, u > 0 

Let  S = {u N; x
4
 + y

4
 = u

2
 for x, y N} 

Then by assumption S  .  So by law of well ordering, S has a least element.  

Let u0 be the least element of S.   

Then    x0  N, y0 N, such that x0
4
 + y0

4
 = u0

2
  …(2) 

Then first we claim that gcd(x0, y0, u0 = 1  
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Let   gcd(x0, y0, u0) = d > 1.  Then d | x0 & d | y0 

 d
4 

| x0
4
 & d

4 
| y0

4
   d

4 
| x0

4
 + y0

4
 

 d
4 

| u0
2
   d

2 
| u0 

Then  

2

2

0
4

0
4

0

d

u

d

y

d

x
 

i.e., 
2

000

d

u
,

d

y
,

y

x
 satisfies (1) and so 

2

0

d

u
S 

  
2

0

d

u
 u0  1  d

2
 

 d = 1.  So gcd(x0, y0, u0) = 1 

Then x0, y0 can not be both even, since then u0 is also even & gcd (x0, y0, u0)  

2. 

But x0 & y0 can not be both odd either since in that case  

  u0
2
 = x0

4
 + y0

4 
 1 + 1 = 2(mod 8) 

which has no solution.  So one of x0, y0 is odd & other is even.  W.L.O.G. 

assume x0 is even.  Then y0 must be odd.  Also 

  2
0

22
0

22
0 u)y()x(  and  gcd ,y,x( 2

0
2
0 u0) = 1 

Then by previous theorem there exists positive integers a & b such that  

2
0

2
0 y,ab2x = a

2
  b

2
, u0 = a

2
 + b

2
 where a > b > 0, gcd(a, b) = 1. …(3) 

and a & b are of opposite parity. 

 If possible let a be even then b must be odd.  

Then from (3) 

  2
0y  = a

2
  b

2
  1 (mod 4) 

but there does not exist any integer n such that n
2
  1 (mod 4) 

Then a must be odd & b must be even.  Let b = 2c.  Then from (3) 

  
4

x
ac4ab2x

2
02

0  = ac 

  

2
0

2

x
= ac      …(4) 
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Since   gcd(a, b) = 1 & b = 2c 

  gcd(a, c) = 1 

Now (4) gives us that square of an integer is equal to product of two positive 

integer where both are relatively prime So both a & c must be square of 

integers. 

Let  a = f
2
 & c = g

2
 

Since gcd(a, b) = 1   gcd (f
2
, 2g

2
) = 1.  Again from (3) 

  2
0y = a

2
  b

2
 = a

2
  4c

2
 = (f

2
)
2
  4(g

2
)
2
 = f

4
  4g

4
 

  2
0y + 4g

4
 = f

4
      …(5) 

But   gcd(f
2
, 2g

2
) = 1 

  gcd(y0, 2g
2
) = 1 

because a & b are of opposite parity, then from (3), y0 must be odd. 

Now (5) can be written as  

  22
0 )y(  + (2g

2
)
2
 = (f

2
)
2
 

where gcd(2g
2
, y0) = 1, y0 is odd, 2g

2
 is even.  They by previous theorem, 

there exists integer r, s, such that 2g
2
 = 2rs, y0 = r

2
  s

2
 f

2
 = r

2
 + s

2
  

     …(6) 

where r > s > 0, gcd(r, s) = 1 & r, s are of opposite parity 

Now from (6), 2g
2
 = 2rs       g

2
 = rs 

But gcd(r, s) = 1, so we have product of two relatively prime integers is the 

square of an integer.  r & s must themselves be squares.  

Let r = v
2
 & s = w

2
 where v > 0, w > 0  

Now from (6), f
2
 = r

2
 + s

2
 = (v

2
)
2
 + (w

2
)
2
 = v

4
 + w

4
. 

Then (v, w, f)0 is a solution of (1).  So f S.  

  f  u0 

But   f  f
2
 = a  a

2
 < a

2
 + b

2
 = u0 which is a contradiction and 

contradiction arose because we assume (1) has a solution.  So (1) has no 

solution. 

The represent of number by two or four squares. 
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Theorem 4.3 Let n be a natural number of the form 4k+3, then n cannot be 

written as a sum of 2 squares.  

Proof :- If possible let n = x
2
 + y

2
.  Then 

  x
2
  0 or 1(mod 4) and y

2
  0 or 1 (mod 4) 

Then n = x
2
 + y

2
  0 or 1 or 2(mod 4) 

Thus if n  3(mod 4), it cannot be written as a sum of two squares. 

Theorem 4.4 Let n = x
2
 + y

2
.  Then primes of the type 4k + 3 can occur in the 

prime factorization of n to an even degree only.  

In other words if a prime of the type 4k + 3 occurs to an odd degree in the 

prime factorization of a natural number n then n can not be written as a sum of 

squares of 2 numbers.  

Proof :- Let p be a prime of the type 4k + 3. 

Let n = p
2k+1

n, where k  0 and gcd(n1, p) = 1 

and let  n = p
2k+1

n1 = x
2
 + y

2
 

Then   n = x
2
 + y

2
  0 (mod p) 

Let p   x.  Then gcd (p, x) = 1 

Now  gcd(p, x) = 1 

  an integer q such that x q  1(mod p) 

Now  y
2
  x

2
(mod p) 

 q
2
 y

2
 q

2
 x

2
  1(mod p) 

 (qy)
2
  1(mod p) 

 1 is a quadratic residues of p.  

But p is a prime of the type 4k + 3 and so 1 must be a quadratic non-residue 

of p, which is a contradiction.  So p must divide x.  Then p must also divide y, 

since x
2
 + y

2
 = 0(mod p) 

Let  x = px1 & y = py1 

Then  n = x
2
 + y

2
 = p

2
 (x1

2
 + y1

2
) \= p

2k+1
 n1 
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 x1
2
 + y1

2
 = p

2k 1
 n1 

If p |  x1, we have contradiction as before. 

So if  x1 = px2, y1 = py2, then 2
2

2
2 yx = p

2k 3
 n1 proceeding as before. 

Proceeding like this and decreasing the power of p by 2 at a time, we get 

2
k

2
k yx = pn1 for some positive integers xk & yk 

Also gcd(n1, p) = 1, proceeding as before we get p
2 

| pn1 

 

  p | n1, which contradicts gcd(p, n1) = 1 

Thus n can not be written as a sum of 2 squares.  

Theorem 4.5 If all primes of the type 4k + 3 occur to an even degree in the 

prime factorization of a natural number n, then n can be written as a sum of 2 

squares. 

To prove Theorem, we first shall prove the following lemmas 

Lemma 1 :- If n1 & n2 are representable as a sum of 2 squares, then n1 n2 is 

also representable as a sum of 2 squares.  

Proof :- Let  n1 = a
2
 + b

2
 and n2 = c

2
 + d

2
 

Then  n1 n2 = (a
2
 + b

2
) (c

2
 + d

2
) 

          = (ac + bd)
2
 + (ad  bc)

2
 

and this proves Lemma 1 

Lemma 2 :- Given any prime p of the type 4k + 1,  natural numbers x & m 

such that  

  x
2
 + 1 = mp where 0 < m < p 

Proof :- Since p is a prime of the type 4k + 1, 1 is a quadratic residue of p.  

So  a natural number x such that x
2
  1 (mod p) W. L. O. G. we may 

assume 0 < x < p.                    If p/2 x < p, we note (p x)
2
  x

2
  1 (mod p) 

and 0 < p x < p/2.  So W. L. O. G. we assume           0 < x < p/2.  Then  an 

integer m such that      m > 0 

and  mp = x
2
 + 1 < 1 +

2

2

p
< p

2
,         m < p. 

Proof of Theorem :- Let m be the least positive integer such that, a
2
 + b

2
 = 

mp for some positive integer a & b. 
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By Lemma 2, such an m exists & 0 < m < p.  If m = 1, 

Then p can be written as a sum of 2 squares.  Now we can write n as 

  n = p1 p2…pk m
2
 

where each pi is a prime of the form 4k + 1 and m is a product of primes of the 

type 4k + 3.   If each pi can be written as a sum of 2 squares, then theorem 

follows from Lemma 1.  So assume  at least one prime p of the form 4k + 1, 

such that p can not be written as a sum of 2 squares. 

Then  integers m, x, y such that x
2
 + y

2
 = mp 

We take 2  m < p and m is the least positive integer 

Now  mp = x
2
 + y

2
  0(mod m)     

  

Take integers u & v such that 

  x  u (mod m), y  v(mod m)    …(1) 

and  |u|  m/2, |v|  m/2 

Then   u
2
 + v

2
 = x

2
 + y

2
  0 (mod m)    …(2) 

Let   mr = u
2
 + v

2
  

2

m

4

m

4

m 222

< m
2
 

Then   mr < m
2
   0  r < m 

Let r = 0.  Then u
2
 + v

2
 = 0     u = 0, v = 0 

Then   x  u  0 (mod m) 

  y  v  0 (mod m) 

  m | x, m | y.  Then m
2 

| x
2
, m

2 
| y

2 

 m
2 

| (x
2 

+ y
2
)   m

2 
| mp   m | p. 

But 2  m < p, so m | p is not possible 

  r  0 

Now  mp = x
2
 + y

2  
and mr = u

2 
+ v

2
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  m
2
 rp = (x

2
 + y

2
) (u

2
 + v

2
) = (xu + yv)

2
 + (xv  yu)

2
 …(3) 

Now   xu + yv  u
2
 + v

2
  mr  0 (mod m) 

and   xv  yu  uv  uv  0 (mod m). 

  m | (xu + yv) and m | (xv  yu) 

 
m

yuxv
&

m

yvxu
 are integers 

Dividing on both sides by m
2
 in (3) we get 

  rp = 

22

m

yuxv

m

yvxu
 

i.e., rp can be written as a sum of 2 squares. 

But 0 < r < m and this contradicts the minimality of m. So 2  m < p is not 

possible 

  m = 1. 

i.e., every prime of the form 4k + 1 can be written as a sum of 2 squares.  

Remark :- Combining Theorem 1 with Theorem 2 we get that a natural 

number n can be written as a sum of 2 square iff all the primes of the type 4k 

+ 3 occur to an even degree in the prime factorization of n.  

Theorem 4.6 If a prime p = x
2
 + y

2
, then apart from changes of signs and 

interchange of x & y, this representation of p as sum of two squares is unique. 

Proof :- If p = 2, then 2 = (  1)
2
 + (  1)

2
 is the only representation of 2 as sum 

of two squares. 

Let p be an odd prime.  Since no number of the form 4k + 3 can be written as 

sum of 2 squares  so p  3 (mod 4).  So p  1(mod 4) 

Let  p = x
2
 + y

2
 & p = X

2
 + Y

2
 

Since p is of the form 4k + 1, 1 is a quadratic residue of p. 

So  an integer h such that h
2
  1 (mod p) 

Now p = x
2
 + y

2
   x

2
 + y

2
  0 (mod p) 

  x
2
  y

2
 (mod p) 
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Since h
2
  1 (mod p)   x

2
  h

2
 y

2
 (mod p) 

  x   hy (mod p) 

By changing the signs of y if necessary, we can assume  

  x  hy (mod p) 

Similarly we assume X = hY (mod p) 

Now  p
2
 = (x

2
 + y

2
) (X

2
 + Y

2
) 

       = (xX + yY)
2
 + (xY  yX)

2
   …(1) 

Now   xY  yX  hyY yhY  0 (mod p) 

  p | (xY yX).  Then from (1), p | (xX + yY) 

Dividing both sides of (1) by p
2
, we get 

  1 = 

22

p

yXxY

p

yYxX
   …(2) 

The only representation of (2) as sum of two squares are  

  1 = ( 1)
2
 + 0

2
 = 0

2
 + (  1)

2
 

So from (2) either xX + yY = 0     …(3) 

or  xY  yX = 0      …(4) 

Case I  xY  yX = 0 

  xY = yX      …(5) 

Now p = x
2
 + y

2
   gcd(x, y) = 1,  and   p = X

2
 + Y

2
   gcd (X, Y) = 1 

From (5), x | (yX), but gcd (x, y) = 1  x | X   …(6) 

Again from (5), X | (xY), but gcd (X, Y) = 1   X | x  …(7) 

Using (6) and (7)        

   x =  X. 
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But x
2
 + y

2
 = X

2
 + Y

2
 = p 

  y
2
 = Y

2
  y =  Y 

So in this case theorem is true. 

Case II   xX + yY = 0 

In this case, we check that  

  x =  Y & y =  X. 

  xX =  yY 

  x | yY   x | Y 

and  Y | xX    Y | x  

  x =  Y 

Similarly y =  X.   

 

Four Square Theorem  

Theorem 4.7 Every natural number n can be written as a sum of four squares. 

Proof :- If n = 1, then 1 = 1
2 

+ 0
2
 + 0

2
 + 0

2
 

So let n > 1 

Let  n = kα
k

2α
2

1α
1 p...pp      …(1) 

be the prime factorization of n. 

If every prime p can be written as a sum of four squares then the above 

theorem will follow from (1), if we are able to prove 

Lemma 1 :- Product of two numbers, which can be written as sum of 4 

squares, is also repreentable as sum of 4 squares.  

Proof :- Let 

  n1 = a
2
 + b

2
 + c

2
 + d

2
 

and   n2 = x
2
 + y

2
 + z

2
 + u

2
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The        n1n2 = (a
2
 + b

2
 + c

2
 + d

2
) (x

2
 + y

2
 + z

2
 + u

2
) = (ax + by + cz + du)

2
 

   + (bx ay +cu dz)
2
 + (cx + dy  az  bu)

2
 

   + (dx  cy + bz  au)
2
 

Thus after Lemma 1, it is enough to prove  

Lemma 2 :- If p is an odd prime then  integers x, y, m such that  

  1 + x
2
 + y

2
 = mp where 1  m < p. 

Proof of Lemma 2:-  Let 

  S = 
2

1p
,...,2,1,0x;x1 2  

and  T =
2

1p
,...,2,01y,y2  

Then each of S & T contains 
2

1p
elements. First we claim that elements of S 

are mutually incongruent (mod p) 

If possible, let  

  1 + 2
2

2
1 x1x (mod p) 

where  0  x1 < x2  
2

1p
. 

Then  2
1

2
2 xx   0 (mod p) 

 )xx(p 2
1

2
2           p | (x2 + x1) (x2 x1) 

But  1  x1 + x2  (p 1) 

and   1  x2  x1  
2

1p
 

  p | (x1 + x2)  and p |  (x2  x1) 
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So p does not divide 2
1

2
2 xx .  So elements of S are mutually incongruent 

(mod p) 

Similarly elements of T are mutually incongruent (mod p). 

Now consider SUT.  SUT contains (p+1) distinct elements.  But there are only 

(p 1) residue classes (mod p).  So two elements of SUT must be congruent to 

each other (mod p).  Since elements of S as well as elements of T are mutually 

incongruent (mod p), so there must exist an element of S which is congruent 

to an element of T 

i.e.  integers x, y; 0  x  
2

1p
, 0  y  

2

1p
 such that  

  1 + x
2
  y

2
(mod p) 

i.e.   1 + x
2
 + y

2
  0 (mod p) i.e. there exists an integer m such that  

  1 + x
2
 + y

2
 = mp 

Then  mp = 1 + x
2
 + y

2
  1 +

22

2

1p

2

1p
 < p

2
 

  m < p. 

Proof of Theorem :- Every prime can be written as four squares. 

If p = 2, then 2 = 1
2
 + 1

2
 + 0

2
 + 0

2
 and we are through. 

By Lemma 2, given any odd prime p,  integers a, b, c, d, m such that a
2
 + b

2
 

+ c
2
 + d

2
 = mp where 1  m < p, for we can take a = 1, b = x; c = y, d = 0.   

Let m be the smallest positive integers such that  

  a
2
 + b

2
 + c

2
 + d

2
 = mp     …(1) 

Then   a
2
 + b

2
 + c

2
 + d

2
  0(mod m) 

Now choose x, y, z , u such that 

  x  a(mod m) 

  y  b(mod m) 

  z  c(mod m) 

  u  d(mod m) 

where   
2

m
 x, y, z, u 

2

m
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Then  x
2
 + y

2
 + z

2
 + u

2
  a

2
 + b

2
 + c

2
 + d

2
  0(mod m) 

This is  an integer r such that 

  x
2
 + y

2
 + z

2
 + u

2
 = mr     …(2) 

Now   mr = x
2
 + y

2
 + z

2
 + u

2
  

2222

2

m

2

m

2

m

2

m
 

       = m
2
   r  m 

Let     r = 0  

  x
2
 + y

2
 + z

2
 + u

2
 = 0 

  x = y = z = u = 0 

Then mp = a
2
 + b

2
 + c

2
 + d

2
  0 (mod m

2
), since m/a, m/b, m/c and m/d 

  m
2 

| mp   m | p    

  either m = 1 or m = p  

Now m p, since m < p.  If m = 1, then  

  a
2
 + b

2
 + c

2
 + d

2
 = p and p is representable as a sum of 4 

squares.  So we assume r  0 

Then   1  r  m and 1 < m < p 

Let  r = m 

Then  x
2
 + y

2
 + z

2
 + u

2
 = m

2
.     …(3) 

Since  
2

m
<x, y, z, u  

2

m
 

(3) is  possible only if x = y = z = u = 
2

m
. 

Then  a 
2

m
, b 

2

m
, c 

2

m
, d 

2

m
 (mod m) 

   integers a1, a2, a3, a4 such that  

  a = 
2

m
 + a1m, b = 

2

m
 +a2m, c = 

2

m
 + a3m, d = 

2

m
 + a4m 

Now          mp = a
2
 + b

2
 + c

2
 + d

2
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    = 

2

2

2

1 ma
2

m
ma

2

m
+

2

4

2

3 ma
2

m
ma

2

m
 

    = 
22

2
2

2

2
22

1
2

1

2

mama
4

m
mama

4

m
 

      +
22

4
2

4

2
22

3
2

3

2

mama
4

m
mama

4

m
    

      = m
2
 (1+ a1 + a2 + a3 + a4 +

2
4

2
3

2
2

2
1 aaaa ) 

       0 (mod m
2
) 

  m
2 

| mp   m | p 

which is not possible since 1 < m < p. 

Now multiplying (1) & (2) we get 

 m
2
rp = (a

2
 + b

2
 + c

2
 + d

2
) (x

2
 + y

2
 + z

2
 + u

2
)   

          = (ax + by + cz + du)
2 

+ (bx  ay + cu dz)
2
 

 + (cx + dy  az  bu)
2
  

+ (dx  cy + bz  au)
2
  (By Lemma 1)  …(4) 

But   ax + by + cz + du  a
2
 + b

2
 + c

2
 + d

2 
 0 (mod m) 

  
bx  ay + cu dz  ba  ab + cd  dc  0 (mod m) 

  cx + dy  az  bu  ca +db  ac  bd  0(mod m) 

  dx cy + bz au  da cb + bc  ad  0(mod m) 

 Dividing (4) by m
2
 we get 

  rp = 

22

m

dzcuaybx

m

duczbyax
 

      + 

22

m

aubzcydx

m

buazdycx
 …(5) 

where the expression in the R.H.S. of (5) are integers. 
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So we can write rp as a sum of 4 squares.  

But 1 < r < m and this contradicts the minimality of m. 

So m > 1 is impossible  

  m = 1 

Hence the theorem  

(It is called Langranges theorem) 

Waring Problem :- Waring problem is about the representation of a natural 

numbers as a sum of fixed number of squares or cubes, or 4-th powers and so 

on. 

In 1970, Waring stated without proof that a natural number can be written as a 

sum of 4 squares, 9 cubes, 19 biquradratics & 37 5-th powers & on.  In 1909, 

Hilbert proved that given any natural number n and k  2,  a fixed number 

s(k) = s(say) such that n can be written as sum of s k-th powers. 

The Waring problem has been established for all k  5 

The numbers g(k) and G(k)  

Connected with Waring problem we define natural nos g(k) & G(k) in the 

following way: 

g(k) : is defined as the smallest nos such that every natural number can be 

written as the sum of g(k) k-th power.  

G(k) : is defined to be as the smallest natural number such that every natural 

number (except a finite number) can be written as a sum of G(k) k-th powers. 

Theorem 4.8  g(2) = 4 

Proof ;- By Lagrange Theorem, g(2)  4 

Now the most economical representation of 4 as a sum of 4 squares is  

  4 = 1
2
 + 1

2
 + 1

2
 + 1

2
 

  g(2)  4   g(2) = 4 

Hence the theorem  

Theorem 4.9 G(2) = 4 

Proof :- We know  

  G(2)  g(2) = 4        …(I) 

By definition G(k) is the smallest natural numbers except a finite number that 

can be written as a sum of G(k) k-th powers.  So to prove G(2) = 4, it is 

enough to prove that an infinite number of natural numbers can not be written 

as a sum of 3 squares.  
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For this, we shall prove that no natural number of the form 8k + 7 can be 

written as a sum of 3 square.  

Let  n = a
2
 + b

2
 + c

2
     …(II) 

Then we distinguish following cases  

(a) All the natural numbers a, b, c, are even then  

  a
2
  0 or 4(mod 8) 

  b
2
  0 or 4(mod 8)  

and  c
2
  0 or 4(mod 8) 

  n = a
2
 + b

2
 + c

2
  0 or 4 (mod 8) 

(b) Two of the numbers a, b, c are even and one is odd.  To be specific let a & 

b be even and c be odd. 

Then  a
2
  0 or 4 (mod 8) 

  b
2
  0 or 4(mod 8) 

  c
2
  1 (mod 8) 

  n = a
2
 + b

2
 + c

2
  1 or 5 (mod 8) 

(c) Two of a, b, c are odd and third is even  

 Let „a‟ be even and b, c be odd. 

then  a
2
  0 or 4(mod 8), b

2
  1  c

2
 (mod 8) 

 n  a
2
 + b

2
 + c

2
  2 or 6(mod 8) 

(d) All of a, b, c are odd 

then  a
2
  b

2
  c

2
 = 1(mod 8) 

  n = a
2
 + b

2
 + c

2
  3 (mod 8)  

Therefore, for no choice of a, b, c 

  n  7(mod 8) 

 No number of the form 8k + 7 can be written as a sum of 3 square  

  G(2) > 3      …(III) 
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 G(2)  4 

From (1) & (III) we get G(2) =4 

Remarks:- It is clear from the proof that 

if   n  0 (mod 4) and 

  n  a
2 
+ b

2 
+ c

2
   , then a, b, c must be all even. 

Example :-  Prove that no number of the form 4
m
 (8k + 7); (m  0), (k  0) can be written as a 

sum of 3-squares. 

Proof:- First we prove, no number of form 8k +7 can be written as a sum of 3 squares. 

We shall prove the result by induction on m. 

If m = 0, then n = 4
m
  (8k + 7) = 8k + 7 and we have proved that no number of the form 8k+7 

can be written as a sum of 3- squares.  So assume that no number of the form 4
m-1

 (8k + 7)  (m 

 1) can be written as a sum of 3 squares 

Now let n = 4
m
 (8k + 7) when m  1 

Then  n  0 (mod 4) 

If possible, let  numbers a, b, c such that n = a
2
 + b

2
 + c

2
 then by the remark made earlier a, 

b, c, must be all even. 

Therefore 
4

c

4

b

4

a

4

n 222

 

      =

222

2

c

2

b

2

a
 

i.e. 
4

n
 can also be written as a sum of 3-squares.  

But  
4

n
= 4

m 1
 (8k + 7) 

and this contradicts the assumption that no number of the form 4
m 1

(8k + 7) can be written as 

a sum of 3-squares which proves the exercise.  

 

Lower bounds for g(k) and G(k) 

Theorem 4.10 g(k)  22
2

3
k

k

 

Proof :- Let q = 

k

2

3
.  
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Let N = 2
k
 q 1, then by definition, N < 3

k
. 

So if we want to represent N as a sum of kth powers, the 3
k
 cannot occur in 

this representation.  Further N < 2
k
q.  So for the most economical 

representation of N as a sum of kth powers we must take q 1 powers of 2
k
 in 

its representation.  

  N = 2
k
 q 1 = 2

k
 q 1 + 2

k
  2

k
 

          = 2
k
(q 1) + 2

k
 1 

          = (q 1) 2
k
 + (2

k
1). 1

k
 

Thus we need exactly q 1 + 2
k

1 = q + 2
k

2 kth powers to represent N as a 

sum of k-th powers in the most economical representation.  

 g(k)  q + 2
k
 2 = 22

2

3
k

k

 

Theorem 4.11 G(k)  k + 1 

Proof :- To prove the theorem we first prove a lemma. 

Lemma :- For every integer k  1 and r  1 

 
b

0a 1r||

)1ra)...(2a)(1a(
 =  

r|

)rb)...(2b)(1b(
 …(1) 

Proof :- We shall prove the lemma by induction on b.  However first we note 

that )n|(  divides the product of n consecutive integers.  So fractions 

appearing on both sides of (1) are integers. 

Take b = 1, then L.H.S. of (1) for b = 1, is equal to  

  
r|

1r|
r1

1r|

r|

1r|

1r|

1r|

r|1r|
 

So assume that (1) holds for (b 1), where b  2 and we shall prove its for b.  

Now L.H.S. of (1) is equal to  

  
b

0a 1r|

)1ra)...(2a)(1a(
 

 



                                                             ANALYTICAL NUMBER THEORY  152 

   = 

1b

0a 1r|

)1rb)...(2b)(1b(

1r|

)1ra)...(2a)(1a(
  

   = 
1r|

)1rb)...(2b)(1b(

r|

)1rb)...(1b(b
  

   = 
r|

)rb)(1rb)...(2b)(1b(
= R.H.S. of (1) 

Thus lemma is true for b. 

So by induction principle, lemma is true for every b  1. 

Proof of theorem :- For any given natural number N, let A(N) be the number 

of those natural numbers n such that 0  n  N and n can be written as sum of 

k k-th powers i.e. A(N) is the number of natural numbers n such that  

  n = x1
k
 +…+ xk

k
 and 0  n  N   …(1)  

is solvable  

By interchanging x1, x2,…, xk if necessary, we assume 0  x1   x2 …  xk 

and xk  N
1/k

        …(2) 

Since n  N, then to every solution of (1), we must have a solution of (2), so 

that  

  A(N)  B(N)      …(3) 

where B(N) is the number of solutions of (2).  Now, we have 

  B(N) = 1...
2x

01x

3x

02x

4x

03x

kx

01kx

k/1N

0kx

 

          = 
3x

02x

4x

03x

kx

01kx

k/1N

0kx

... (x2+1) 

Now applying the above lemma with a = x2, b = x3 and r = 2,  

  B(N) =
2|

)2x)(1x(
...

334x

03x

kx

01kx

k/1N

0kx
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Again, applying the Lemma with a = x3, b = x4, r = 3 and then continuing like 

this we obtain  

  B(N) =
1k|

)1kx)...(2x)(1x( kkk

k/1N

0kx

 

           = 
k|

k]N[...2]N[1]N[ k/1k/1k/1

  …(4) 

Now, if possible, let G(k)  k, so that all but a finite number can be written as 

a sum of k kth powers, so there exists a finite number C such that 

  A(N)  N C 

But we have 

  A(N)  B(N) 

Combining, we have 

  A C  A(N)  B(N)     …(5) 

Now we know that 

  N
1/k

1  [N
1lk

]  N
1/k

 

So that, we have from (4), 

k|

)kN)...(2N)(1N(
)N(B

k|

)1kN)...(1N(N k/1k/1k/1k/1k/1k/1

  

(6) 

Then, we observe that for large N, L.H.S and R.H.S. of (6) tend to k|/N .  

Hence for large N,  B(N) ~ k|/N .  Thus it follows that from (5), we have for 

sufficiently large N, 

  N  k|/N , a contradiction for k  2.  

Thus, our assumption that G(l)  k is not possible and hence, we must have : 

  G(k)  k + 1. 

Theorem 4.12 Prove that, 

  G(2 )  2
+2

 for   2 
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Proof :- Firstly, let  = 2, then we have to show that  

  G(4)  16 

Let x be any integer, then    

  x
4
  0 or 1(mod 16)     …(1)  

Thus, if we consider the numbers of the form 16m + 15, then any such number 

require at least 15 biquadrates.  It follows that,  

  G(4)  15 

From (1), it follows that if 16n is the sum of 15 or fewer biquadrates, then 

each biquadrate must be a multiple of 16.  Hence, we can write : 

  16n = 
15

1i

4
i

15

1i

4
i )y2(x  

so that  

  n = 
15

1i

4
iy  

Hence, if 16n is the sum of 15 or fewer biquadrates, so is n.  But, we observe 

that 31 is not the sum of 15 or fewer biquadrates.  In fact the most economical 

representation contains 16 biquadrates given by, 31 = 2
4
 + 15.1

4
. 

So we must have 

  G(4)  16 

Now, let  > 2, then we have k = 2  >  + 2 

If x is even, then 2222 y2)y2(x  

Since,  + 2 < 2 , so 2
+2 

| 22  

So that we must have  

  2x  0 (mod 2
+2

). 

If x is odd, then 22 )1m2(x  

  22 )m21(x  1 + 2
+1

 m + 2
+1

 (2  1) m
2
 

         1 + 2
+1

m + 2
2 +1

 m
2
  2

+1
 m

2
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                    1 + 2
+1

 m 2
+1

 m
2
 

         1  2
+1

 m(m 1)  1 (mod 2
+2

) 

Thus, we have obtained that, 

  2x  0 or 1(mod 2
+2

)    …(2) 

Now, let n be any odd number and suppose that 2
+2

 n is written as a sum of 

2
+1

1 or fewer k th powers where k = 2 

  2
+2

. N = xi
k
 + x2

k
 +…+ k

122
x . 

then from (2), we get that each xi must be even and hence divisible by 2
k
.  

Hence, we obtain that 2
k 2 

| n which implies that n is even, a contradiction.  

Hence, we must have  

  G(2 )  2
+2

 for   2. 

This completes the proof  

Theorem 4.13 Let p be a prime such that p > 2 (i.e. p is an odd prime), then  

  G[p  (p 1)]  p
+1

 

Proof :- Let k = p (p 1). 

Since p > 2, so we have  + 1  3  < k 

Hence, if p | x, then we have 

  x
k
  0(mod p

+1
) 

and if p    x, then we have 

  x
k
 = )1p(px  1 (mod p

+1
) 

[Using the fact that (p
+1

) = p (p 1) and applying Euler‟s theorem] 

Thus we obtain that  

  x
k
  0 or 1(mod p

+1
) 

Let n be a natural number such that (p, n) = 1 and suppose that p
+1

.n is the 

sum of p
+1

1 or fewer kth powers i.e. 

  p
+1

.n = x1
k
 + x2

k
 +…+ k

11p
x  

then each xi must be divisible by p and hence each factor on R.H.S. must be 

divisible by p
k
 which implies that 
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  p
k
 | p

+1
.n,  

a contradiction, since k >  + 1 and (p, n) = 1 

Hence, we must have  

  G(k)  p
+1

 

i.e. G(p (p 1))  p
+1

 

This completes the proof. 

Theorem 4.14 Let p be a prime such that p > 2 and   0 then  

  G )1p(
2

1
)1p(p

2

1
1  

Proof :- Let 

  k = 
2

1
p (p 1) 

then we have  + 1 < p   
2

1
p (p 1) = k (except in the trivial case, p = 3,  = 

0 and k = 1) 

Hence we must have if p/x, then x
k
  0 (mod p

+1
) 

and if p    x, then we have  

  x
2k

 )1p(px  1 (mod p
+1

)   (By Euler‟s theorem) 

Hence,  p
+1 

| (x
2k

1) 

   p
+1 

| (x
k
+1) (x

k
1). 

Since p > 2, so p can not divide both x
k
 +1 and x

k
1 and so one of x

k
1 and 

x
k
+1 is divisible by p

+1
.  Thus, we have : 

  x
k
  0, 1 or 1(mod p

+1
) 

If follows that number of the form p
+1

m  
2

1
(p

+1
1), requires at least 

2

1
(p

+1
1) k th powers 

 G(k)  
2

1
(p

+1
1) and the proof is completed.  

Theorem 4.15 If   2, the n,  
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  G(3.2 )  2
+2

 

Proof :- We have that, G(3.2 )  G(2 ) 

       2
+2

 (proved earlier) 

This completes the proof. 

Algebraic Number and integers  

Definition :- (Rational Integers) 

The numbers …, 3, 2, 1, 0, 1, 2, 3,… are called the “rational integers” or 

simply the “integers”.  The set of rational integers {…, 3, 2, 1, 0, 1, 2, 

3,…} is denoted by Q(1). 

Definition :- An algebraic number is a number x which satisfies an algebraic 

equation, i.e. an equation  

  a0 x
n
 + a1 x

n 1
 +…+ an = 0, an  0, where a0, a1,…, are integers 

If x = 
b

a
, then bx  a = 0, so that any rational x is algebraic.  Any quadratic 

surd is algebraic; thus i = 1  is algebraic.  

Definition :- If a0 = 1 in the above definition, then x is called an algebraic 

integer . 

Definition (Gaussian Integers) 

Gaussian integer (or complex integer) is the number of the form,  = a + bi, 

where a and b are rational integers.  The set of Gaussian integers, namely 

  {a + bi : a, b are rational integers} 

is denoted by Q(i) and Gaussian integers are also called as integers of Q(i) 

Definition :- (Divisibility in Q(i)) 

An Gaussian integer  is said to be divisible by an Gaussian integer (  0) if 

there exists an Gaussian integer  such that  =  .  Then, we say that  is a 

divisor of  and write  | . 

Remark :- 1. Any Gaussian integer  has eight trivial divisors namely, 1, 1, 

i, i, , , i  and i . 

2.  Basic properties of divisibility are satisfied in k(i), such as 

   | ,  |      |  

 | 1,  | 2,…,  | n   | ( 1 1 + 2 2 +…+ n n) for all Gaussian integers.  

Definition :- (Unity) 

The integer  in Q(i) is said to be unity of Q(i) if  |  for every  of Q(i) 
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Alternatively, we may define a unity of Q(i) as any Gaussian integer which is 

a divisor of 1.  The two definitions are equivalent, since 1 is a divisor of every 

Gaussian integer and |1, 1 |      | . 

Definition (Norm of an Gaussian integer) 

Let  = a + ib is an Gaussian integer.  The norm of  is defined as : 

  N( ) = N(a + ib) = a
2
 + b

2
 

Remark :- It can be easily verified that N( ) N( ) = N( ) for all Gaussian 

integers  and . 

Theorem 4.16 In Q(i), the norm of a unity is 1 and any integer whose norm is 

1 is a unity. 

Proof :- If  is a unity, then, by definition,  | 1 

 there exists an Gaussian integer  such that  

  1 =  

 N(1) = N( ) = N( ) N( ) 

 1 = N( ) N( )   N( ) | 1   N( ) = 1 

On the other hand, 

Let  N(a + ib) = 1 

 a
2
 + b

2
 = 1   (a + ib) (a ib) = 1 

 (a + ib) | 1 

 a + ib is a unity and proof is completed.  

Theorem 4.17 The unities of Q(i) are  = i
s
 where S = 0, 1, 2, 3   or 

Show that  1 and  i are the only unities of Q(i). 

Proof :- Let  = a + ib be a unity of Q(i), then by above theorem,  

  N( ) = a
2
 + b

2
 = 1 

But the only solutions of a
2
 + b

2
 = 1 are 

  a =  1, b = 0 and a = 0, b =  1 

So that, only choices of  are 1, 1, i, i 

Hence the unities of Q(i) are of the form i
s
 (s = 0, 1, 2, 3) 

Definition (Associate) 
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Let  be any Gaussian integer and  be unity of Q(i), then  is said to be 

associate of , or we say that  is associated with . 

Remark :- (I) By above theorem, it is clear that the associates of  are , i , 

, i . 

(II) The associates of 1 are the unities. 

Definition (Primes in Q(i))  

An integer in Q(i), neither zero nor unity, is said to be a prime in Q(i) if it is 

divisible only by associates of itself or by associates of I i.e. if  is a prime in 

Q(i), then it has no divisors except the eight trivial divisors 1, 1, i, i, , i , 

i , . 

Theorem 4.18 A Gaussian integer whose norm is a rational prime (2, 3, 5, 7, 

11…) is a prime in Q(i). 

Proof :- Let  be any Gaussian integer such that  

N( ) = p where p is any rational prime.  We have to show that  is a prime in 

Q(i).   

Let   =   where ,   Q(i) then N( ) = N( ) = p 

 N( ) N( ) = p 

But p is a prime so either N( ) = 1 or N( ) = 1.  Hence either  or  is a unity 

and therefore  is a prime in Q(i). 

Remark :- Converse of above theorem is not true i.e. norm of a prime of Q(i) 

may not be a rational prime.  For example, 3 = 3 + 0i, k(i) such that N(3) = 9 

i.e. Norm of 3 is not a rational prime, but we show that 3 is a prime of Q(i) 

Let 3 = (a + bi) (c + id) 

 N(3) = N(a + bi) N(c + id) 

 9 = (a
2
 + b

2
) (c

2
 + d

2
) 

But, it is impossible that, a
2
 + b

2
 = c

2
 + d

2
 = 3 (since 31 is not the sum of two 

squares) and hence either a
2
 + b

2
 = 1 or c

2
 + d

2
 = 1 i.e. either a + ib or c + id is 

a unity. It follows that 3 is a prime of Q(i).  

Theorem 4.19 Any Gaussian integer, neither zero nor unity, is divisible by a 

prime of Q(i) 

Proof :- Let  be any Gaussian integer which is not equal to zero or unity.  If  

 is a prime in Q(i), we have nothing to prove. 

Let  be not a prime, then we must have  = 1 1 for some 1 1  Q(i) such 

that, N ( 1) > 1 and N( 1) > 1 and so we have  
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  1 < N ( 1) < N( )     …(I) 

If 1 (or 1) is a prime, the proof is completed.  If 1 is not a prime, then  

  1 = 2 2 for some 2, 2  Q(i) such that,  

  N( 2) > 1 an N( 2) > 1 

then we have  

  1 < N( 2) < N( 1)     …(II) 

Combining (1) and (II), we obtain  

  1 < N( 2) < N( 1) < N( ). 

We may continue this process as long as r is not a prime.  Since, N( ) > 

N( 1) > N( 2)… is a decreasing sequence of positive rational integers, we 

must come to a prime r and then we have 

   = 1 1 = 2 2 1 = … = r r… 1 

Thus, r is a divisors of  and r is a prime in Q(i). 

Theorem 4.20 Any Gaussian integer, neither zero nor unity, can be written as 

product of finite number of primes of Q(i) 

Proof :- Let  be any Gaussian integer, not equal to zero or unity.  If  itself is 

a prime, then the result is true. 

We shall prove the result by induction on norm.  We assume that result is true 

for all Gaussian integers (neither zero nor unity) with norm < N( ). 

Now, if  is not a prime, then, by last theorem, there exists a prime  such that  

 |  

or   =  for some  Q(i)    …(1) 

and we have N( ) < N( ) 

Now if N( ) = 1, then  is a unity and hence  is an associate of a prime  and 

hence, itself, is a prime, a contradiction.  So N( ) > 1, i.e. we have obtained 

N( ) < N( ) and  is neither zero nor unity.  So by induction hypothesis,  

can be written as a, product of primes of Q(i), say 1, 2,…, r. 

i.e.   = 1 2… r 

Hence, from (1), we obtain  

   =  1 2… r where , 1, 2,…, r are primes of Q(i) 
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Theorem 4.21 Given any two integers , 1 ( 1  0) of Q(i), there exists 

integers  and 2 such that 

   = 1 2 where N( 2) < N( 1) 

Proof :- Since 1  0, we have : 

  
1

= R + Si where R and S are real (in fact R and S are 

rational).  Then, we can find two rational integers x and y such that    

  |xR|  
2

1
 and |S y|  

2

1
 

and then we have 

  )iyx(
1

 = |R + iS)  x + iy| 

    = | (R x) + i(S y)| = [(R x)
2
 + (S y)

2
]

1/2
  

2

1
 

Now, if we take 

   = x + iy and 2 =   1 

Thus, we have 

  |   1| = | 1| 
1

  
2

1
 | 1| 

This implies that  

  N( 2) = N(   1) = |   1|
2
  

2

1
| 1|

2
 = 

2

1
N( 1) < N( 1) 

Thus, we have obtained that  

   = 1 + (  1) 

     =  1 + 2 where N( 2) < N( 1)  

Remark :- (I) The above theorem is known as “Division Algorithm in Q(i)”. 

(II) Like the rational integers, the following result holds in Q(i). 

“Let  and  be Gaussian integers and  be prime of Q(i) such that  | , then 

 |  or  | . 
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The Fundamental Theorem of Arithmetic in Q(i)  

Theorem 4.22  Every Gaussian integer (neither zero nor unity) is expressible 

as a product of finite numbers of primes of Q(i).  This representation is unique 

apart from the order of the primes, the presence of unities and ambiguities 

between associated primes. 

Proof :- Let  be any Gaussian integer, then  can be expressed as product of 

finite number of primes of Q(i).   

Let  = 1 2… r = 1 2… s      …(1) 

be two representations of  where 1, 2…, r, 1, 2,…, s are all primes of 

Q(i). 

Now, by (1), we have 

  1 | 1 2… s 

Since 1 is a prime element of Q(i), so , must divide some i (1  i  s).  

Since i is also a prime of Q(i), so we can say that 1 and 1 are associates of 

each other 

 i = 1 1 for some unity 1  Q(i) 

Thus, (1) becomes : 

  1 2… r = 1 2… i 1 ( 1 1) i+1… s 

which implies that  

  1 ( 2… r  1 2… i 1 1 i+1… s) = 0 

But 1 is a prime, so 1  0 

 2… r = 1 1 2… i 1 i+1… s 

Let, if possible, r < s, then continuing like above r times, we get : 

  1 = 1 2.. r j1 j2… ji 

Since ji is a prime and we get ji | 1 which is a contradiction.  Thus our 

supposition r < s is wrong.  Thus r  s.  Similarly, we can prove that s  r. So 

we have r = s 

By the process, we adopted, it also follows that i is associate of some j and 

conversely. 

Integers and fundamental Theorem in Q(w) where w
3
 = 1. 

Definition :- 

 The number of the form 

   = a + bw where a and b are rational integers and w is given 

by  
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  w = 
2

i31

3

2
sini

3

2
cose

i
3

2

 

are called integers of Q(w). 

Remark :- (1) If w = 
i

3

2

e = cos 2 /3 + i sin 2 /3 

         = 
2

i31
 

then, we have 

  w
2
 = 

2

i31
 

(II)    w + w
2
 = 1 and ww

2
 = 1 

i.e.  1 + w + w
2
 = 0 and w

3
 = 1 

Definition :- (Norm in Q(w)). 

Let  = a + bw be any integer in Q(w), then norm of  is defined as : 

  N( ) = (a + bw) (a + bw
2
) = a

2
  ab + b

2
 

Note  (1) we have N( ) = a
2

ab + b
2
 = 

2

2

b
4

3

2

b
a  

 N( ) = 0 for  = 0 and N( ) > 0 otherwise 

(II) We have : 

N(a + bw) = a
2
 ab + b

2
 = |a + bw|

2
 

(III) It can be easily verified that  

  N( ) = N( ) N( ) 

For all ,   Q(w). 

Remark :- Definitions of divisor, unity, associate and prime in Q(w) are same 

as those in k(i). 

Theorem 4.23 The unities of Q(w) are given by 1, w, w
2
 

Proof :- Let a + bw be any unity of Q(w), hen  

  N(a + bw) = 1 

 a
2
  ab + b

2
 = 1 

 (2a b)
2
 + 3b

2
 = 4 
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The only solutions of this equation are  

  a = 1, b = 0; a = 0, b = 1; a = 1, b = 1; a = 1, b = 1 

so that the unities are  

   1,  w, (1 + w) 

or  1, w, w
2
 

Theorem 4.24 (1) The norm of a unity in Q(w) is 1 and any integer of Q(w) 

whose norm is 1 is unity.   

(2) An integer whose norm is a rational prime is a prime in Q(w). 

(3) Any integer in Q(w), not zero or a unity s divisible by a prime of Q(w). 

(4) Any integer in Q(w), not zero or a unity, is a product of primes in Q(w). 

Proof :- The proofs of these theorems are same as those given in the case of 

k(i), except for the difference in the form of the norm.  

Remark :- Consider 1 w Q(w) 

then by definition of norm, N(1 w) = 3 

So by theorem (2) given above, 1 w is a prime of Q(w) 

2. Converse of theorem (2) may not be true i.e. norm of a prime of Q(w) may 

not be rational prime.  For example, consider 2 = 2 + 0.w  Q(w) then N(2) = 

3 which is not a rational prime. 

But, we show that 2 is a prime of Q(w) 

Let   2 = (a + bw) (c + dw) 

  N(a + bw). N(c + dw) = 4     

Let, if possible 

  N (a + bw) =  2 

 a
2
  ab + b

2
 =   2   (2a  b)

2
 + 3b

2
 =  8 

which is impossible i.e N(a + bw)   2 

Similarly  N(c + dw)  2 

Hence one of these must be 1 and other is 4 i.e. one of (a + bw) and (c + dw) 

is unity and hence 2 is a prime of Q(w). 

Theorem 4.25 Given any two integers , 1 of Q(w) and 1  0, there exists 

two integers K and 2 in Q(w) such that  
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   = K 1 + 2 where N( 2) < N( 1) 

(This is known as Division Algorith in Q(w)) 

Proof :- Let  = a + bw and 1 = c + dw then consider, 

  
)dwc)(dwc(

)dwc)(bwa(

dwc

bwa

2

2

1

 

           = SwR
dcdc

w)adbc(adbdac

22
(s & y) 

where,  R = 
22 dcdc

adbdac
 and S =

22 dcdc

adbc
 

 R and S are rational numbers.  

We can find two rational integers x and y such that   

  |R x|  ½ and |S y|  ½ 

and then, we have 

  

2

1

)ywx(  = |(R x) + (S y)w|
2
 

         = N[(R x) + (s y) w] 

       = (R x)
2
  (R x) (S y) + (S y)

2
  

4

3
 

Hence, if we take 

  K = x + yw and 2 =   K 1 

then we obtain  

   = K 1 + 2 

where N( 2) = N (   K 1)  
4

3
 N( 1) < N( 1) 

This completes the proof.  

Fundamental Theorem of arithmetic in Q(w) :- The integer of Q(w) can be 

expressed as a product of primes of Q(w) and this expression is unique apart 

from the order of the primes, the presence of unities and ambiguities between 

associated primes. 

Proof :- Same as given in the case of k(i) 

Theorem 4.26 Show that  = 1 w is a prime and 3 is associated with 
2
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Proof :- It has been already proved (in a remark) that  = 1 w is a prime of 

Q(w). 

Now   
2
 = (1 w)

2
 = 1 2w + w

2
 

          = 1 2w + ( 1 w) 

          = 3w 

Hence 3 is associated with 
2
. 

Algebraic fields 

An algebraic field is the aggregate of al numbers  

  R( ) = ,
)('P

)(P
 

Where  is a given algebraic number, P( ) and P ( ) are polynomials in  

with rational coefficients, and P ( )  0.  We denote this field by Q( ). It is 

plain that sums and products of numbers of Q( ) belong to Q( ) and that /  

belongs to Q( ) if  and  belong to Q( ) and   0. 

 We defined an algebraic number  as any root of an algebraic equation  

  a0 x
n
 + a1 x

n 1
 +…+ an = 0, 

where a0, a1,… are rational integers, not all zero.  If  satisfies an algebraic 

equation of degree n, but none of lower degree, we say that  is of degree n. 

If n = 1, then  is rational and Q( ) is the aggregate of rationals.  Hence, for 

every rational , Q( ) denotes the same aggregate, the field of rationals, which 

we denote by Q(1).  This field is part of every algebraic field. 

If n = 2, we say that  is „quadratic‟.  Then  is a root of a quadratic equation  

  a0 x
2
 + a1 x + a2 = 0 

and so   = 
c

mba
,   m = 

b

ac
 

for some rational integers a, b, c, m.  Without loss of generality we may take 

m to have no squared factor.  It is then easily verified that the field Q( ) is the 

same aggregate as Q ( m).  Hence it will be enough for us to consider the 

quadratic fields Q( m) for every  rational integer m, positive or negative 

(apart from m = 1). 

Any member  of Q( m) has the form  



PRIMES IN CERTAIN ARITHMETICAL PROGRESSIONS AND SYSTEM OF CONGRUENCES 167 

   = 
c

mba

mwv

)mwv)(mut(

mwv

mut

)m('P

)m(P
22

 

for rational integers t, u, v, w, a, b, c.  We have (c  a)
2
 = mb

2
, and so  is a 

root of  

 c
2
x

2
  2acx + a

2
  mb

2
 = 0.                                    (1) 

Hence  is either rational or quadratic; i.e. every member of a quadratic field 

is either a rational or a quadratic number. 

The field Q( m) includes a sub-class formed by all the algebraic integers of 

the field.  We defined an algebraic integer as any root of an equation  

x
j
 + c1 x

j 1
+…+ cj = 0,            (2) 

where c1,…,cj are rational integers.  We appear then to have a choice in 

defining the integers of Q( m).  We may say that a number  of Q( m) is an 

integer of Q( m) (i) if  satisfies an equation of the form (2) for some j, or (ii) 

if  satisfies an equation of the form (2) with j = 2.  

Primitive polynomials 

We say that the integral polynomial 

  f(x) = a0 x
n
 + a1 x

n 1
 +…+ an  

is a primitive polynomial if  

  a0 > 0, gcd(a0, a1,…, an) = 1 

Theorem 4.27 An algebraic number  of degree n satisfies a unique primitive 

equation of degree n.  If  is an algebraic integer, the coefficient of x
n
 in this 

primitive equation is unity. 

We first prove the following theorem :  

Theorem 4.28  Let  be an algebraic number of degree n and let f(x) = 0 be a 

primitive equation of degree n satisfied by .  Let g(x) = 0 be any primitive 

equation satisfied by .  Then g(x) = f(x) h(x) for some primitive polynomial 

h(x) and all x. 

By the definition of  and n there must be at least one polynomial f(x) of 

degree n such that f( ) = 0.  We may clearly suppose f(x) primitive.  Again the 

degree of g(x) cannot be less than n.  Hence we can divide g(x) by f(x) by 

means of the division algorithm of elementary algebra and obtain a quotient 

H(x) and a remainder K(x), such that  

  g(x) = f(x) H(x) + K(x),    …(1) 
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H(x) and K(x) are polynomials with rational coefficients, and K(x) is of 

degree less than n. 

If we put x =  in (1), we have K( ) = 0.  But this is impossible, since  is of 

degree n, unless K(x) has all its coefficients zero.  Hence 

  g(x) = f(x) H(x). 

If we multiply this throughout by an appropriate rational integer, we obtain  

  cg(x) = f(x)h(x),     …(2) 

where c is a positive integer and h(x) is an integral polynomial.  Let d be the 

highest common divisor  of the coefficients of h(x).  Since g is primitive, we 

must have d | c.  Hence, if d > 1, we may remove the factor d; that is, we may 

take h(x) primitive in (2).  Now suppose that p | c, where p is prime.  It 

follows that f(x) h(x)  0(mod p) and so, either f(x)  0 or h(x)  0 (mod p).  

Both are impossible for primitive f and h and so c = 1.  This proves the 

theorem. 

Proof of the theorem 4.27 The proof of Theorem 4.27 is now simple.  If g(x) 

= 0 is a primitive equation of degree n satisfied by , then h(x) is a primitive 

polynomial of degree 0; i.e. h(x) = 1 and g(x) = f(x) for all x.  Hence f(x) is 

unique.   

If  is an algebraic integer, then  satisfies an equation of the form  

x
j
 + c1 x

j 1
 +…+ cj = 0,     …(1) 

where c1 c2…cj are rational integers, for some j  n.  We write g(x) for the 

left-hand side of (1) and, by Theorem 4.28, we have 

  g(x) = f(x) h(x), 

where h(x) is of degree j n.  If f(x) = a0 x
n
 +… and h(x) = h0 x

j n
 + …, we 

have 1 = a0 h0, and so a0 = 1.  This completes the proof of Theorem 4.27. 

Definition :- A complex number  is called an algebraic number if  integers a0, a1,…an (an  

0)  such that  satisfies a polynomial of the form  

  f(x) = an x  + an 1 x
n 1

 +…+ a1x + a0 

Further if an = 1 in above, then  is called on algebraic integer  

Definition :- A monic polynomial p(x) in Q[x] is called a minimal polynomial of  if p(x) is a 

polynomial of minimal degree which is satisfied by .  

Remark :- In modern algebra we have proved that if  is an algebraic integer then Q[ ] = 

Q( ) where Q[ ] is the set of all polynomials in  with coefficient, from Q and Q( ) is the 

smallest field containing Q & . 

Remark :- We know Q( ) is a vector space over Q and degree [Q( ). Q] is the degree of 

minimal polynomial satisfied by .  
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Theorem 4.29 Given an algebraic number ,  a non-zero integer t such that t  is an 

algebraic integer. 

Proof :- Since  is an algebraic number,  integers an, an 1,…, a1, a0, an  0 such that  

  an 
n
 + an 1 

n 1
 +…+ a1  + a0 = 0   …(1) 

Multiplying (1) by 
1n

na , we get 

  
1n

n0
1n

n1
1n

n
1n

1n
nn

n aaaαa...aαaαa  = 0 

Then (an ) satisfies  

  f(x) = x
n
 + an 1 x

n
 +…+ a1 

1n
n0

2n
n aaxa  

 (an ) is an algebraic integer.  If we take t = an, we get the result. 

The general quadratic field 

Definition :- A field k of complex number is called a quadratic field if  

  [ K : Q] = 2 and K is a vector space over Q. 

Theorem 4.30 If K is a quadratic field,  a non-zero square free integer m such that  

  K = Q( m ) 

Proof :- Since [K : Q] = 2, take any c K, c  Q.  Now consider 1, c, c
2
.  These are three 

elements of K, so these must be linearly dependent over Q.  So.  a0, a1, a2 in Q, not all zero, 

such that  

  a0 c
2
 + a1c + a2 = 0 

Now a0 can not be equal to zero since otherwise c Q 

 c
2
 + 

0

2

0

1

a

a
c

a

a
= 0 

 c
2
 + 

0

2

0

1

a

a
c

a

a
 

Completing squares we get 

  c
2
 + 

0

2

2
0

2
1

2
0

2
1

0

1

a

a

a4

a

a4

a
c

a

a
= 

2
0

20
2
1

a4

aa4a
 

Then  
2
0

20
2
1

2

0

1

a4

aa4a

a2

a
c  

Taking the square root we get 

  c +

0

20
2
1

0

1

a2

aa4a

a2

a
 



                                                             ANALYTICAL NUMBER THEORY  170 

i.e.  c = 

0

20
2
11

a2

aa4aa
 

Then  Q(c) = Q

0

20
2
11

a2

aa4aa
 

But   2a0 Q 

  Q(c) = Q( a1 20
2
1 aa4a ) 

          = Q ( 20
2
1 aa4a ) 

          = Q ( 20
2
1 aa4a ) 

          = Q )m(Q)mb(  

where m is a square free integer. 

Now we claim K = Q m( ) = Q(c) 

 Suppose K  Q m( ) 

Then  a K, a  Q m( ).  Then 1, m , a are linearly dependent over Q since [K : Q] = 2 

and so a Q m( ). 

Remark :- Since m is square free  

  m 0 (mod 4) 

 So either m  1 (mod 4) or m  2 (mod 4) 

or  m  3(mod 4). 

Theorem 4.31 Let K = Q m( ) be a quadratic field and let K.  Then  is an algebraic 

integer of K.  

  can be written as  

   = a + b  

where   a, b  Z 

and    = m  if m  2 or 3 (mod 4) 
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and   = 
2

m1
if m  1(mod 4) 

Proof :- Let  = a + b , where  is given as above  

Let  m  2 or 3(mod 4) 

Then   = a + b m  

    a = b m  

 ( a)
2
 = b

2
m 

 2
  2a  + a

2
  b

2
m = 0 

  satisfies x
2
  2ax + a

2
  b

2
 m = 0 

  is an algebraic integer by definition.  Now let m  1(mod 4).  Then  

   = a + b
2

m1
 

i.e.   = a +
2

mb

2

b
 

   
2

mb

2

ba2
 

Squaring, we get 

  
2
 (2a +b) + a

2
 + ab +

4

b2

4

b2

m 

or  
2
 (2a +b)  + a

2
 + ab 

4

b2

(m 1) = 0 

Thus  satisfies 

  x
2

x(2a +b) + a
2
 + ab 

4

b2

(m 1) = 0 

which has integral coefficients since 
4

1m
Z 

  is a algebraic integer. 
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Conversely, let  be an algebraic integer.  Since K = Q( m ) then we can write 

   = 
c

mba
, where a, b, c Z, c  0 

W. L. O. G. we assume  

  c > 0 and gcd(a, b, c) = 1 

Now   = 
c

mba
 

  c   a = b m  

Squaring we get 

  (c a)
2
 = b

2
m 

  c
2 2

  2ac  + a
2
  b

2
m = 0 

  
2
 0

c

mba
α

c

a2
2

22

 

Then  satisfies  

  x
2
 0

c

mba
x

c

a2
2

22

    …(1) 

Since  is an algebraic integer, so the coefficient in (1) must be integers.  Then  

(i)  c | 2a and c
2 
| (a

2
b

2
m)    …(2) 

If b = 0 then c
2 

| a
2
   c | a 

In this case (1) becomes  

  x
2
  0

c

a
x

c

a2
2

2

 

  

2

c

a
x = 0   x = 

c

a
 

i.e.   = a/c 

But  c | a  
c

a
 is an integer 

Then  = 
c

a
 and it is of the required form.  i.e.  = 

c

m.0a
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So let  b  0 

let   gcd(a, c) = d 

Then  d |a , d | c   d
2 
| a

2
, d

2 
| c

2
 

But  c
2 
| (a

2
b

2
m) and d

2 
| c

2
 

  d
2 
| (a

2
  b

2
m) 

But  d
2 
| a

2
   d

2 
| b

2
m 

  d
2 
| b

2
     ( m is square free) 

  d | b 

Also d | a, d | b, d | c   d | gcd(a, b, c) = 1 

  d = 1 

  gcd(a, c) = 1 

But   c | (2a)   c | 2   c = 1 or 2 

If c = 1, then  = a + b m  where a, b Z. 

  m  2 or m  3 (mod 4) 

Then  is of the required form  

Now let  c = 2 

Then   = 
2

mba
 

Since gcd (a, c) = 1 & c = 2 

  a must be odd. 

From (2), c
2 
| (a

2
  b

2
m) 

  a
2
  b

2
m  0(mod 4) 

Then   a
2
  b

2
m (mod 4)     …(3) 

But a is odd and m  1 (mod 4) 

 b
2
  1 (mod 4) 

 b is odd. 

The b can not be even.  
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  d = 1 

  bdc (a, c) = 1 

But c/(2a)  c/2  c = 1 or 2 

If c = 1, then  = a + b m  where a, b  Z 

and  m  2 or m  3 (mod 4) 

Then  of the required form  

Now let  c = 2 

Then    = 
2

mba
 

Since gcd(a, c) = 1 & c = 2 

  a must be odd. 

From (2), c
2
/c

2
b

2
m) 

  a
2
  b

2
  0(mod 4) 

Then   a
2
  b

2
m (mod 4)     …(4) 

But a is odd and m  1(mod 4) 

 b
2
  1(mod 4) 

 b is odd.  

Then b can not be even. 

Now   = 
2

ba

2

m1
b

2

mba
 

Then  is of the form x + y  where x, y Z &  = 
2

1m
 since 

2

ba
 is an integer.  

Hence, this proves the theorem 

Remark :- If m  1(mod 4), then  is an algebraic integer of Q )m(  

  = 
2

mba
, where a, b  Z and of same parity.  

Proof of remark :- If both a & b are even then 

   = x + y m  where x, y Z 
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      = 2y
2

m1
 + x y, 

and if both a & b are odd,  

   = 
2

ba

2

)m1(b

2

mba
 

and in either case, they can be written as a + b , where a, b are integers and so 

they are algebraic integers 

Conversely, if  is an algebraic integer  

Let   = a + b  = a + b
2

m1
 

     = 
2

mb)ba2(
 

Then b & 2a + b are of the same parity and this prove the result. 

Theorem 4.32 The algebraic integers of a quadratic field form a ring.  

To prove this we shall prove that the product of two algebraic integers is an algebraic integer.  

Proof :- If m  2 (mod 4) or m  3 (mod 4), the result is trivially true. 

So let m = 1 (mod 4). 

Let   x1 = a1 + b1  and x2 = a2 + b2  

where     = 
2

1m
 

Now  x1 x2 = (a1 + b1 ) (a2 + b2 ) 

          = a1 a2 +  (a1 b2 + a2 b1) 

    + b1 b2 
2
 

But   = 
2

1m
     

2

m

2

1
 

  
2
  + 

4

m

4

1
   

2
 =  +

4

1m
 

Then x1 x2 = a1 a2 + (a1 b2 + a2b1) 
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   + b1 b2 
4

1m
τ   

   = (a1 b2 + a2 b1 + b1b2) 

   + a1a2 + b1b2 
4

1m
 

which is of the form x + y  where x, y Z. 

 x1 x2 is an algebraic integer. 

Definition :- Let  and  be two algebraic integers,   0.  We say  |  if  an algebraic 

integer  such that  =  

Definition :- An algebraic integer   0 is said to be a unity if  |1  i.e. if  an algebraic 

integer  such that  = 1. 

Theorem 4.33 The product of two unities is a unity 

Proof :- Let , and 2 be two unities, then  algebraic integers 1 & 2 such that 1 1 = 2 2 

= 1  Then ( 1 1) ( 2 2) = 1 i.e. ( 1 2) ( 1 2) = 1 

Also 1 2 is an algebraic integer (since 1 & 2 are algebraic integer)   

 1 2 is a unity 

Theorem 4.34 The inverse of a unity is a unity  

Proof :-   = 1    = 1    is also a unity 

Remark :- The above two theorems prove that the unities of a quadratic field form a 

multiplicative group. 

Definition :- Let  = x + y m  K = Q( m ). 

Then  x, y Q. 

We define norm of  as N( ) = N(x + y m ) = x
2
  my

2
 

Clearly if m < 0; (x
2
  my

2
)  0 

Remark :- Also N( ) ,  0 if(x, y) (0, 0),  i.e. if    0 

Proof :- If possible, let N( ) = 0 

 x
2
  my

2
 = 0 

 x
2
 = my

2
      …(1) 

If (x, y)  (0, 0) then (1) is not possible since m is square free.  

Theorem 4.35 Norm is multiplicative i.e. if , K; N( ) = N( )  N( ) 

Proof :- Let ,  K 

Let  = x1 + y1 m  and  = x2 + y2 m  
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Then           N( ) = 
2
1x m

2
1y  and N( ) = 

2
2

2
2 myx  

Now   = (x1 + y1 m ) (x2 + y2 m ) 

            = (x1 x2 + my1 y2 + m  (x1 y2 + x2 y1)) and 

               N( ) = (x1 x2 + my1 y2)
2
  m(x1 y2 + x2 y1)

2
 

  = 1
2
2

2
1

22
2

2
1 xm2yymxx x2 y1 y2  m 

2
2

2
1 yx  m

2
1

2
2 yx  

  2m x1 x2 y1 y2 

   = 
2
1

2
2

2
2

2
1

2
2

2
1

22
2

2
1 ymxymxyymxx  

  = )myx)(myx( 2
2

2
2

2
1

2
1  = N( )  N( ) 

Theorem 4.36 The norm of a algebraic integer is an integer 

Proof :- To prove this we have to distinguish two cases when K = Q( m ) 

Case I :- m  2 or m  3 (mod 4) 

Let  be an algebraic integer of K.  Then  integers x & y such that  = x + y m  

Then   N( ) = x
2
 my

2
 is clearly an integer since x, y, m are integers 

Case II :-  m  1(mod 4) 

 If  is an algebraic integer, then  integers x and y such that 

  = x + y
2

m1
 

      = x + m
2

y

2

y
 

    N( ) = m
4

y

2

y
x

22

 

      = x
2
 + m

4

y
xy

4

y 22

 

     = x
2
 + xy  y

2
 

4

1m
 which is clearly an integer since 

4

1m
 Z 

Theorem 4.37 The norm of a unity is  1 

Proof :- Let  be a unity.  Then  an algebraic integer  such that 1 =  
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Then  1 = N(1) = N(  ) = N( ) N( ) 

But  N( ) and N( ) are integers   N( ) | 1 

  N( ) =  1. 

Definition :- Let  &  be algebraic integers.  We say  is an associate of  if  a unity  of 

K such that  = . 

Remark :- We can check that the relation of associate ship is an equivalence relation in the 

set of all algebraic integers.  

Definition :- An algebraic integer  is a said to be a prime of K if only divisor of  are 

associates                of .  

Theorem 4.38 If |N( )| = p where p is a prime no, then  is a prime of K. 

Proof :- If possible let  be not a prime element of K.  Then  algebraic integers ,  such 

that  =  and ,  are not unities of K.  

Now N( ) = N( ) = N( )  N( ) 

  p = |N( )| = |N( )  N( )| = |N( )|  |N( )| 

But both of  &  are not unities of K. 

Then  |N( )| > 1, |N( )| > 1 

But only positive divisors of p are 1 & p 

     |N( )| = p = |N( )|    p = p p   p = 1, which is not possible, since p is a prime number 

 Either  or  must be a unity    Divisors of  are associates of .  

  is a prime element of K. 

Theorem 4.39 If |N( )| = 1; then  must be a unity. 

Proof :- We know if  = x + y m  

Then  N( ) = x
2
  my

2
 = ((x + y m ) (x y m ) = α   

where α  denotes the algebraic conjugate of . 

Note that if  is an algebraic integer then α  is also an algebraic integer since  & α  are roots 

of same polynomial.  

Now  |N( )| = 1   N( ) =  1, then   1 = N( ) = α     | 1 

  is a unity . 

Theorem 4.40 Every non-zero non-unity algebraic integer of K can be written as product of 

prime elements of K. 

Proof :- Let  be a non-zero, non-unity algebraic integer of K.  Then |N( )| > 1 

Now we shall prove the theorem by induction of |N( )| 

If |N( )| = 2, then |N( )| is a prime number and so  is a prime number of K.  

Now assume the theorem is true for all  where |N( )| < n where n N, n > 2. 



PRIMES IN CERTAIN ARITHMETICAL PROGRESSIONS AND SYSTEM OF CONGRUENCES 179 

Now let |N( )| = n.  If  is a prime element of K, we are through. 

So let  be not a prime element of K 

Then  algebraic integer  &  of K such that.   =  where  &  are not 

unities of K. 

Then  |N( )| > 1, |N( )| > 1. But |N( )| = |N( )|  |N( )| |N( )| < |N( )| = n. 

and   |N( )| < |N( )| = n 

Then by induction hypothesis, both  &  can be written as product of prime 

elements of K. 

  =  can be written as product of prime elements of K. 

Theorem 4.41 Prove that the unities of the field K = Q( 2 ) are                        
 n

 (n = 0, 

1, 2,…) and   = 1+ 2 . 

Proof :- Let  be a unity of K = Q( 2 ).  Now the algebraic integers of K are of the form x + 

y 2  where x, y Z 

Since  is a unity of K, N( ) =  1,  i.e.  x
2
  2y

2
 = 1  …(1) 

Now by inspection, x = 1, y = 1 is a solution of (1) 

i.e.,  = 1 + 2  is a solution of (1).  Since product of two unities is a unity and inverse of a 

unity is a unity and negative of a unity is a unity, so  
 n
 (n = 0, 1, 2,…) are all unities of K.  

Let  be any unity of K.  By taking , if necessary , we assume  > 0.  Further by taking 
1
, 

if necessary, we assume  > 1. 

Then we first find all unities of K, which are bigger than 1. 

First we shall prove that there exists no unity  of K such that  

  1 <  < 1 + 2  

Let   = x + y 2 ,  then  1  x
2
  2y

2
  1 

But  1 < x + y 2  < 1 + 2     …(2) 

So  1< x  y 2  < 1     …(3) 

Adding (2) & (3), we get 

  0 < 2x < 2 + 2  

  0 < x < 1 +
2

1
< 2   x = 1 

Now from (2), 1 < 1 + y 2  < 1 + 2 and this has no solutions in y. 
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So  no unity  such that 1 <  < 1 + 2 .  Thus if  is any unity such that  > 1, then   .  

Let   
n
 for any n.  Since 

n
 as n ,  a unique natural number n such that  

  
n
 <  < 

+1    
  1 <  n <    …(4) 

Since  is a unity &  is a unity,  is also a unity. 

Thus we have a unity of K lying between 1 & , which is a contradiction.  So we must have 

 = 
n
 for some < n. 

By taking negative or inverse we see that all unities of K are of the form  
n
 

Remark :- Similarly we can proves that unities of Q( 3 ) are infinite in number.  

4.42 Fields in which the fundamental theorem is false.  The fundamental 

theorem of arithmetic is true in Q(1), Q(i),Q( ), and in Q( 2).  It is important 

to show by examples, that it is not true in every Q( m).  The simplest 

examples are m = 5 and (among real fields) m = 10. 

(i) Since 5  3(mod 4), the integers of Q{ ( 5)} are a + b ( 5).   

Now the four numbers 

  2, 3, 1 + ( 5), 1 ( 5) 

are prime.  Thus 

  1 + ( 5) = {a + b ( 5)} {c + d ( 5)} 

implies    6 = (a
2
 + 5b

2
) (c

2
 + 5d

2
); 

and a
2
 + 5b

2
 must be 2 or 3, if neither factor is a unity.  Since neither 2 nor 3 is 

of this form,                     1 + ( 5) is prime; and the other numbers may be 

proved prime similar.  But 

  6 = 2.3 = {1+ ( 5)} {1 ( 5)}, 

and 6 has two distinct decompositions into primes. 

(ii) Since 10  2 (mod 4), the integers of Q( 10) are a + b 10.  In this case 

  6 = 2.3 = (4+ 10) (4  10), 

and it is again easy to prove that all four factors are prime.  Thus, for example, 

  2 = (a +b 10) (c + d 10) 

implies  4 = (a
2
 10b

2
)(c

2
10d

2
), 

and a
2
  10b

2
 must be  2 if neither factor is a unity.  This is impossible 

because neither of 2 is a quadratic residue of 10. 

Real and complex Euclidean fields  
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Let us find the unities of a quadratic field. 

Theorem 4.43  Let K = Q( m ) be a quadratic field & let m < 0.  Then the number of unities 

of K is  

  4  if m = 1 

  4  if m = 3 

  2  if m  1, m  3. 

Proof :- we shall distinguish two cases  

Case I :-  m  2 or m  3 (mod 4) 

Let  be any unity of K.  Then  is also an algebraic integer of K. So  = x + y m  for 

some integers x and y. 

Since m < 0, norm of every norm-zero element of K is positive. 

Since  is a unity, so N( ) = 1,  or 1 = N( ) = N(x + y m ) = x
2
 my

2  
…(1) 

Let   m  1 

Then   |  my
2
|  2 if y  0 

So for (1) to hold we must have y = 0  x
2
 = 1   x =  1 

  = x + y m  =  1 

So for m  1, m  2 or 3(mod 4),  1 are the only unities of K.   

Now let m = 1.  Then from (1), x
2
 + y

2
 = 1 

But its only solutions are x = 1, y = 0 & x = 0, y = 1 

So for m = 1, 1 & 1 =  i are the only unities of K. 

Case II :-  m  1(mod 4) 

Let  be any unity of K.  Then as above N( ) = 1 

Also,  integers x & y such that 

   = x + y
2

my

2

y
x

2

m1
 

Then 1 = N( ) = N
2

my

2

y
x  
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              = 
4

my

2

y
x

22

     …(2) 

Since m < 0 and m   1 (mod 4)     m = 3, 7, 11,…… 

For  m < 3, 
4

my 2

> 1 for y  0 

So for (2) to hold, we must have y = 0 and then as before  

  x =  1 

Now let m = 3  Then (2) becomes 1 = 
4

y3

2

y
x

22

  …(3) 

If  |y|  2, 
4

y3 2

 3, so for (3) to hold, we must have  

  |y|  1.  

If y = 0, then as before x = 1 

If y = 1, then from (3), 1 = 
4

3

2

1
x

2

= x
2
 + x + 1 

   x
2
 + x = 0   x = 0 or 1      …(4) 

If y = 1, then from (3),  x
2
  x = 0   x = 0 or 1   …(5) 

Thus in this case there are six unities of K 

These unities are  1, 
2

31
, ,

2

31
,

2

31
  

2

31
, 

If we set  w = 
2

31
 

Then these unities are 1,  w,  w
2
 

In all the cases the unities form a cyclic group.   

Remark :- The above theorem shows that the number of unities in all complex quadratic 

fields is finite.  However this is not true for real quadratic fields.  In fact the number of unities 

in each real quadratic field is infinite.  

Definition :- A quadratic field is called a simple quadratic field if every algebraic integer can 

be expressed as a product of prime element uniquely up to change of order and multiplication 

by units.   

Definition :- We say Euclidean Algorithm holds in a quadratic field K if given ,  in K,   

0,  integers  and  such that  

   =  +    where either    = 0 or |N( )| < |N( )| 
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Definition :- Let ,  be algebraic integers of a quadratic field K and                  ( , )  (0, 

0), 

an algebraic integer  is said to be greatest common divisor of  and  if  

(i)  | ,  |  in K 

(ii) If 1 |  and 1 |  in K then 1 |  in K where 1 is any algebraic integer of K.  

Theorem 4.44 If Euclidean algorithm holds in a quadratic field K then it must be a simple 

field.  

Proof :- To prove the theorem, we first prove  

Lemma 1 :- If  is greatest common divisor of two algebraic integer  and 1 

then  algebraic integers  and 1 such that  

   =  + 1 1 ; ( , 1)  (0, 0)   

where  and 1 are algebraic integers of quadratic field in which Euclidean algorithm holds. 

Proof :- W. L. O. G. take 1  0.  Given  and 1 K and 1  0 and Euclidean algorithm holds 

in K, there exists algebraic integers k1 and 2 such that 

   = k1 1 + 2 where either 2  0 or  |N( 2)| < |N( 1)| 

If 2 = 0, Y = k1 1 and 1 is gcd of  and 1 

If 2  0 we apply Euclidean condition to 1 and 2 and we get 

  1 = k2 2 + 3 

for some algebraic integers k2 and 3 and either 3 = 0 or 

  |N( 3)| < |N( 2)| 

If 3  0, we continue as before and get a decreasing sequence  

  |N( 4)| < |N( 3)| <…< |N( 1)| 

But we can not get an infinite bounded sequence of positive integers and so the sequence of 

‟s must stop at some point say n+1 = 1.  Then as in the corresponding proof for natural 

numbers, we can show that n is the gcd of  and 1. 

Proof of Theorem :- Proceeding in the some manner as for natural numbers we can establish 

that the decomposition as a product of prime elements of K is unique up to change of order 

and multiplication by unities.  

Theorem 4.45 The Euclidean algorithm is equivalent to the following hypothesis.  Given any 

element  of Q( m ), there is an algebraic integer k of Q( m ) such that 

  |N( k)| < 1 

Proof :- Suppose, given hypothesis hold‟s i.e. let  and 1 be two algebraic integers of 

Q( m ) and let 1  0.  Take Q ( m ) 

Then by hypothesis  an algebraic integer k such that  
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  1
k

N.,e.i1kN
1

1

1

 

Multiply both sides by |N( 1)|, then  

  |N( 1)| 

1

1k
N < |N( 1)| 

But norm is multiplicative and so,  |N(   1k)| < |N( 1)| 

Take,  =   1k,  then   =  + 1k where |N( )| < |N( 1)| and so Euclidean algorithm 

holds. 

Now conversely suppose Euclidean algorithm holds.  Let  be any element of Q( m ).  If  

= 0, take k = 0 and we are through.  So let   0 then we know that  is an algebraic number 

of Q( m ).  Then  a non-zero integer t such that t  is an algebraic integer.  

Now t  and t are two algebraic integers of Q( m ) where t  0 

By Euclidean algorithm,  an algebraic integer k &  such that  

  t  = tk +  where  = 0 or |N( )| < |N(t)| 

Then   
t

N  | N(t)| = |N( )| < |N( )| 

  
t

N  < 1 

Now  t  = tk + ,  = k + 
t

   k = 
t

 

and  |N( k)| = 
t

N  < 1, this proves equivalence.  

Remark :- Thus to prove that a quadratic field is a simple field it is enough to prove that 

given any element  of the field  an algebraic integer k such that 

  | N( k) | < 1  

Theorem 4.46.  Euclidean algorithm holds in the quadratic field                            K =  

Q( m  ) where  

  m = 1, 2, 3, 7, 11, 2, 3, 5, 13.  

Proof.  Now any element  of K = ( m  ) can be written as  

 = r+s m   where r Q,  s Q. 

Let m 1 (mod 4).  Then any algebraic integer of K = Q( m ) can be written as x + y m  

where x, y Z 
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Now given s as above, select integers x & y such that | r  x|  
2

1
,                         |s y|  

2

1
 

Let   k = x + y m  

Then    k = (r x) + (s y) m  

 N ( k) = (r x)
2
 + ( m) (s y)

2
 

First let m = 1 or m = 2 

Now (r  x)
2
  

4

1
, (s y)

2
  

4

1
 

Then  |N( k)| < 1. Now if m = 2 or 3, again we have,  |N( k)| < 1 

Now let m 1(mod 4)      

Then we know that algebraic integers of K can be written as a + b  where a, b 

Z  

and    = 
2

1m
 

In this case select y such that 

  | 2s  y|  
2

1
 

Having selected y, select an integer x such that  

  xy
2

1
r   

2

1
 

Now consider k = x + y + 
2

1
y ( m 1) 

    = x + my
2

1
y

2

1
 

Then k is an algebraic integer of K and 

    k = y
2

1
smy

2

1
xr  

For m<0, |N( k)| = 

22

y
2

1
s)m(

2

y
xr  

                  1
16

m

4

1
,  for m = 3, 3, 11, 
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for m > 0,  |N( k)|  
16

m
 < 1 for m = 5 and 13.  

Remark :- There are exactly nine imaginary quadratic fields in which 

Euclidean algorithm holds  

  (m = 1, 2, 3, 7, 11,  19, 43, 67 and 163) 

Theorem 4.47 The number of real Euclidean fields Q( m ) where m  2 or m 

 3 (mod 4) is finite. 

Proof :- Let us suppose that Q( m ) is Euclidean and let m  2 or 3(mod 4).  

The algebraic integers of K are of the form x + y m  where x, y Z 

Take care,  = 
m

t
m , then Q( m ) 

Since the field is Euclidean, there exists  

  k = x + y m  such that |N( k)| < 1 

But  k = x + y
m

t
m  

  |N( k)| < 1   1
m

t
ymx

2
2  

 1
m

)tmy(
x

2
2       |mx

2
  (my t)

2
| < m,    |(my  t)

2
  mx

2
| < m 

But  (my t)
2
  mx

2
  t

2
(mod m), 

So  integers x & z such that  

  z
2
  mx

2
  t

2
 (mod m)     …(1) 

and  |z
2
  m x

2
| < m      …(2) 

Now let m  3 (mod 4). 

It possible suppose  infinitely many reals quadratic fields for which 

Euclidean algorithm holds in K.  

 Now select an odd integer t such that  5m < t
2
 < 6m, such a choice if t 

is possible. 

But  z
2
  mx

2
  t

2
(mod m) 

and  |z
2
  mx

2
| < m 

 Either |z
2
  mx

2
|  t

2
 = 5m 

or  z
2
  mx

2
  t

2
 = 6m 
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  t
2
  5m = z

2
  mx

2
 

or  t
2
  6m = z

2
  mx

2
 

  t
2
  z

2
 = m(5 x

2
)     …(3) 

or  t
2
  z

2
 = m(6 x

2
)     …(4) 

But t is odd  t
2
  1 (mod 8) and x

2
  0 or 1 or 4(mod 8)  and z

2
  0 or 1 or 

4(mod 8) 

  t
2
  z

2
  0 or 1 or 5 (mod 8) 

and  5 x
2
  1 or 4 or 5 (mod 8) 

and  6 x
2
  2 or 5 or 6 (mod 8) 

  m(5 x
2
)  3 or 4 or 7(mod 8)     ( 

m  3(mod 8) 

and  m(6 x
2
)  2 or 6 or 7 (mod 8) 

 Neither (3) nor (4) can hold. 

 Now let m  2(mod 4).  If possible suppose there are infinitely many 

real quadratic fields for which Euclidean algorithm holds.  In this case, choose 

an odd integer t such that 2m < t
2
 < 3m 

Then t
2
  1(mod 8) and m  2 or 6(mod 8) 

Further  t
2
  2m = z

2
  mx

2
     …(5) 

or  t
2
  3m = z

2
  mx

2
     …(6) 

i.e.  t
2
  z

2
 = m(2 x

2
) or t

2
  z

2
 = m(3 x

2
) 

Now  m(2 x
2
)  2 or 4 or 6(mod 8) 

and  m(3 x
2
)  2 or 4 or 6(mod 8) 

whereas t
2
  z

2 
= 0 or 1 or 5 (mod 8) 

so neither (5) or (6) can hold 

Theorem 4.48 Let K = Q( m ) be a simple field and let  be a prime of K 

then  divides one and only one rational prime 

Proof :- Let |N( )| = n   N( ) =  n 

But N( ) =  π  where π  denotes the algebraic conjugate of . 

Since  is a prime  n > 1.  Let n = p1 p2…pr be the decomposition of n into 

primes. 

Then π  =  p1 p2…pr 

But K is a simple field and so  must occur when we decompose n into prime 

elements of K and so  must divide at least one of p1, p2,…, pr. 
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If possible let  divides two different rational primes say p and q.  Now in Z, 

gcd (p, q) = 1 

  integers x & y such that  

  px + qy = 1 

But   | p and /q in K. 

   | 1 in K    is a unit  which contradicts that  is a prime so 

 divides exactly one of p & q. 

Theorem 4.49 The primes in Q(i) = K can be divided into 3 classes 

(1) The prime 1 + i and its associates  

(2) The rational primes of the form 4n+3 and their associates 

(3) The prime factors a + bi of the rational primes of the form 4n+1 and their 

associates.  

 Proof :- Let  be any prime element of K.  Then  divides exactly one 

rational prime say  | p.  

 Then we distinguish the following cases  

Case I.  p = 2 

 We know 2 = (1 + i) (1 i) 

Further we know 1, 1, i, i are unities of K and  

 (1 i) = i(1+i) and 1 + i is not a unity of K 

So 2 = i(1 + i)
2
 

 Since we know that every rational prime can decomposed into at least 

of most 2 primes of a quadratic field and so 1 + i must be a prime number.  So 

we get  = 1+i or an associate of 1 + i 

Case II :-  p  3(mod 4) 

 Since  is an element of K so  is an algebraic integer of K i.e.  = x + 

yi for some integers x and y. 

 Now  divides p  p = (x + yi)  for some algebraic integer  of K. 

i.e. p = (x + yi) (a + bi) for some integers a & b. 

Further  gcd (a, b) = 1 = gcd (x, y) 

But the product of two complex numbers is a real number 

  a + bi = x  yi 

  p = (x +yi) (x yi) = x
2
 + y

2
 

But   p  3(mod 4) 

  x
2
 + y

2
  3(mod 4) 
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which is not possible as no number of the form 4n + 3 can be written as a sum 

of 2 squares.   

 So either  = p or  is an associate of p. 

Case III :- p  1 (mod 4) 

 Now we know 1 is a quadratic residue of primes of the form 4n +1, 

so  an integer x such that 

  x
2
  1(mod p) or p | (x

2
 + 1) 

 If possible, let  be an associate of p.  Then p is also a prime element 

of K.   

But x
2
 +1 =  (x + i) (x i) and both x + i and x i are algebraic integers of K.  

Now K is a simple field and p | (x + i)  or   p | (x  i) 

 i
p

1

p

x
ori

p

i

p

x
 must be on algebraic integer of K, which is not so 

since algebraic integers of K are of the form a + bi where a, b Z. 

So p can not be a prime element of K and so  must be a divisor of p.  This 

gives rise to 3 classes of primes in K according to the nature of rational prime 

which they divide. 

Definition :- Let  ,  be algebraic integer in Q( m ), where m is square 

free.  Then we say  

  (mod ) if  | ( ) in Q( m ) 

 

Fermat’s theorem in the ring of Gaussian integers Q(i).  

Theorem 4.50  Let  be a prime in Q(i) such that  is not an associate of 1 + i.  

Let  be an algebraic integer of Q(i) such that gcd( , ) = 1, Then 

  
( )

  1 (mod ) 

Proof :- since  is not an associate of 1 + i so either  | p, where p is a rational 

prime of the form  

4n + 1 or  = q where q is a rational prime of the form 4n + 3. 

 Since  is an algebraic integer of Q(i), 

   =  + im, where  Z, m Z. 

Now suppose  | p 

Then  ( + im)
p
  b

 + (i m)
p
 (mod p) 
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           + i
p
 m(mod p) 

But  i
p
 = (i)

4n+1
 = i

4n
 i = (i

4
)
n
 i = i 

Therefore, ( + im)
p
  ( + im)(mod p) 

  
p
  (mod p) in Q(i) 

But   | p     (mod ) 

But Q(i) is a simple field and  gcd( , ) = 1 

  
1
  1 (mod ),  i.e.,  

( )
 1(mod ) in this case  

Let   = q, then ( ) = (q) | (g
2

1) 

Now  
q
  ( + im)

q
 = q

 + i
q
 m

q
(mod q) 

But  i
q
 = i

4n+3
 = i

4n+1
 i

2
 = i

 

  
q
 =   im(mod q) = α  

Then  qq2q )α(α  = ( α )
q
 = )α( = (mod q) 

But gcd ( , q) = 1 & Q(i) is a simple field,   12qα  1(mod q) 

i.e.,  
( )

  1(mod ) in this are also      

Remark :- Q ( 3 ) = Q(w) since w = 
2

31
 and the algebraic integers 

of Q( 3 ) are of the form a + b  since a, b Z the units of Q( ) are 1, , 
2
. 

Note :- 3 is a quadratic residue of primes of the form 6n + 1 and quadratic 

non-residue of primes of the form 6n 1 

Theorem 4.51 The primes of Q(w) can be decomposed into 3 classes. 

(1) 1  w and its associates 

(2) The rational primes of the form 3n + 2 and their associates.  

(3) The prime factor of the rational primes of the form 3n + 1 and their 

associates. 

Proof :- Let  be prime of Q(w) 

Since Q(w) = Q( 3 ) is a simple field,  divides exactly one rational prime 

(say p) 
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Then we distinguish the following cases  

Case I :-  p = 3 

Now we know 1 + w + w
2
 = 0 

So  3 = (1 w) (1 w
2
) = (1 w  w

2
 + w

3
) 

But  w
3
 = 1 and w w

2
 = 1, so 

  3 = (1 w) (1 w
2
) 

     = (1 + w) (1 w)
2
 

     = w
2
 (1 w)

2
 

 Since Q(w) is a simple field, every rational prime can be decomposed 

into at most two primes of Q(w) 

 Now w
2
 is a unity and (1 w) is not a unity.  So (1 w) must be prime 

of Q(w). 

Case II :-  p  2(mod 3) 

If possible, let p be not a prime of Q(w) 

Since every rational prime in Q(w) can be decomposed into atmost two primes 

in Q(w). 

 primes  &  of Q(w) such that  

  p =  

Then  p
2
 = N(p) = N(  ) 

       = N( ) N( ) 

Consider N( ) 

 Now, only positive factor of p
2
 are 1, p, p

2
 

  N( ) = 1 or p or p
2
 

 If N( ) = 1 then  is a unity of Q(w), contradicting  is a prime of 

Q(w) 

 If N( ) = p
2
 then N( ) = 1,  then  is a unity of Q(w), contradicting  

is a prime of Q(w).  So we must have 

  N( ) = p 

Let   = a + bw = a + b
2

13
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     = 
2

3
b

2

b
a  

Then  p = N( ) = 
4

b
3

2

b
a

22

 

  4p = (2a  b)
2
 + 3b

2
  (2a b)

2
(mod 3)  …(1) 

Since  p  2(mod 3) 

  4p  2(mod 3) 

But   (2a b)
2
  0 or 1(mod 3) 

So (1) is not possible for any value of a and b, which is a contradiction. So p 

must be prime of Q(w). 

Case III :- p  1(mod 3) 

Here we claim that p can not be a prime of Q(w).  If possible let p be a prime 

of Q(w) 

Let  p = 3n+1 

 If n is odd then p becomes an even number, greater than equal to 4.  

  p can not be a prime 

So n must be even 

  p = 6m + 1 for some m > 0,   m Z 

Then 3 is a quadratic residue of p. 

  an integer x such that 

  x
2
  3(mod p) 

or  p | (x
2
 + 3) 

But in Q(w), x
2 

+ 3  (x + 3 ) (x 3 ) 

  p | (x + 3 ) (x 3 ) in Q(w) 

But Q(w) is a simple field 

  p | (x + 3 ) or (x 3 ) in Q(w) 
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 Either  3
p

1

p

x
or3

p

1

p

x
 

must be an algebraic integer of Q(w), which is not so.  So p can not be a prime 

of Q(w).  So p must be divisible by a prime of Q(w). 

Primes of Q( 2 ) 

Theorem 4.52 The prime of Q( 2 ) can be divided into 3 classes  

(1) The prime 2  and its associates  

(2) The rational primes of the form 8n  3 and their associates 

(3) The prime factor a + h 2 of the rational primes of the form 8n  1 and 

their associates. 

Proof :- Let  be any prime of Q( 2 ).  Since, Q( 2 ) is a simple field,  

divides exactly one prime say p. 

 Now we distinguish the three classes 

Case I :-  p = 2 

Now 2 = ( 2 )
2
 and 2  is an algebraic integer of Q( 2 ).  But 2  is not a 

unity of Q( 2 ) and every rational prime can be decomposed into at most 2 

primes of Q( 2 ) 

 So 2  must be a prime of Q( 2 ). 

Case II :- p is a rational prime of the form 8n  3.  Then we claim that p must 

also be a prime of Q( 2 ).  If possible, let p be not a prime of Q( 2 ), then 

we know that there exists a prime  of Q( 2 ) such that  

  N( ) = p 

Since  is a prime of Q( 2 ), it is also an algebraic integer of Q( 2 ) 

So     = a + b 2 , for some integer a, b  Z 

Then  p = N( ) = N(a + b 2 ) = a
2
  2b

2
   …(1) 

Now   a
2
  0 or 1 or 4(mod 8) 

and  b
2
  0 or 1 or 4(mod 8)  

  p  0 or 1 or 2 or 4 or 6 or 7(mod 8) 

But  p  3 or 5(mod 8) 

So (1) does not hold for any value of a and b.  So p must be a prime of Q( 2 ) 
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Case III :- p is a rational prime of the form 8n 1. 

We know 2 is a quadratic residue of primes of the form 8n  1.  So there 

exists an integer x such that  

  x
2
  2(mod p) 

i.e.  p | (x
2
  2),  or p | (x 2 ) (x + 2 ) 

 If p were a prime of Q( 2 ), then since Q( 2 ) is a simple field, p 

would divide either              x 2  or x + 2 . 

i.e. either  2
p

1

p

x
or2

p

1

p

x
 must be an algebraic integer of Q( 2 ), 

which is a contradiction since algebraic integer of Q( 2 ) are of the form 

a+b  where a,b Z,  = 
2

15
 . 

Theorem 4.53 5 is a quadratic residue of prime of the form 5n  1 & a 

quadratic non-residue of primes of the form 5n  2. 

Proof :- Let p = 5n 1.  Then 
5

1

5

p

p

5
 = 1 . 

If   p = 5n  2 then 
5

2

5

2

5

p

p

5
= 1 

Prime in Q( 5 ) 

Theorem 4.54 The primes of Q( 5 ) can be divided into three classes 

(1) 5  and its associates 

(2) The rational primes of the form 5n  2 & their associates 

(3) The prime factors a + h  of rational primes of the form 5n  1. 

Proof :- Let  be a prime of Q( 5 ).  Since Q( 5 ) is a simple field,  divides 

exactly one prime of Q( 5 ) say p.  Then we distinguish three cases  

Case I :- p = 5 

Now 5 = ( 5 )
2
 and 5  is algebraic integer of Q( 5 ) and it is not a unity of 

Q( 5 ).  But every rational prime can be written as a product of at most two 

primes of Q( 5 ) so 5  must be a prime of Q( 5 ) 

Case :-  p = 5n  2  

 If possible, suppose p is not a prime of Q( 5 ) 
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 Then there must exist a prime  

   = a + b of Q( 5 ), a, b Z 

such that p = N( ) = N(a + b) 

     = N
2

15
ba  = a

2
 + ab  b

2
 

Then  4p = 4a
2
 + 4ab  4b

2
 

       = (2a + b)
2
  5b

2
  (2a + b)

2
 (mod 5)  …(1) 

But   p = 5n  2 

  4p  3(mod 5) 

where as (2a + b)
2
  0 or 1 or 4(mod 5) So (1) is not possible for any value a 

and b. 

 p must be a prime of Q( 5 ). 

Case III :-  p = 5n  1 . 

Then proceeding as in the last theorem, we can check that p is not a prime of 

Q( 5 ) and so its factors a + b  must be primes of Q( 5 ). 

Notation :- Let p denote a rational primes of the form 5n  1 and q denote a 

rational prime of the form 5n  2. 

Let  be any prime of Q( 5 ) such that  is not an associate of 5 . 

Then  ( ) = p 1    if  | p 

and  ( ) = q
2

1  if  = q 

Theorem 4.55 Let p and q be as denoted.  Let  be any prime of Q( 5 ),  is 

not an associate of 5  and let  be any algebra integer of Q( 5 ) such that 

gcd(  ) = 1.  Then  

  
( )

  1(mod )     …(1) 

  
p 1

  1 (mod ) if  | p    …(2) 

  
q+1

  N( ) (mod q)     …(3) 

Further if π  denotes the conjugate of  and 
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  g.c.d. ( , π ) = 1 then 
p 1

  1(mod p)  …(4) 

Proof :- Since  is a algebraic integer of Q( 5 ), 

let    = 
2

5dc
 where c & d are integers of the same parity. 

Now  = 
2

)5(dc
   2  = c + d 5  

 2
p
  (2 )

p
 = (c +d 5 )

p
 = c

p
 + d

p
( 5 )

p
(mod p) ((a + b)

p
 = a

b
 + 

b
p
(mod p).)  

   = c
p
 + d

p
)1p(

2

1

5 5  (mod p)   …(5) 

Since p is of the form 5n  1, 5 is a quadratic residue of p. 

By Euler‟s criterion  

   
)1p(

2

1

5   
p

5
  1(mod p) 

  2
p
  c

p
 + 5 d

p
(mod p)    …(6) 

But   c
p
  c (mod p) and d

p
  d(mod p) 

 2
p
  c + d 5  2 (mod p) 

 p
  (mod p), since gcd(2, p) = 1 

But  | p   
p
  (mod ) 

  
p 1

  1(mod ) as gcd ( , ) = 1 

Now let gcd(  π ) = 1 then ( , p) = 1 since π  = p 

 From (6), 
p 1

  1(mod p), which proves (4) 

Now let   = q where q is a rational prime of the form 5n  2. 

First let q > 2 

Now  2  = c + d 5  

  (2 )
q
 = (c +d 5 )

q
 

                c
q
 + d

q
( 5 )

q
(mod q)    …(7) 
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Now  2
q
  2(mod q), 

  c
q
  c(mod q), d

q
  d(mod q) 

and  ( 5 )
q
 = 

)1p(
2

1

5 5      …(8) 

But 5 is a quadratic non –residue of primes of the form 5n  2, so 

  1 = 
q

5 )1p(
2

1

5 (mod q)    …(9) 

Using (8) and (9) in (7)we get 

  2
q
  c d 5 (mod q) 

But  c  d 5  = 2 α , since  = 
2

5dc
 

  2
q
  2α (mod q) 

But gcd (q, 2) = 1 since q is odd 

  
q
  α (mod q)     …(10) 

  
q+1

  α (mod q) 

But α  = N( )   
q+1

  N( )(mod q) which proves (3) for q > 2 

From (10) we get 

  
2qα  ( )

q
    (mod q) 

But gcd( , q) = 1 and so  

  12qα   1(mod q) 

i.e.  
(q)

  1(mod q) 

which proves (1) for  q > 2. 

Now let  = 2.  Then we write  

   = e + f  when e, f Z 

and we are given that gcd ( , ) = 1.  Then one of e and f must be odd.  

Now  
2
 = 2

 + f
2
 

2
 = e + fe

2
(mod q)   …(11) 

Now   = 2/5
2

1
ρ

2

15
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2
 +  + 

4

1
= 

4

5
    

2
 +   1= 0 

  
2
 = 1  

Then form (11) we get 

  
2 

 e + f(1 )(mod 2) 

Now but 1  = 1  )2(mod
2

5

2

1

2

5

2

3

2

15
 

  
2
 = e + f(1 )  e + f  (mod 2) = α  

 
3
 = α   N( )(mod 2) 

This proves (3) for q = 2. 

But  N( ) = N(a + b) = N
2

15
ba  

           = a
2
  ab  b

2
  1(mod 2)    [ 

one of a & b is odd] 

This proves (2) for q = 2  

Definition :- Let 

  w =
2

15
, 

then  w 
2

5

2

1
 

  w
2
  w 1 = 0 i.e. w

2
 = w + 1 

Let its roots be w and w . 

Define  rm = 
m2m2 ww  

Since rm is a symmetric function in the roots of the polynomial, w
2
  w 1 = 

0, rm‟s are integers. 

In fact  rm = {3, 7, …….}. 

Further  w
w

1
w1w  

  
1m21m22m2m22

m ww)ww(r + 2(w w )
2m

 

        = rm+1 + 2       [ 

w w  = 1] 
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  rm+1 = 2
mr 2 

Lucas Test for Primality of the Mersenne Number :- 

Theorem 4.56 Let p = 4n + 3 be a prime and Let M = Mp = 2
p

1 be the 

corresponding Mersenne number. 

Then M is prime    rp 1  0(mod M) 

Proof :- Suppose M is prime.  

Now  M = 2
p

1 = 2
4n+3

1 = 8 16
n
 1 = 2(mod 5) 

Then M is a prime of the form 5n + 2  

Now  w = 
2

15
   N(w) = 1 

 w is a unity of Q( 5 ). So if  is any algebraic integer of Q( 5 ) then  

  gcd( , w) = 1 

Now we apply the last theorem with   = w, q = M 

Then  w
M+1

  N(w)(mod M) 

But  M = 2
p

1 

Therefore w
2p

 = 1(mod M)     …(1) 

By definition rp 1 =
1p21p2 ww  

         = 1
w

w
w

1p2
)1p(2  

But  
w

1
w  

  rp 1 = )1)w((w
1p221p2  

         = )w1(w
p21p2   0(mod M) [From (1)] 

Conversely  

let rp 1  0(mod M) 

Now  
1p2p2 w1w . rp 1  0(mod M)  

i.e.,  
p2w  1(mod M)     …(2) 
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1p2w  1(mod M)     …(3) 

Let  be any divisor of M then (2) and (3) are also true for  instead of M. 

Now by definition,  M  2(mod 5)    5 | M 

So if M is composite then only divisor of M are either of the form 5k  1 or 5k 

 2. 

But M is of the form 5n + 2 so M must have at least one prime divisor of the 

form 5k  2 say k. 

Let  M = p1 p2…q1 q2….. 

where pi‟s are primes of the form 5k + 1 and qj‟s are prime divisor of the form 

5k  2. 

Let  be any divisor of M.  

Consider  S = {x N; w
x
  1(mod )} 

Then S   since on the observation made above 2
p+1

S. 

Now divisor of 2
p+1

 are 2
p
, 2

p 1
, 2, 1 and since, 

p2w  1(mod ) 

so  2
p

S 

  2
τord  = 2

p+1
 

By last theorem,  

  
1ipw  1(mod pi) 

and  
1jq

w  N(w)  1(mod qj)    

  
)1jq(2

w   1(mod qj) 

 pi  1 and 2(qj + 1) are multiplies of 2
p+1

 since, 2
τord  = 2

p+1
   

pi = 2
p+1

 hi + 1 

and   qj = 2
p
 hj  1 

for some hi & hj.  The first hypothesis is impossible since  

  pi > M = 2
p
 1 and the second hypothesis is possible only if kj 

= 1 

  M = qj is prime.  
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Unit-V 

 
Arithmetical Functions and Prime Number 

Theory 
 

Arithmatical Functions :- 

Definition :- A function f defined for all natural numbers n is called an 

arithmetic function and generally we shall write an arithmatical function as 

f(n). 

Definition :- An arithmatical function f(n) is called a multiplicative function 

if  

  f(n1 n2) = f(n1) f(n2) for  n1, n2 N & gcd (n1, n2) = 1 

Definition :- An arithmatical function is called strongly multiplicative if  

  f(n1 n2) = f(n1) f(n2)  n1, n2 N. 

Mobius Function  

Mobius function denoted by (n) is defined as 

     1 if  n = 1 

  (n) =    ( 1)
r
 if n = p1p2…pr where pi‟s are distinct primes  

      0      otherwise, In this case n will be divisible by 

square of a prime number 

For example 

  (1) = 1, (2) = (3) = 1, (4) = 0, (5) = 1 (6) = 1 

Theorem 5.1 (n) is a multiplicative function  

Proof :- Let n1, n2 N, gcd (n1, n2) = 1 

It either n1 = 1 or n2 = 1, clearly (n1 n2) = (n1) (n2)   

 So let n1 > 1 & n2 > 1       

If any one of n1, n2 is not-square free then n1 n2 is also not square and then

 (n1 n2) = 0 = (n1) (n2) 

So assume both n1 & n2 are square free.  

Let n1 = p1 p2…pr, where p1, p2,…pr are distinct primes 

&  n2 = q1 q2… qs where q1, q2,…,qs are distinct primes.  
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Then by definition  

  (n1) = ( 1)
r
 & (n2) = ( 1)

s
 

Since gcd(n1, n2) = 1, so no pi is equal to a qj or vice-versa 

Now  n1 n2 = p1 p2…pr q1 q2…qs 

and  p1, p2,…, pr, q1, q2,…,qs are distinct primes 

  (n1 n2) = 1)
r+s

 = ( 1)
r
 ( 1)

s
 = (n1)  (n2) 

Thus in all cases  

  (n1 n2) = (n1)  (n2) 

whenever gcd(n1, n2) = 1 

  is multiplicative 

Theorem 5.2 If f(n) is a multiplicative function & f  0.  Then f(1) = 1 

Proof :- Since f  0,  n N such that f(n)  0. 

Now  f(n) = f(n 1) 

         = f(n)  f(1), since gcd(n, 1) = 1 

  f(1) = 1 since f(n)  0. 

Theorem 5.3 If f(n) is a multiplicative function so is 
n|d

)d(f  

Proof :- Set g(n) = 
n|d

)d(f  

If f  0 then so is g and so g(n) is multiplicative  

Let f  0.  Then f(1) = 1.  So by definition g(1) = f(1) = 1.  Let n1, n2 N, gcd 

(n1, n2) = 1 

If n1 = 1 or n2 = 1.  Then clearly g(n1 n2) = g(n1)  g(n2) 

So let n1 > 1, n2 > 1 

Let d | (n1 n2).  Then we can write d = d1 d2 where d1/n1 & d2/n2 

If d1  1 or d2  1 then d1  d2 since (n1, n2) = 1. Now by definition  

  g(n1, n2) = )d(f
)2n.1n(|d

 

     = 

2n|2d
1n|1d

f(d1 d2) 
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     = 

2n|2d
1n|1d

f(d1) f(d2) [f is multiplicative] 

Since (n1, n2) = 1   gcd(d1, d2) = 1. 

  g(n1 n2) = 

2n|2d
1n|1d

f(d1) f(d2) 

    = 
2n|2d

2
1n|1d

1 )d(f)d(f  

    = g(n1) g(n2) 

Hence g(n) is multiplicative 

Theorem 5.4 
n|d

(d) = n 

Proof :- Set g(n) = 
n|d

(d) 

Since (n) is a multiplicative function of n, so by previous theorem g(n) is 

also multiplicative. If            n = 1  the d = 1,     g(1) = (1) = 1 

So let n > 1 

Let  n = rr
r

2α
2

1α
1 p...pp  be the prime factorization of n. …(1) 

 

Then  g(n) = g( rr
r

2α
2

1α
1 p...pp ) 

         = g )p(g)...p(g)p( 2α
2

2α
2

1α
1    …(2) 

since g(n) is multiplicative. 

If we are able to prove g(p ) = p  for every prime p &   1.  Then clearly 

using (1) & (2), we are through. 

Now only divisors of p  are 1, p, p
2
,…,p  

 By definition  g(p ) = 
p|d

(d) 

            = (1) + (p) +…+ (p ) 

            = 1  (p 1) + (p
2

p)+…+ (p   p
1
) 

            = p   ( (p
n
) = p

n
  p

n 1
)  
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Hence the theorem.  

 

Theorem 5.5 
n|d 1nif0

1nif1
)d(  

Proof :- Clearly for n = 1, we have 

  
1/d

1)d(μ  

So let n > 1 

Let n = rr
r

2α
2

1α
1 p...pp be the prime factorization of n.  

Let   g(n) = 
n/d

)d(μ  

Now divisors of n are of the form  

  r
r

2
2

1
1 p,...p,p  where 0  i  i 

If any i  2, ( rβ
r

2β
2

1β
1 p...pp ) = 0, since in this case rβ

r
2β

2
1β

1 p...pp  is not 

square free.  So while considering the divisors of n we leave out all those 

divisors which are divisible by a square.  

 So the only divisors to be considered are  1, p1, p2,…, pr,  p1 p2, p1 

p3,… p1 pr,   p1 p2 p3…         p1 p2 p3 pr 

  g(n) = (1) +

ji
rj,i1

r

1i
i )p(μ (pi pj) +…+ (p1 p2…pr) 

         = 1  
rc1 + 

rc2  
rc3…+ ( 1)

r
 

         = (1 1)
r
 = 0.  Hence Proved. 

Example :- Let n>1 & let n have r distinct prime divisors. Then
n|d

|)d(|  = 2
r
 

Proof :- From above theorem, we see that  

 
n|d

|)d(| = (1) +
rj,ii

ji

r

1i
i |)p,p(||)p(| +…+ | (p1 p2…pr)| 

       = 1 + 
rc1 + 

rc2 +…+ 
rc3 

       = (1+1)
r
 = 2

r
     Hence Proved.  
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Divisor Function :- d(n) 

Definition :- Let n  1.  We define divisor function of n(to be denoted by 

d(n)) as  

  
n|d

1= Number of divisors of n (including 1 & n) 

Clearly d(1) = 1 & d(p) = 2 for every prime p.  

Theorem 5.6 Prove that d(n) is a multiplicative function.  Find a formula for 

d(n) 

Proof :- The function f(n)  1 is a multiplicative function and so  

  )n(d1)d(f
n|dn|d

 is a multiplicative function. 

If n = 1,  Clearly d(1) = 1.  So let n > 1.  

Let  n = kα
k

2α
2

1α
1 p...pp  be the prime power decomposition of n.  

Since d is a multiplicative function, so  

 d(n) = d( )p(d)...p(d)p(d)p...p kα
k

2α
2

1α
1

kα
k

1α
1  

So to find d(n), it is enough to find d(p ) where p is any prime &   1  

By definition  

 d(p ) = 
p|d

1 

 Now only divisors of p  are 1, p, p
2
,…p  which are  + 1 in number 

 d(p ) =  + 1 

d(n) = 
k

1i

( i +1)  

Sum function :- (n) 

Definition :- Let n  1 be any natural number we define  

  (n) =
n|d

d  = sum of all divisors of n (including 1 & n) 

Clearly  (1) = 1 and  (p) = p + 1 

Further (n) > n  n > 1 since there are at least 2 divisors of n namely 1 and 

n. 

Theorem 5.7 Prove that (n) is a multiplicative function of n.  Find a formula 

for (n). 
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Proof :- Since f(n)  n is a multiplicative function of n, so  

  
n|dn|d

d)d(f = (n) is a multiplicative function.  

To find a formula for (n), we not 

  (1) = 1.  Let n > 1 

Let n = kα
k

1α
1 p...p  be the prime power decomposition of n.  Since  is 

multiplicative function, so  

  (n) = ( )p()...p()p()p...p k
k

2
2

1
1

k
k

1
1  

So to find (n) it is enough to find (p ) where p is any prime and   1,  

Now (p ) = 
p|d

d .  The only divisors of p  an 1, p, … p  

  (p ) = 1 + p +…+ p  

            = 
1p

1p 1α

 

  (n) = 
k

1i i

1iα
i

1p

1p
 

Example :- Evaluate )n|(μ
1n

 

Solution :- 
1n

)n|(μ  = (1) + )4|(μ...)3|(μ)2|( +……. 

       = 1  1 + 1 + 0 = 1. 

Example :- Prove that (n) (n+1) (n+2) (n+3) = 0  n  1 

Solution :- Since n, n +1, n + 2, n + 3 are four consecutive integers and so at 

least one of them is divisible by 4 and consequently  of that number is equal 

to zero and so  

  (n) (n+1) (n+2) (n+3) = 0.  Definition Euler function (n) 

Theorem 5.8 Prove that (n) is a multiplicative function of n.  

i.e. (m n) = (m) (n) whenever gcd (m, n) = 1 

Proof :- If m = 1 or n = 1, clearly  

  (m n) = (m) (n) 
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So let m > 1, n > 1 

Now (n) by definition is the number of natural numbers which are  n and 

coprime to n.  So to find out (m n), we write first mn natural numbers in n 

rows and m columns as  

     1      2      3….…………….m 

 m + 1  m + 2  m + 3……………..2m 

 ……………………………………………………… 

 ……………………………………………………… 

 (n 1)m+1 (n 1)m+2 (n 1)m+3…………nm   

Now consider any natural number „a‟ such that 1  a  mn 

Now gcd (a, mn) = 1    gcd (a, m) = 1 = gcd(a, n) 

So let (a, m) = 1,  Then there exists  r (1  r < m) such that gcd(r, m) = 1  & a 

 r(mod m), with 1  r < m. Then this r is in the first row of the configuration 

such that gcd(r, m) = 1. 

But {1, 2,…,m} is the set of all natural numbers  m and so by definition, the 

first row contains (m) natural numbers which are coprime to m.    

So by what we have proved above, „a‟ can occur in those and only columns 

which are headed by a natural number  r (1  r < m) such that gcd(r, m) = 1 

Now consider r where a  r(mod m) gcd(r, m) = 1 & 1  r < m.  

Consider all the natural numbers headed by r.  These are of the form mx + r 

where 0  x  n 1. Now the set {0, 1, 2, …, n 1} is a complete set of residues 

(mod n) and so {mx + r; 0  x  n 1} is also a complete and so it contains a 

reduced set of residues (mod n) which contains exactly (n) numbers and all 

these numbers are co-prime to n.  

But these are also coprime to m.  So these (n) numbers are coprime to mn.  

But there are (m) choices for r and so there are (m) (n) elements in this 

configuration which are relatively coprime to mn and so by definition  

  (m n) = (m)  (n). 

Mobius Inversion Formula  

Theorem 5.9 Let F(n) = 
n|d

)d(f  

Then  f(n) =
n|d n|d d

n
F)d(

d

n
)d(F  
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Also prove its converse. 

Proof :- Clearly 
n|d d

n
)d(F  

        = 
n|d d

n
F)d(  since d | n   n|

d

n
 

So let us prove 

  f(n) = 
n|d d

n
F)d(  

By definition, F

d

n
c

)c(f
d

n
     

  
n|d n|d

d

n
c

)c(f)d(
d

n
F)d( = 

c

n
d

n|c

)d()c(f  

   = f(n)

c

n
|dnc

n|c1|d

)d()c(f)d(      

Now  

c

n
|d

(d) = 0 if n > c 

and  

c

n
|d

(d) = 1   1
c

n
   n = c 

So inner sum 

c

n
|d

(d) vanishes unless n = c and in case n = c, 

c

n
|d

(d) = 1 

  
n|d

)n(f
d

n
F)d(  

Conversely  

Let   f(n) = 
n|d d

n
F).d( n 
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Now  
n|d d|n|d

d
F)()d(f   (By definition)  

    = 
d

F)(
n|n|d

 

    = 
d

Set)(F
d

n|n|d

 

Since   | d, set d =  , So 

  
n|n|n|d

)d(f ( ) F( ) 

     = )()(F
n

|
n|

 

     = F(n) 

since 
n

for0)(
n

|

> 1 

Theorem 5.10  Prove that 
n

)n(

d

)d(

n|d

 

Proof :- We know 
n|d

(d) = n 

Then  (n) = 
d

n
).d(

n|d

  (By Mobius Inversion formula) 

i.e.  
n|d d

)d(

n

)n(
 

For n = 1 exercise is true.  So let  n > 1 

and  
d

)d(

n|d

 = f(n) 
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Since (n) is a multiplicative function of n. 

  
n|d d

)d(
= f(n) is a multiplicative function of n.  

Let n = kα
k

2α
2

1α
1 p...p.p  be the prime power factorization of n.  

then   f(n) = f( kα
k

2α
2

1α
1 p...p.p ) 

   = f )p(f)...p(f)p( kα
k

2α
2

1α
1 . 

Let us compute f(p ) where p is any prime &   1 

Now only divisors of p  are 1, p, p
2
,..,p  

  f(p ) = 
p|d d

)d(
 

          = (1) + 
p

)p(μ
+ 0 ( (p

i
) = 0 for i  2) 

          = 
p

1p

p

1
1  

          = 
α

1αα

α

1α

p

pp
)1p(

p

p
 

          = 
α

α

p

)p(υ
 

  f(n)  = 
k

1i iα
i

iα
i

p

)p(
υ  

          =
n

)n(υ

p...p.p

)p...pp(υ

kα
k

2α
2

1α
1

kα
k

2α
2

1α
1  

Hence the result. 

Example :- prove 

  
2

)n(υn
i

n

1)n,igcd(
1i

  



PRIMES IN CERTAIN ARITHMETICAL PROGRESSIONS AND SYSTEM OF CONGRUENCES 211 

Solution :- Let S =
n

1)n,igcd(
1i

i = a1 + a2 +…+ a (n) where 1  ai  n, gcd(ai, n) = 1 

But   gcd(ai, n) = 1   gcd(n ai, n) = 1 

  S = (n a1) + (n a2) +…+ (n a (n)) 

and  2S = n (n)   S =
2

)n(υn
 (n > 1) 

Now  
2

)n(υn
 is always an integer  n > 1 

 (n) is even for all odd n  > 1 

A General Principle :- Let there be N objects.  Suppose N  of these have 

property , N  have property  …. Suppose N  have both of these property  

& ; …N  have the property , , … and so on.  Then the number of 

objects which do not have any of the properties , , ;……. is 

  N  N  +  N   N  +…..   …(1) 

and consequently the number of objects having at least one property is  

  N   N  + N   ……..    …(2) 

Proof :- If is enough to prove (1) since (2) can be obtained by subtracting (1) 

from N.  Let A be any one of these N objects.  Then A contributes 1 to the 

term N of (1).  Let A possess exactly k of these properties.  If k = 0, then A 

does not contribute to any of the terms N , N , N ,…and so A 

contributes exactly one 1 to (1).  Now let k  1(k is finite). 

Then A contributes 1 to N, 1 to exactly k of the terms in N , 1 to exactly k/2 

of the terms N  and so on. 

So the total contribution of A to (1) is  

  1  k+
3

k

2

k
+…. 

   = (1 1)
k
 = 0 

and this proves the theorem. 

Application of General Principle    

Theorem 5.11  Let n > 1 and let n = kα
k

2α
2

1α
1 p...p.p  where p1, p2,…,pk are 

distinct prime then  
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  (n) = n
k21 p

1
1...

p

1
1

p

1
1  

Proof :- To find out (n), by definition, we have to find the natural numbers  

n which are not divisible by any of p1, p2,…, pk. 

Let N i(i = 1, 2,…k) be the number of integers  n divisible by pi(i = 1, 2, 

…k) 
jαiα

N  be the number of natural numbers  n divisible by pi pj (1  i, j  

k, i  j) and so on.   

Clearly  

N i =
ip

n
.  Infact the natural numbers  n divisible by pi are 

i
i

ii p
p

n
,..,p2,p .   

Similarly  
ji

ji
pp

n
ααN  and so on  

 By General principle number of natural numbers  n and not divisible by 

any of p1, p2,…, pk is  

  (n) = n 
ip

n

jipp

n
… 

         = n 
k

1i ip

1
1  

Example :- The sum of the squares of the integers which are  n and 

relatively coprime to n is 2n
3

1
(n) +

6

1
n (1 p1) (1 p2)…(1 pk) where n > 1 

and p1, p2,…,pk are the only distinct prime dividing n.  

Solution :- To find out the required sum we shall find the sum of squares  n 

and not coprime to n i.e. sum of squares  n of those natural numbers which 

are divisible by at least one pi.  

By General principle, this sum is equal to  

  N   N  + N      …(1) 

Now sum of squares of numbers  n and divisible by pi is  

  (pi)
2
 + (2pi)

2
 +…+

2

i
i

p.
p

n
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 The sum of squares of numbers  n and divisible by pi pj is  

  (pi pj)
2
 + (2pi pj)

2
 +…+

2

ji
ji

pp.
pp

n
 

and so on 

So the sum (1) is equal to  

k

1i

2

i
i

2
i

2
i p

p

n
...)p2()p(  

 

ji
kj,i1

.....pp
pp

n
...)pp2()pp(

2

ji
ji

2
ji

2
ji  

+ ( 1)
k 1

 

2

k21
k21

2
k2i

2
k2i p...pp

p...pp

n
...)p...pp2()p...pp( …(2)  

Now let d be any divisor of n.  Then the sum of squares of natural numbers  

n & divisible by d is 

  d
2
 + (2d)

2
 +…+

2
222

2

d

n
...21dd

d

n
 

   = d
2 1

d

n2
1

d

n

d

n

6

1
 

   = 
6

nd

2

n

d3

n 23

    …(3) 

From (3), sum (2) is equal to  

  
k21

1k

ji
ji
kj,i1i

3

p...pp

1
)1(...

pp

1

p

1

3

n
 

       + 1k

ji
kj,i1

k

1i

2

)1(...11
2

n
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       + 
6

n
[  pi   pi pj +…+ ( 1)

k 1
 p1 p2…pk] …(4) 

But the sum of squares of natural numbers  n is  

  
6

1
n (n + 1) (2n + 1) = 

6

n

2

n

3

n 23

 

 Sum of squares of natural numbers  n & coprime to n is  

  
k21

k

jii

3

p...pp

1
)1(...

pp

1

p

1
1

3

n
 

      + k

2

)1((.....
2

k
k1

2

n
 

      + 
6

n
[1  pi +  pi pj …+ ( 1)

k
 p1 p2…pk] 

      = 
k

1i
i

k
2

i

3

)p1(
6

n
)11(

2

n

p

1
1

3

n
 

    = 2n
3

1
(n) + 

k

1i
i )p1(

6

n
   

k

1i ip

1
1n = (n) 

Example :- Find the sum of the cubes of the integers  n and relatively 

coprime to n. (n > 1) 

Solution :- Let x be any natural number  n and coprime to n. 

Let  S = x
3
 = (n x)

3
 

     = (n
3
  3n

2
x + 3nx

2 
 x

3) 

  
2S = 2 x

3
 = n

3
  3n

2
 x + 3n x

2
 = n

3
(n)  3n

2
 

2

)n(υn
  

   + 3n )p1(
6

n
)n(υn

3

1
i

2
 

   = n
3
 (n) 

2

3
n

3
 (n) + n

3
 (n) + 

2

1
n

2
  (1 pi) 
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   = 3n
2

1
(n) +

2

1
n

2
  (1 pi) 

Perfect Numbers 

Definition :- A natural number n is called a perfect number if (n) = 2n 

For example  6 & 28 are perfect numbers. 

as  (6) = 1+ 2 + 3 + 6 = 12 = 2.6 

  (28) = 1+ 2 + 4+ 7+ 14 + 28 = 56 = 2.28 

Theorem 5.12  If 2
n+1

1 is a prime number then  

  m = 2
n
(2

n+1
1) is perfect. 

Proof :- we have 

(2
n
 (2

n+1
1)   = (2

n
) (2

n+1
1) 

  = (1 + 2 +…+ 2
n
) (1+2

n+1
1)    [  gcd(2

n
, 2

n+1
1) = 1] 

  = (2
n+1

1) 2
n+1

 

  = 2  2
n
.(2

n+1
1) = 2m 

Remark :- All the known perfect numbers are even.  We don‟t know any odd 

perfect number and neither it has been proved that all perfect numbers. must 

be even. 

Theorem 5.13  Every even perfect number must be of the form 2
n
(2

n+1
1) 

where 2
n+1

1 is a prime number.   

Proof :- To prove the theorem, we first prove a lemma. 

Lemma :- let  (m) = m  where 1   < m &  | m.  Then  = 1 and m is a 

prime number. 

Proof of Lemma :- If possible, let  > 1, then since  | m & 1 <  < m, so m 

has at least three divisors 1,  & m 

 (m)   + m + 1, which contradicts the hypothesis that (m) =  + m 

 So  = 1, then (m) = m + 1.  Then m can have only two divisors 1 & 

m and so m must be a prime number. 

Proof of Theorem :- Let k be a given even perfect number.  Then k is of the 

form  
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     k = 2
n
. m where n  1 & m is odd (we can not have k = 2

n
 since (2

n
) = 

2
n+1

1  2.2
n
)        …(1) 

Let (m) = m +  where   1 

Now k is perfect, so  

  2
n+1

 m = 2 (2
n
m) = 2k = (k) 

   = (2
n

m) = (2
n
) (m) 

   = (2
n+1

1) (m + ) 

   = 2
n+1

 m  m +  (2n+1
1). 

  m = (2n+1
1)      …(2) 

   = 
12

m
1n

   | m 

Also n  1    < m   1   < m &  | m. 

So by the lemma,  = 1 & m is a prime number.  Setting  = 1 in (2) we get 

  m = 2
n+1

1 

and from (1) 

  k = 2
n
(2

n+1
1) 

Example :- Prove that (24m 1) = 0 (mod 24)  m  1 

Solution :- we know  24 = 3 8 

To prove the result, we shall in fact prove a little more.  To be precise, we 

shall prove 

(i) (3m 1)  0 (mod 3) 

(ii) (8m 1)  0 (mod 8). 

(i) Let n = 3m 1.  Then n  1  2(mod 3)  

So n can not be a perfect square since k
2

 0 or 1(mod 3) for any natural 

number k. 

So d | n  
d

n
d&n|

d

n
 

Also  3 | n 
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 We write  

  (3m 1) = 
d

nd

d

n
d

2

d

n
d

nd1

n|d

nd1
d

n
d

n|d

  

Since 3 | n   3 | d   d
2
  1(mod 3) 

  d
2
 + n  0(mod 3) 

Since 3 | d, 
d

n
d   0 (mod 3)  

d

nd2

  0 (mod 3) for every divisor d of 

n, where 1  d < n  

  3m 1)  0(mod 3) 

(ii) Let n = 8m 1   n  1  7 (mod 8) 

Then 2 | n and so every divisor d of n must be odd 

 d
2
  1(mod 8) for every divisor d of n.  Further n is not a perfect square 

since every odd square number must be  1(mod 8) 

Now  (n) = (8m 1) =
d

nd

d

n
d

2

nd1

n/d

nd1
d

n
d

n|d

 

Since 2 | d   d
2 

1(mod 8) 

   d
2 

+
 
n  0 (mod 8) and 

d

nd2

  0 (mod 8) 

  (n)  0 (mod 8) 

Combining (i) & (ii) we get 

  (24m 1)  0 (mod 24) 

By similar methods we can prove  

  (4m 1)  0(mod 4) 

and  (12m 1)  0 (mod 12) 

i.e.  (48m 1)  0(mod 48) 
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Example :- 
n|m

2

n|m

3 )m(d)m(d  

Solution :- Let f(n) = 
n|m

3 )m(d  

and  g(n) = 

2

n|m

)m(d  

Clearly exercise is true for n = 1. So let n > 1 

Let   n = kα
k

2α
2

1α
1 p...pp  be the prime power decomposition of n.  

Since d(n) is a multiplicative function of n. 

So  d
3
(n) = (d(n))

3
 is also a multiplicative function of n and so  

f(n) = 
n|m

d
3
(m) is also a multiplicative function. 

Further 
n|m

)m(d is also a multiplicative function since d(n) is a multiplicative 

function and so 

  g(n) = 

2

n|m

)m(d  

is also a multiplicative function of n 

So to prove f(n) = g(n), it is enough to prove 

  f(p ) = g(p ) for every prime p &   1 

Now f(p ) = 
p|m

3 )m(d  

The only divisors of p  are 1, p, p
2
,…, p  

 f(p ) = d
3
(1) + d

3
(p) + d

3
(p

2
)+…+d

3
(p ) 

                 = 1
3
 + 2

3
 + 3

3
 +…+ ( +1)

3
    ( d(i) = i + 1 

          = 

2

2

)2α)(1α(
 

          = square of the sum of first (  + 1) natural numbers  

i.e.  [1 + 2 +…+ ( +1)]
2
 

          = [d(1) + d(p) +…+ d(p )]
2
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          = g(p ). 

Example :- For every natural number n > 1,  

where p1, p2,…, pk are the only prime divisors of n and f(n) is a multiplicative 

function of n.  

Solution :- Let n = kα
k

2α
2

1α
1 p...pp be the prime power decomposition of n 

Since (n) is a multiplication of n and f(n) is a multiplicative function of n  

 (n) f(n) is a multiplicative function of n. 

 )d(f)d(
n|d

is a multiplicative function of n 

So to evaluate )d(f)d(
n|d

, we evaluate )d(f)d(
p|d

where p is a prime & 

  1 

Now only divisors of p  are 1, p, p
2
,…, p  

)d(f)d(μ
αp/d

= (1) f(1) + (p) f(p) + (p
2
) f(p

2
) +…+ (p ) & (p ) 

     = 1  f(p)   ( (p
i
) = 0  i  2) 

 )d(f)d(
n|d

= 
k

1i
i ))p(f1(  

Corollary :- If f(n) = d(n).  Then d(pi) = 2 

  )d()d(
n|d

= ( 1)
k
 

 
k

1in|d

)d()d( (1  (pi)) 

             = ( 1)
k
 p1 p2…pk. 

Example :- Prove that (n) is odd  n = m
2
 or 2m

2
 

Proof :- Let n = 1.  Then (1) = 1 

Let n > 1 and n = 2
r
 kα

k
2α

2
1α

1 p...pp  where r > 0 & p1, p2,…, pk are distinct odd 

primes. 

Now (n) = (2
r
) )p(σ)...p(σ)p( kα

k
2α

2
1α

1  
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         = (2
r+1

1) (1 + p1 + 1α
1

2
1 p...p ) …( 1+ pk + kα

k

2
k p...p ) …(1) 

Now (n) is odd  Each factor on R.H. S of (1) is odd.  But (2
r+1

1) is odd  

r  0 

However if i is odd for some i (1  i  k) then 1 + pi + iα
i

2
i p...p  is even, 

since number of terms in the sum is even while each term is odd.  

 (n) is odd  each i is even. If r is also even, n = m
2
 for some m and 

r is odd n = 2m
2
 for some m. 

Example :- Prove that
n|d

1d

d

n
)1(  = n or 0 according as n is odd or n is 

even. 

Solution :- Let n be odd.  Then each divisor d of n is odd and so d 1 is even  

  ( 1)
d 1

 = 1 and 
n|d

1d

d

n
)1( = n)d(

d

n

n|dn|d

 

So let n be even and n = 2
r kα

k
2α

2
1α

1 p...pp  be the prime power decomposition of 

n.  

n|d

1d

d

n
)1( = 

evend
n|d

oddd
n|d

evenisd
n|d

oddisd
n|d

dd
d

n

d

n
 = n  n = 0 

Order of Magnitude and Average Order :-  d(n), (n) & (n). 

Order of magnitude is simply how Large or how small is the magnitude of the 

function  

We know d(1) = 1 & d(n)  2  n  2. 

Further d(p) = 2 for all primes p 

Definition :- Let f(n) & g(n) be two functions of n.  

(1) We say f(n) = o(g(n)) 

if  
)n(g

)n(f
lim
n

= 0 

(2) We say f(n) = O (g(n)) 

if  a positive constant A such that |f(n)| < A g(n) 

(3) We say f(n) ~ g(n) 

if  
)n(g

)n(f
lim
n

 = 1 
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Remark :- If f(n) = o (g(n)) 

then  f(n) = O (g(n)) 

and if f(n) ~ g(n) even then  

  f(n) = O(g(n)) 

Some rules for addition  

(1) o (n) + o (n) = o (n) 

(2) O(n) + O(n) = O(n) 

(3) o (n) + O(n) = O(n) 

(4) O(f(n)) + O(g(n)) = O[f(n) + g(n)] 

Theorem 5.14  d(n) = O(n
s
) for all positive , (  however small) 

Proof :- We know if  n = kα
k

2α
2

1α
1 p...pp  

Then  d(n) = 
k

1i

(ai + 1) 

  
r

1i ia
i

i

p

1a

d

)n(d
 

           = 
/12

i
p /12ip

ia
i

i

ia
i

i

p

1a

p

1a
 

Now for p  2
1/s

, p
 

 2, so 

  
aaa 2

1a

)p(

1a

p

1a
  1      a 

Also for all p,  

  a  log 2  
2logae = 2

a
  p

a
  ( 2  p) 

  
2log

1
1

p

a

p

1

p

1a

aaa
 

         exp 
2log

1
 

Using the above estimate for pi < 2
1/

, 
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We get  
/12

i
p /12ip

ia
i

i

2log

1
exp

p

1a

n

)n(d
 

   < exp 
2log

2 /1

 = O(1) 

  d(n) = O(n ). 

Definition :- If f(n) and g(n) are two arithmetic functions of n, then we say 

f(n) is a average order of g(n) if   f(1) + f(2) +…+ f(n) ~ g(1) + g(2) +…+g(n) 

Example :- Let us see when f(n) is of average order of n. 

Now 1 + 2 + 3 +…n = 2n
2

1
~

2

)1n(n
 

Thus if f(n) ~ 2n
2

1
, then f(n) is of average order of n 

Theorem 5.15  d(n) is of average order of log n. In fact d(1) + d(2) +…+ d(n) 

~ n log n 

Proof :- First we prove  

 log (1) + log (2) +…+ log n ~ n log n 

Now  log (1) + log (2) +…+ log n 

   = 1  log 1 + 1  log 2 +…+ 1  log n 

~ 
3

2

1n

n

2

1

dttlog...dttlogdttlog  

  = 
1n

1

1n

1ttlogtdttlog  

  = (n + 1) log (n+1)  n 

  ~ n log n  

Now to prove the theorem it is enough to prove  

 d(1) + d(2) +…+d(n) ~ n log n.  

 

 

 
xy = n 

Y 

X 

D 
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Consider the lattice whose vertices (x, y) are the points in the xy-plane with 

integral co-ordinates.  Denote by D the region in the upper right hand corner 

contained between the rectangular axes & the rectangular hyperbola  

xy = n leaving out the coordinate axes and counting the lattice points on the 

rectangular hyperbola.  

We count the lattice point in this region in two different ways. 

Let (x, y) be any lattice point in this region.  Then x y  n and xy is a natural 

number and so this lattice point lies on one of the rectangular hyperbolas xy = 

, where 1    n.  Then total number of lattice points in this region will be 

  d(1) + d(2) +…+d(n) 

Also the number of lattice points in this region with x-coordinate equal to 1 

will be a = 
1

n
,  

         the number of lattice points in this region with x-coordinate equal to 2 

will be a = 
2

n
 

         

………………………………………………………………………………         

……………………………………………………………………………… 

 Total number of lattice points in this region will be 

  [n] + 
n

n
...

3

n

2

n
 

 d(1) + d(2) +…+ d(n) 

  = [n] + 
n

n
...

2

n
 

  = n + 
n

n
...)1(

3

n
)1(

2

n
OO + O(1) 

  = n
n

1
...

3

1

2

1
1 + O(n) 



                                                             ANALYTICAL NUMBER THEORY  224 

  = 
n

1
nlogn O + O(n)  (by Sterling formula) 

  = n log n + n  + O(1) + O(n) 

  = n log n + O(n) ~ n log n  

Theorem 5.16  Prove that  

  d(1) + d(2) +…+ d(n) = n log n + (2  1) n + O( n ) 

where  is the Sterlings constant. 

Proof :- Let D denote the region as defined in the previous theorem.  Then we 

have already prove in previous then that the number of lattice points in this 

region is    

  d(1) + d(2) +…+ d(n) 

Set   u = [ n ] = n  + O(1) 

     u
2
 = ( n  + O (1))

2
 = n + O ( n ) + O (1) = n + O ( n ) 

                 = n + O (u) 

So  log u = log ( n  + O (1) = log
n

1
1n O  

         = log( n ) + log 
n

1
1 O  

         = log ( n ) + O
n

1
 

         = 
u

1
ulog

n

1
nlog

2

1
OO  

We know that the lattice points (x, y) with x  0 & y  0 is equal to  

  d(1) + d(2) +…+ d(n) 

Since x  0 and y  0, the lattice points (x, y) be on the line x = 1, x = 2,… 

and y = 1, y = 2,…. 
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Let A B C D be the square determined by the vertices (1, 1), (1, u), (u, u) & 

(u, 1).  By symmetry the number of lattice points in the region ABCHGDA = 

number of lattice points in the region ADEFGBA 

Since [ n ] = u, there is no lattice point in the small triangle FGH. 

Further (square ABCD)  Region (ABCHGDA) and Square                         

(ABCD)  Region (ABEFGDA). 

 If we count the points on the lines x = 1, x = 2,… & y = 1, y = 2,…, the 

lattice points in the square ABCD are counted twice.  

The number of lattice points in the square ABCD including on the boundary is 

equal to u
2
 

 Number of lattice points in the region under consideration = 2(number of 

Lattice points in the region ABCHGDA)  u
2
 

But as in the first part of the proof number of Lattice points in the region 

ABCHGDA 

 

 

 

 

 

 

 

 

 

 

    = 
u

n
...

2

n

1

n
 

  
n

1i

)i(d  = 2
4

n
...

2

n

1

n
  u

2
.
     

But  
u

n
...

2

n

1

n
 = 

u

n
...

2

n

1

n
+ O(u) 

    
n

1i

)i(d = 2n 2u
u

1
...

2

1
1  

A 

B C H 
G 

F 

E 

D 

xy = n 
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    = 2n 2u
u

1
ulog O  

    = 2n log u + 2n  + O(u) n + O(u) 

    = 2n
u

1
nlog

2

1
O + (2 1)n + O(u) 

    = n log n + O(u) + (2 1)n + O(u) 

    = n log n + (2 1) n + O( n ) 

Magnitude and average order of (n). 

We know (p) = p+1 and number of primes is infinite so all we can say about 

magnitude of (n) is (n) > n for n  2. 

Theorem 5.17  The average order of (n) is 
6

1 2
n,   More precisely  

(1) + (2) +…+ (n) = 
12

1 2
n

2
 + O(n log n) 

Proof :- Let as before, D be the region bounded by x-axis, y-axis & the 

rectangular hyperbola xy =n. 

If x is a divisor of n, then  a lattice point (x, y) lying in this region.  Then this 

point will lie on one of the lines y = 1, y = 2, and xy  n.  

   
n

x

n
y1

n

1x

n

1i

)i( y 

     = 
n

1x

1
x

n

x

n

2

1
 

But  
x

n

x

n
+ O(1 

   
n

1i

n

1x

)1(
x

n
)1(

x

n

2

1
)i( OO  

   = 
n

1x
2

2

)1(
x

n

x

n

2

1
OO  
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   = 
n

1x

n

1x
2

2

x

1
n

x

1
n

2

1
O + O(n) 

But  
n

1

6n

1

x

1

x

1 2

1x
2

n

1x
2

OO  

and  
n

1x n

1
0nlog

x

1
. 

  )n(
n

1
nlogn

n

1

6
n

2

1
)i(

2

2
n

1i

OOOO  

             = 
12

1 2
 n

2
 + O(n) + O(n log n) + O(n) 

             = 
12

1 2
 n

2
 + O(n log n) 

Magnitude and Average order of (n). 

We know if n > 1, (n) < n On the other hand if n = p
m

 and p > 1/  where  > 

0 is given 

then   (n) = n n
p

1
1 (1 ) 

  1
n

)n(υ
limε1

n

)n(υ
 

Theorem 5.18  There exists a constant A, such that  

  A <
2n

)n(υ)n(σ
< 1 for all n > 1 

Proof :- Let n = 
p

αp , then we know  

  (n) = 
n|p n|p

1

11

1

n|p

1

)p1(

)p1(p

p

1
1p

p

1
1p

1p

1p
 

          = n 
n|p

1

1

p1

p1
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Also we know (n) = n
n|p

1)p1(  

  (n) (n) = n
2
 

n|p

1 p
1
 

  
n|p

2n

)n()n(
(1 p

1
) < 1. 

Now for   1, p
2
  p

+1
 

 
21α p

1

p

1
 

 1
21α p

1
1

p

1
 

  
n|p

2n

)n()n(
(1 p

1
)  

n|p
2p

1
1  

         
p

2p

1
1  

         
1k

2k

1
1  

We know that the series  an and the infinite product (1 an) converge or 

diverge together 

But 
2k

1
 is convergent       

1k
2k

1
1  is also convergent] 

So there exists a constant A such that 

  A < .1
n

)n(υ)n(σ
2

 

Theorem 5.19  The average order of (n) is 
2π

n6
 

In fact  (n) = (1) + (2) +…+ (n) = 
2

2

π

n3
+ O(n log n) 

Proof :- We have already prove 
n|d

(d) = n 
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So by Mobius inversion formula, 

  (n) = 
n

1m n'dd

)m(υ d  (d) 

          = 
n

1d

d

n

1'd

'd)d(  

           = 

n

1d

n

1d

2

)d(μ
2

1

d

n

d

n
)d(μ

2

1

d

n
)1(O

d

n
2

 

           = 
n

1d
2

2

d

n
O

d

n
)d(

2

1
 

           = 
n

1d

n

1d
2

2

d

1
nO

d

)d(
n

2

1
 

But we know that  

  
1d

2d

)d(μ
converges to 6/

2
 

 (n) = 
1d

2

2

d

)d(μ
n

2

1
+ O

n

1d d

1
n  = 

n

1
O

6
n

2

1

2

2 O(n log n) 

         = 
2

2

π

n3
 O(n log n) 

Remark :- We know that the number of terms in Farey series function of 

order n is  

  1 + 
n

1i

(i) = 1+ (n) 

 We get the number of terms in the Farey series of order n is 

approximately 
2

2

π

n3
 for large n. 

Thus an alternative statement of the last theorem is that the number of terms in 

Farey series of order n is approximately 3n
2
/

2
. 

Theorem 5.20  The probability that the two given integers should be coprime 

to each other is 
2π

6
. 
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Proof :- Consider the pair of integers (p, q).  Let 1  p  q  n. 

Now also consider the corresponding fraction 
q

p
.  For every n, there are 

almost n fractions. 
q

p
 with 1  p  q  n. 

  Total number of such fractions with all 
q

p
(1  p  q  n) is 

n

1i

n
2

1
~)1n(n

2

1
i   

But the number of fractions 
q

p
, where 1  p  q  n and gcd(p, q) = 1 is 3n

2 
| 

2
 for large n.  

 Probability = 
2

2

22

π

6

n
2

1

πn3
. 

The Mangoldt function (n) 

We introduce next Mangoldt‟s function  which plays a central role in the 

distribution of primes. 

Definition :- For every integer n  1 we define 

  (n) = 
otherwise0

.1msomeandpprimesomefopnifplog m

 

Here is a short table of values of (n) : 

n: 1 2 3 4 5 6 7 8 9 10 

(n): 0 log2 log3 log2 log5 0 log7 log2 log3 0 

Theorem 5.21  If n  1 we have 

  log n = 
nd |

(d).     …(1) 

Proof :- The theorem is true if n = 1 since both members are 0.  Therefore, 

assume that n > 1 and write  

  
r

1k

ka
k .pn  

Taking logarithms we have 

  log n = .ploga k

r

1k
k  
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Now consider the sum on the right of (1).  The only nonzero terms in the sum 

come from those divisors d of the form pk
m

 for m = 1, 2,…, ak and k = 1, 2,…, 

r.  Hence 

 

 
n|d

k

r

1k

k

ka

1m

k

r

1k

ka

1m

m
k

r

1k

,nlogplogaplog)p()d(  

which proves (1). 

Now we use Mobius inversion to express (n) in terms of the logarithm. 

Theorem 5.22 If n  1 we have 

  (n) = .dlog)d(
d

n
log)d(

n|dn|d

 

Proof :- We know logn = 
n|d

(d)     …(1) 

Inverting (1) by the Mobius inversion formula we obtain  

  (n) = dlog)d()d(nlog
d

n
log)d(

n|dn|dn|d

 

          = 
n

1
 log n

n/d

(d) log d. 

Since 
n

1
 log n = 0 for all n the proof is complete.  

Chebyshev’s functions (x) and  (x) 

Definition :- For x > 0 we define Chebyshev‟s -function by the formula  

  (x) = 
xn

(n). 

Since (n) = 0 unless n is a prime power we can write the definition of (x) 

as follows : 

 (x) = 
m/1xp1m

m

p

xmp

1mxn

.plog)p()n(  

The sum on m is actually a finite sum.  In fact, the sum on p is empty if x
1/m

 < 

2, that is, if  

(1/m)log x < log 2, or if 
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  m > 
2log

xlog
= log2 x. 

Therefore we have 

  (x) =
m/1xpx

2
logm

log p. 

This can be written in a slightly different form by introducing another function 

of Chebyshev. 

Definition :- If x > 0 we define Chebyshev‟s -function by the equation 

  (x) = 
xp

log p, 

where p runs over all primes  x. 

The last formula for (x) can now be restated as follows : 

  (x) = 
x

2
logm

(x
1/m

). 

The next theorem relates the two quotients (x)/x and (x)/x. 

Theorem 5.23  For x > 0 we have 

  0  
2

2

logx2

)x(log

x

)x(

x

)x(ψ
  

Note :- This inequality implies that 

  0
x

)x(

x

)x(ψ
lim
x

. 

In other words, if one of (x)/x or (x)/x tends to a limit then so does the 

other, and the two limits are equal. 

Proof :- we have (x) = 
x2logm

(x
1/m

), so 

  0  (x) (x) = 
x

2
logm2

(x
1/m

). 

But from the definition of (x) we have the trivial inequality 

  (x)  
xp

log x  x log x 

so   

  0  (x) (x)  xlogx)x(log)xlog(x 2
m/1m/1

x
2

logm2
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    = 
2log2

)x(logx
xlog

2

x
.

2log

xlog 2

. 

Now divide by x to obtain the theorem. 

Relations connecting (x) and (x) 

In this section we obtain two formulas relating (x) and (x).  where  (x) is 

the number of primes    x.   These will be used to show that the prime 

number theorem is equivalent to the limit relation  

  .1
x

)x(
lim
x

 

Both functions (x) and (x) are step functions with jumps at the primes; (x) 

has a jump 1 at each prime p, whereas (x) has a jump of log p at p. Sums 

involving step functions of this type can be expressed as integrals by means of 

the following theorem. 

Theorem 5.24  Abel‟s identity.  For any arithmetical function a(n) let 

  A(x) = 
xn

a(n), 

Where A(x) = 0 if x < 1.  Assume f has a continuous derivative on the interval 

[y, x], where                      0 < y < x.  Then we have 

   
xny

a(n) f(n) = A(x) f(x)  A(y) f(y) 
x

y

A(t) f (t) dt. …(1) 

Proof :- Let k = [x] and m = [y], so that A(x) = A(k) and A(y) = A(m). 

Then  
k

1mn

k

1mnxny

)n(f)n(a)n(f)n(a {A(n) A(n 1)} f(n) 

     = 
1k

mn

k

1mn

)n(f)n(A A(n)f(n+1) 

     = 
1k

1mn

A(n) {f(n) f(n+1)} + A(k) f(k) 

A(m)f(m +1) 

   = 
1n

n

1k

1mn

)n(A f (t)dt + A(k) f(k) A(m)f(m + 1) 

   = 
1n

n

1k

1mn

A(t) f  (t) dt + A(k) f(k)  A(m) f(m + 1) 
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   = 
k

1m

A(t) f (t) dt + A(x) f(x)
x

k

A(t) f  (t) dt 

         A(y) f(y)  
1m

y

A(t) f  (t)dt 

     = A(x) f(x)  A(y) f(y)  
x

y

A(t) f (t)dt. 

Theorem 5.25   For x  2 we have 

  (x) = (x) log x dt
t

)t(πx

2

    …(1) 

and 

  (x) = .dt
tlogt

)t(

xlog

)x(
2

x

2

    …(2) 

Proof :- Let a(n) denote the characteristic function of the primes; that is, 

  a(n) = 
.otherwise0

,primeisnif1
 

Then we have 

 (x) = and)n(a1
xn1xp

(x) =
xn1xp

plog a(n)log n. 

Taking f(x) = log x in Abel‟s identity  with y = 1 we obtain 

  (x) = 
xn1

a(n)log n = (x)log x  (1) log 1
x

1

,dt
t

)t(π
 

which proves (1) since (t) = 0 for t < 2. 

Next, let b(n) = a(n) log n and write 

  (x) = ,
nlog

1
)n(b

xn2/3

    (x) = )n(b
xn

. 

Taking f(x) = 1/log x in Abel‟s identity with y = 3/2 we obtain 

  (x) = ,dt
tlogt

)t(

2/3log

)2/3(

xlog

)x(
2

x

2/3

 

which proves (2) since (t) = 0 if t < 2. 

Some equivalent forms of the prime number theorem  
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Theorem 5.26  The following relations are logically equivalent : 

  .1
x

xlog)x(π
lim
x

     …(1) 

.1
x

)x(
lim
x

      …(2) 

.1
x

)x(ψ
lim
x

      …(3) 

Proof :- From above theorem  we obtain, respectively, 

  dt
t

)t(π

x

1

x

xlog)x(π

x

)x( x

2

 

and 

  .
tlogt

dt)t(

x

xlog

x

)x(

x

xlog)x(π
2

x

2

 

To show that (1) implies (2) we need only show that (1) implies 

  .0dt
t

)t(π

x

1
lim

x

2x
 

But (1) implies 
tlog

1
O

t

)t(
 for t  2 so 

  .
tlog

dt

x

1
Odt

t

)t(

x

1
x

2

x

2

 

Now 

  
xlog

xx

2log

x

tlog

dt

tlog

dt

tlog

dt x

x

x

2

x

2

 

so  
tlog

dt

x

1 x

2

 0 as x . 

This shows that (1) implies (2). 

To show that (2) implies (1) we need only show that (2) implies 

  .0
tlogt

dt)t(

x

xlog
lim

2

x

2x
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But (2) implies (t) = O(t) so 

  
tlog

dt

x

xlog
O

tlogt

dt)t(

x

xlog
2

x

2
2

x

2

. 

Now   

  
xlog

xx

2log

x

tlog

dt

tlog

dt

tlog

dt
222

x

x
2

x

2
2

x

2

 

hence 

  0
tlog

dt

x

xlog
2

x

2

 as x  . 

This proves that (2) implies (1), so (1) and (2) are equivalent.  We know 

already, that (2) and (3) are equivalent. 

 

Theorem 5.27  Bertrand‟s Postulate.  If x is a real number, x > 1, then there 

exists at least one prime number in the open interval (x, 2x). 

Proof :- Suppose that the interval (x, 2x) contains no prime number.  If p is 

prime then there is at most one value of k for which p
k
 (x, 2x), since p

k+1
/p

k
 

= p  2.  Furthermore, k > 1, since the interval contains no primes.  Hence 

  (2x)  (x) = 

x2kpx

log p  ( x2 ) + log 2x. 

Here the last term on the right is required because 2x may be a prime number.  

We use (x)  a0x  5 log ex for x  6, to provide a lower bound for (2x), 

and use (x) < b0x + 5 (log ex)
2
 to provide upper bounds for (x) and 

( x2 ).  Thus we find that 

  (2a0  b0) x  5 log 2 ex  5 (log ex)
2
 

         b0 x2  + 5(log e x2 )
2
 + log 2x.  …(1)   

Here the left side is comparable to x as x , while the right side is 

comparable to x .  Hence the set of x for which this holds is bounded.  In 

fact, we show that if (1) holds then x < 1600.  That is, if x  1600 hen  

  2a0  b0  5(log 2ex)/x + 5(log ex)
2
/x 

    + 5(log e x2 )
2
/x + (log 2x)/x + b0 x/2  …(2) 
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To this end let f(x) be a function of the form f(x) = (log ax
b
)
c 
/ x where a, b, c 

are positive real constants.  Then log f(x) = c log log ax
b
  log x, and by 

differentiating it follows that  

  
)x(f

)x('f
= (bc/(log ax

b
) 1)/x. 

Thus if ax
b
 > e

bc
, then f(x) > 0 and the above expression is negative, so that f 

(x) < 0.  In other words, f(x) is decreasing in the interval [x0, ) where x0 = 

e
c
/a

1/b
.  Thus in particular the first term on the right side of (2) is decreasing 

for x  x1 = ½, the second is decreasing for x  x2 = e, the third is decreasing 

for x  x3 = ½, and the fourth is decreasing for x  x4 = e/2.  Since the last 

term on the right side of (2) is decreasing for all positive values of x, we 

conclude that the right side is decreasing for x  x2 = 2.71828 .  By direct 

calculation we discover that the right side of (2) is less than 3/8 when x = 

1600, while the left side is > 3/8.  Since the right side is decreasing, it follows 

that (2) holds for all x  1600. 

 We have shown that Bertrand‟s postulate is true for x  1600.  To 

verify it for 1 < x < 1600 we note that the following thirteen numbers are 

prime : 2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503.  As each term of 

this sequence is less than twice the preceding member, Bertrand‟s postulate is 

valid for 1 < x < 2503, and the proof is complete.  

An asymptotic formula for the partial sums p  x(1/p) 

Theorem 5.28  There is a constant A such that  

  
p

1

xp

= log log x + A + O
xlog

1
 for all x  2 . …(1)  

Proof :- Let 

  A(x) = 
p

plog

xp

 

and let 

  a(n) = 
.otherwise0

,primeisnif1
 

Then 

  .nlog
n

)n(a
)x(Aand

n

)n(a

p

1

xnxnxp

 

Therefore if we take f(t) = 1/log t in Abel‟s identity we find, since A(t) = 0 for 

t < 2, 
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  .dt
tlogt

)t(A

xlog

)x(A

p

1
2

x

2xp

   …(2) 

But we know that 
p

plog

xp

= log + O(1), so we have A(x) = log x + R(x), 

where R(x) = O(1).  Using this on the right of (2) we find 

  dt
tlogt

)t(Rtlog

log

)1(Oxlog

p

1
2

x

2xp

 

             = 1 + O .dt
tlogt

)t(R

tlogt

dt

xlog

1
2

x

2

x

2

 …(3) 

Now 

  
tlogt

dtx

2

= log log x  log log 2 

and 

  ,dt
tlogt

)t(R
dt

tlogt

)t(R
dt

tlogt

)t(R
2

x
2

2
2

x

2

 

the existence of the improper integral being assured by the condition R(t) = 

O(1).  But 

  
xlog

1
O

tlogt

dt
Odt

tlogt

)t(R
2

x
2

x

. 

Hence Equation (3) can be written as follow : 

  
p

1

xp

= log log x + 1  log log2 + 
xlog

1
Odt

tlogt

)t(R
2

2

. 

This proves the theorem with  

  A = 1  log log 2 + .dt
tlogt

)t(R
2

2

 

Theorem 5.29  For x  2, 

  
xdxm d

x
)d(

m

x
x log x x + O(log x). 

Proof :- To prove this theorem, we use the following identity “Let f(n) be an 

arithmetic function and  
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             F(x) = )n(f
xn

.  

Then   
m

x
F

xm

 = 
d

x
)d(f

xd

 

                     = 
xn

)d(f
n|d

. 

 With f(n) = (n) in Theorem 6.15, we have 

  F(x) = 
xn

(n) = (x), 

and so 

  
d

x
)d(

m

x

xdxm

 

         = 
x|dxn

(d) 

         = 
xn

log n 

         = x log x  x + O(log x). 

The last identity comes from the estimate log
xn

n = x log x  x + O(log x) 

Theorem 5.30 (Merten’s formula) There exists a constant  such that for x  

2, 

   

1

xp p

1
1 = e  log x + O(1). 

Proof:- We begin with two observations.  First, the series 
2kp

p
k
/k 

converges, since 

 
)1n(n

1

)1p(p

1

p

1

kp

1

2np
k

2kp
k

2kp

. 

Let 

  b2 = 0
kp

1
k

2kp

. 
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Second, for x  2, 

  
)1n(n

1

)1p(p

1

kp

1
0

xnxp
k

2kxp

 

             = 
]x[

1

n

1

1n

1

1]x[n

 

              .
x

2
 

From the Taylor series 

   log (1 t) = 
k

t k

1k

for | t | < 1 

and using the estimate of 
p

1

xp

  for x  2, we obtain  

  log 

1

xp

1

xp p

1
1log

p

1
1  

             = 
k

1kxp kp

1
 

             = 
k

2kxpxp kp

1

p

1
 

               = log log x + b1 + O
k

2kxp

2
kp

1
b

xlog

1
 

            = log log x + b1 + b2 + O
xlog

1
+ O

x

1
 

           = log log x + b1 + b2 + O
xlog

1
. 

Let  = b1 + b2.  Then 

  .
xlog

1
Oexpxloge

p

1
1

1

xp
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Since exp(t) = 1 + O(t) for t in any bounded interval [0, t0], and since O(1/log 

x) is bounded for x 2, we have 

   exp .
xlog

1
O1

xlog

1
O  

Therefore, 

     

1

xp p

1
1 = e  log x exp

xlog

1
O  

     = e  log x
xlog

1
O1  

     = e  log x + O(1). 

This is Merten‟s formula. 

 

Theorem 5.31  (Mertens Theorem) For x  1, 

n

)n(

xn

 = log x + O(1)    …(1) 

and  

  
p

plog

xp

= log x + O(1).    …(2) 

Proof :- Since (x) = O(x) by Chebyshev‟s theorem, we have 

  x log x x + O(log x) = 
d

x
)d(

xd

 

               = 
d

x

d

x
)d(

xd

 

               = x
d

x
)d(

d

)d(

xdxd

 

               = x
d

)d(

xd

+ O( (x)) 
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               = x
d

)d(

xd

 + O(x). 

We obtain equation (1) by dividing by x. 

Next, we observe that 

   
k

2k
xkpxpxn p

plog

p

plog

n

)n(
 

      
k

2kxp p

1
plog  

      
)1p(p

plog

xp

 

                = O (1). 

This proves (1).  

Selberg’s asymptotic formula 

We deduce Selberg‟s formula by a method given by Tatuzawa and Iseki.  It is 

based on the following theorem which has the nature of an inversion formula. 

Theorem 5.32  Let F be a real or complex-valued function defined on (0, ), 

and let 

  G(x) = log x
n

x
F

xn

. 

Then  F(x) log x + .
d

x
G)d(μ)n(

n

x
F

xdxn

 

Proof :- First we write F(x)log x as a sum, 

  F(x)log x = ).d(μ
n

x
log

n

x
F

n

x
log

n

x
F

n

1

n/dxnxn

 

Then we use the identity, 

  (n) = 
d

n
log)d(μ

n/d

 

to write 

  .
d

n
log)d(

n

x
F)n(

n

x
F

n|dxnxn
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Adding these equations we find 

F(x)log x + 
d

n
log

n

x
log)d(

n

x
F)n(

n

x
F

n|dxnxn

 

           = .
d

x
log)d(

n

x
F

n|dxn

 

In the last sum we write n = qd to obtain  

 

 

,
d

x
G)d(

qd

x
F

d

x
log)d(

d

x
log)d(

n

x
F

xdd/xqxdn|dxn

 

which proves the theorem. 

Theorem 5.33  Selberg‟s asymptotic formula.  For x > 0 we have 

  (x)log x + xlogx2
n

x
)n(

xn

O(x). 

Proof :- We apply above theorem to the function F1(x) = (x) and also to 

F2(x) = x  C  1, where C is Euler‟s constant.  Corresponding to F1 we have 

  G1(x) = log x x
n

x
ψ

xn

log
2
 x  x log x + O(log

2
 x), 

where we have used the relation 
n

x

xn

= x log x  x + O(log x).  

Corresponding to F2 we have 

  G2(x) = log x 1C
n

x
xlog

n

x
F

xn
2

xn

 

            = x log x 1xlog)1C(
n

1

xnxn

 

            = x log x 
x

1
OCxlog  (C+1) log x(x+ O(1)) 

            = x log
2
 x  x log x + O(log x). 
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Comparing the formulas for G1(x) and G2(x) we see that G1(x)  G2(x) = 

O(log
2
 x).  Actually, we shall only use the weaker estimate 

  G1(x)   G2(x) = O( x ). 

Now we apply above Theorem to each of F1 and F2 and subtract the two 

relations so obtained.  The difference of the two right members is  

 

 )x(O
d

1
xO

d

x
O

d

x
G

d

x
G)d(

xdxd

21

xd

 

Therefore the difference of the two left members is also O(x).  In other words, 

we have 

 { (x)  (x C 1)} log x + 1C
n

x

n

x
ψ

xn

 (n) = O(x). 

Rearranging terms and using 
n

)n(

xn

= log x + O(1) we find that  

  (x)log x + 
n

x
ψ

xn

 (n) = (x  C  1)log x 

                   + 1C
n

x

xn

(n) + O(x) 

               = 2x log x + O(x). 

The Prime Number Theorem 

The function (x) counts the number of prime numbers not exceeding x.  The 

prime number theorem (conjectured independently around 1800 by Gauss and 

Legendre), states that (x) is asymptotic to x/log x, that is, 

  .1
x

xlog)x(
lim
x

 

We define the remainder term R(x) for Chebyshev‟s function (x) by  

  R(x) = (x)  x. 

We shall prove the prime number theorem in the form (x) ~ x, or, 

equivalently, R(x) = o(x) as we have already proved in theorem 5.26 that (x) 

~ x and (x) ~x are equivalent.  More precisely, we shall prove that there exist 
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sequences of positive real numbers { m 1m}  and {um 1m}  such that limm  

m = 0 and  

  |R(x)| < mx    for x  um. 

We need the following lemmas [cf: Melvin B. Nathanson, Elementary 

Methods in Number Theory, Springer-Verlag, New York 1999]. 

Lemma 1. For every positive integer n, 

  
np

p < 4
n
 

Equivalently, for every real number k  1 

  v(x) < x log 4. 

Lemma 2 :- There exists positive constants A and B such that  

  A(x)  v(x)   (x) = (x) log x  B for x  2. 

Moreover  
x

xlog)x(
inflim

x

)x(
inflim

x

)x(v
inflim

xxx
  2 

and  

  
x

xlog)x(
suplim

x

)x(
suplim

x

)x(v
suplim

xxx
 log 4 

 

Lemma 3 For x > e, 

  

p

x
log1p

plog

xp

 = O (log log x). 

Lemma 4 For x  1 

   |R(x)|  
xlog

xloglogx
O

n

x
R

xlog

1

xn

 

Lemma 5 Let 0 <  < 1.  There exist numbers c0  1 and x1( )  4 such that if 

x  x1( ), then there exists an integer n such that  

  x < n xe
/0c

 

and  |R(n)| < n. 

The constant c0 does not depend on .  
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Lemma 6 Let c0  1 be the number constructed in Lemma 3 and let 0 <  < 1.  

There exists a number x2( ) such that if x  x2 ( ), then the interval (x, xe
/0c

] 

contains a subinterval (y, e
/2

y] such that  

  |R(t)| < 4 t 

for all t  (y, e
/2

y]. 

Theorem  5.34  (Prime number theorem) For Chebyshev‟s function (x), 

  (x) ~ x 

as x  . 

Proof :- By lemma 1, 

  1
x

)x(
suplim

x

)x(R
suplim

xx

 log 4  1 < 0.4. 

By lemma 2, 

  1
x

)x(
inflim

x

)x(R
inflim

xx

 log 2  1 > 0.4. 

It follows that there exist numbers M and u1 such that 

  |R(x)| < Mx  for all x  1, 

and  |R(x)| < 1x  for all x  u1, 

where   1 = 0.4. 

 We shall construct sequences of positive real numbers { m 1m}  and 

{ m 1m} , such that  

  1 > 2 > 3 >…      

and 

  
m
lim m = 0.      …(1) 

Let m  1, and suppose that we have constructed the number m. Let c0  1 be 

the number defined in Lemma 5.  Choose m such that  

  0 < m < 1/m       

   

and    
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  (1 + m)
0

2
m

c256
1 < 1. 

We define 

  m+1 = (1 + m) 
0

2
m

c256
1 m.   …(2) 

Then 0 < m+1 < m.  This determines the sequences { m 1m}  and { m 1m}  

inductively. 

 We shall prove that for every m there exists a number um such that  

  |R(x)| < mx for all x  um.    (3) 

Let us show that this suffices to prove the prime number theorem.  The 

sequence { m 1m}  is a strictly decreasing sequence of positive real numbers, 

so the sequence converges to some non negative number  < 1.  Then (1) and 

(2) imply that  

   = 
0

2

c356
1   = 0. 

Inequality (3) implies that R(x) = o(x), which is equivalent to the prime 

number theorem. 

 We construct the numbers um inductively.  There exists u1 such that 

|R(x)| < 1 x for x  u1.  Suppose that um has been determined.  We shall prove 

that there exists a number um+1 such that |R(x)| < m+1x for all x  um+1. 

Define  m = 
8

m
 

and   = .e
'
m/0c

 

Let x2(
'
m ) be the number constructed in Lemma 6, and let 

  x3(m) = max (x2(
'
m ), um). 

If 

  x  x3(m)  x2(
'
m ), 

then by Lemma 6, every interval (x, x] contains a subinterval ]ye,y( 2/'
m  

such that  

  |R(t)| < 4
'
m t = 

2

tm
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for all t ]ye,y( 2/'
m .  Let k be the greatest integer such that 

k
  x/x3(m). 

Then  

  k  
log

)m(x/xlog 3
< k + 1, 

and so 

  k = 
log

))m(x/xlog( 3
 + O(1) 

     = 
0

3
'
m

c

))m(x/xlog(
+ O(1) 

     = 
0

m

c8

xlog
 + O(1). 

By lemma  4, 

  |R(x)|  
n

x
R

xlog

1

xn

 + o(x) 

            = 
n

x
R

xlog

1

n

x
R

xlog

1

xnkkn

 + O(x) 

             
n

1

xlog

Mx

n

x
R

xlog

1

xnkkn

 + O(x) 

             
n

x
R

xlog

1

kn

 +  o(x), 

since 

  
n

1

n

1

xn))m(3x/(xxnk

 = log ( x3(m)) + O(1/x) = O(1). 

If 1  n  
k
, then  

  
k

x

n

x
 x3(m)  um 

and 

  ,
n

x

n

x
R

m
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by the definition of um. 

For j = 1,…,k, we have 

  
kj

xx
 x3(m)  x2(

'
m ), 

and so each interval 
1jj

x
,

x
 contains a subinterval Ij = ]ye,y( j

2/'
m

j  

such that |R(t)| < 4 '
m t = 

2

tm
 for all  t  Ij. 

Therefore, 

  
n

x
R

n

x
R

n

x
R

j]n
jI\]j,1j(n]j,1j(n

 

           < mx 
n

1

2

x

n

1

jIn

m

jI\]j,1j(n

    

           = mx .
n

1

2

x

n

1

jIn

m

\]j,1j(n

 

Then 

   
n

x
R)x(R

n

x
R

]j,1j(n

k

1jkn

 

               = mx + 
n

1

2

x

n

1
x

jIn

m

]j,1j(n

m

k

1j

 

    = mx .
n

1

2

x

n

1

jIn

k

1j

m

kn

 

We have 

  mx 
km

kn

1
logkx

n

1
O  

             = mx log x + O(x).  

Moreover, 
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  ,
x2y

1

2n

1

n

1 j'
m

j

'
m

]jy2/'
me,jy(n

jIn

OO  

and so  

  
x2

k

n

1 j
k

1j

'
mk

1j jIn

O  

        = )1(
c8

xlog

2 0

m
'
m

O  + O(1) 

        = 
0

'
m

c128

xlog
+ O(1), 

since 

  
)m(x

2

x

2

)1(x

)1(

x 3

kkj
k

1j

 = O(1). 

Therefore, 

  
0

3
m

jIn

k

1j

m

c256

xlogx

n

1

2

x
 + O(x). 

Combining these results, we obtain, for x  x3(m), 

  
n

x
R

kn

  ( mx log x + O(x)) )x(
c256

xlogx

0

3
m

O  

     = 
0

2
m

c256
1 mx log x + O(x), 

and 

  |R(x)|  
n

x
R

xlog

1

kn

+ o(x) 

            = 
0

2
m

c256
1 mx + o(x). 
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We choose um+1 sufficiently large that for all x  um+1 we have  

o(x) < m .x
c256

1 m

0

2
m

 

Then  |R(x)| < (1+ m) 
0

2
m

c256
1  mx = m+1x. 

This completes the proof of the prime number theorem.  

 

 

  

 


