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1 

 
SEQUENCES AND SERIES OF FUNCTIONS 

1.1.   The object of this chapter is to consider sequences whose terms are functions rather than real 

numbers.  There sequences are useful in obtaining approximations to a given function.  We shall 

study two different notations of convergence for a sequence of functions:  Pointwise convergence 

and uniform convergence  

Pointwise and Uniform Convergence of Sequences of functions   

Definition. Let A  R and suppose that for each n N there is a function fn : A R.  Then <fn> is 

called a sequence of functions on A.  For each x A, this sequence gives rise to a sequence of 

real numbers, namely the sequence < fn(x) > . 

Definition.   Let A  R  and let  < fn > be a sequence of functions on A.  Let A0  A and suppose f 

: A0  R.  Then the sequence <fn> is said to converge on A0 to f if for each x A0, the sequence 

<fn(x)> converges to f(x) in R. 

 In such a case f is called the limit function on A0 of the sequence <fn>. 

 When such a function f exists, we say that the sequence <fn> is convergent on A0 or that 

<fn> converges pointwise on A0 to f and we write f(x) = 
n
lim fn(x), x A0.  Similarly, it fn(x) 

converges for every x A0, and if 

   f(x) = 
1n

fn(x),  x A0, 

the function f is called the sum of the series  fn. 

 The question arises : If each function of a sequence <fn> has certain property, such as 

continuity, differentiability or integrality, then to what extent is this property transferred to the 

limit function? For example, if each function fn is continuous at a point x0, is the limit function f 

also continuous at x0?  In general, it is not true. Thus pointwise convergence is not so strong 

concept which transfers above mentioned property to the limit function.  Therefore some stronger 

methods of convergence are needed. One of these method is the notion of uniform convergence.  

We know that fn is continuous at x0 if  

   
0

xx
lim  fn(x) = fn(x0) 

On the other hand,  f is continuous at x0 if 

(1.1.1)   
0

xx
lim  f(x) = f(x0) 

But (1.1.1) can be written as  

(1.1.2)   

0
xx

lim
n
lim  fn(x) = 

n
lim

0
xx

lim  fn(x) 

Thus our question of continuity reduces to “can we interchange the limit symbols in (1.1.2)?” or “Is the order in which limit 
processes are carried out  immaterial”. The following examples show that the limit symbols cannot in general be interchanged.  
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Example. A sequence of continuous functions whose limit function is discontinuous:  Let  

   fn(x) = 
n2

n2

x1

x
, x R, n = 1, 2,… 

we note that  

   
n
lim  fn(x) = f(x) = 

1|x|if1

1|x|if
2

1

1|x|if0

 

Each fn is continuous on R but the limit function f is discontinuous at x = 1 and x = 1. 

Example. A double sequence in which limit process cannot be interchanged. For m = 1, 2,…,n = 1, 2, 3,…, let us 

consider the double sequence  

   Smn = 
nm

m
 

For every fixed n, we have 

   
n
lim Smn = 1 

and so 

   
n
lim

m
lim Smn = 1 

On the other hand, for ever fixed m, we have 

   
n
lim Smn = 

n
lim

m

n
1

1
= 0 

and so 

   
m
lim

n
lim Smn = 0 

Hence   
n
lim

m
lim Smn  

m
lim

n
lim Smn 

Example. A sequence of functions for which limit of the integral is not equal to integral of the limit: Let 

   fn(x) = n
2
x (1 x)

n
, x R, n = 1, 2, …. 

If 0  x  1, then  

   f(x) = 
n
lim  fn(x) = 0 

and so 

   
1

0
f(x) dx = 0 

But   
1

0
fn(x) dx = n

2
 

1

0
x(1 x)

n
 dx 

            = 
2n

n

1n

n 22

 

             = 
)2n)(1n(

n2

 

and so 

   
n
lim

1

0
fn(x) dx = 1 

Hence 
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n
lim

1

0
fn(x) dx  

1

0
(

n
lim fn(x)) dx.  

Example.  A sequence of differentiable functions [fn] with limit 0 for which [fn ] diverges: Let 

   fn(x) = 
n

nxsin
 if x R, n = 1, 2, 

Then   
n
lim fn(x) = 0  x. 

But    fn (x) = n cos nx 

and so   
n
lim fn (x) does not exist for any x.  

Definition. A sequence of functions {fn} is said to converge uniformly to a function f on a set E if for every > 0 there 

exists an integer N (depending only on ) such that n > N implies  

(1.1.3)   |fn(x)  f(x)| <  for all x E. 

If each term of the sequence <fn> is real-valued, then the expression (1.1.3) can be written as 

   f(x)   < fn(x) < f(x) +  

for all n > N and for all x E. This shows that the entire graph of fn lies between a “band” of height 2  situated 

symmetrically about the graph of f. 

Definition. A series  fn(x) is said to converge uniformly on E if the sequence {Sn} of partial sums defined by 

   Sn(x) = 
n

1i

fi(x)  

converges uniformly on E. 

Examples. (1) Consider the sequence <Sn> defined by Sn(x) = 
nx

1
in any interval [a, b], a > 0. Then 

   S(x) = 
n
lim Sn(x) = 

n
lim

nx

1
= 0 

For convergence we must have 

(1.1.4)    |Sn(x)  S(x) <  ,   n  > n0 

or   0
nx

1
< , n > n0 

or   
nx

1
<  

or   x + n >
1

 

or   n >
1

x 

If we select n0 as integer next higher to 
1

 , then (1.1.4) is satisfied for m(integer) greater than 
1

 which does not 

depend on x [a, b]. Hence the sequence <Sn> is uniformly convergent to S(x) in [a, b]. 

2. Consider the sequence <fn> defined by 
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   fn(x) = 
nx1

x
, x  0 

Then 

   f(x) = 
n
lim

nx1

x
= 0 for all x  0. 

Then <fn> converges pointwise to 0 for all x  0. Let  >0, then for convergence we must have 

   |fn(x)  f(x)| < , n > n0 

or   0
nx1

x
< , n > n0 

   
nx1

x
<  

   x <  + nx  

or   n x  > x  

or   n >
x

x
 

or   n >
1

x

x
 

If n0 is taken as integer greater than 
1

, then  

   |fn(x)  f(x)) <   n > n0 and  x [0, ) 

Hence <fn> converges uniformly to f on [0, ). 

3. Consider the sequence <fn> defined by 

   fn(x) = x
n
, 0  x  1. 

Then 

   f(x) = 
n
lim x

n
 = 

1xif1

1x0if0
 

Let  > 0 be given.  Then for convergence we must have 

   |fn(x)  f(x)| < , n > n0 

or   x
n
 <  

or   
1

x

1
n
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or   n >

x

1
log

1
log

 

Thus we should take n0 to be an integer next higher to log 
x

1
log/1 . If we take x = 1, then m does not exist.  Thus 

the sequence in question is not uniformly convergent to f in the interval which contains 1.  

4. Consider the sequence < fn > defined by 

   fn(x) = 
22xn1

nx
 , 0  x  a. 

Then if x = 0, then fn(x) = 0 

and so    f(x) = 
n
lim fn(x) = 0 

If x  0, then    

     f(x) = 
n
lim fn(x) = 

n
lim

22xn1

nx
= 0 

Thus f is continuous at x = 0. For convergence we must have 

   |fn(x)  f(x)| < , n > n0 

or   
22xn1

nx
<  

or   1 + n
2
 x

2
  0

nx
 

or   nx > 4
1

2

1

2

1
2

 

Thus we can find an upper bound for n in any interval 0 < a  x  b, but the upper bound is infinite if the interval 

includes 0.  Hence the given sequence in non-uniformly convergent in any interval which includes the origin.  So 0 is 

the point of non-uniform convergence for this sequence. 

5. Consider the sequence <fn> defined by  

   fn(x) = tan
1
 nx , 0  x  a 

Then     

f(x) = 
n
lim fn(x) = 

0xif0

0xif
2

π

 

This the function f is discontinuous at x = 0. 

For convergence, we must have for  > 0 , 

   |fn(x)  f(x)| < , n > n0 

or   /2  tan
1
 nx <  

or   cot
1
 nx <    2/πnxcotnxtan 11  
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or   nx > 
tan

1
 

or   n > 
tan

1

x

1
 

Thus no upper bound can be found for the function on the right if 0 is an end point of the interval.  Hence the 

convergence is non-uniform in any interval which includes 0.  So, here 0 is the point of non-uniform convergence.  

Definition. A sequence {fn} is said to be uniformly bounded on E if there exists a constant M > 0 such that |fn(x)|  M 

for all x in E and all n.  

The number M is called a uniform bound for {fn}. 

For example, the sequence <fn> defined by 

   fn(x) = sin nx , x  R 

is uniformly bounded.  Infact, 

 |fn(x)| = | sin nx |  1 for all x  R and all n N. 

If each individual function is bounded and it fn f uniformly on E, than it can be shown that {fn} is uniformly bounded 

on E. This result generally helps us to conclude that a sequence is not uniformly convergent. 

We now find necessary and sufficient condition for uniform convergence of a sequence of functions.   

Theorem 1. (Cauchy criterion for uniform convergence).  The sequence of functions {fn}, defined on E, converges 

uniformly if and only if for every >0 there exists an integer N such that m  N, n  N, x E imply 

   |fn(x)  fm(x)| <  

Proof. Suppose first that <fn> converges uniformly on E to f.  Then to each  > 0 there exists an integer N such that n 

> N implies 

   |fn(x)  f(x)| < /2 for all x  E 

Similarly for m > N implies 

   |fm(x)  f(x)| < /2 for all x  E 

Hence, for n > N, m > N, we have 

   |fn(x)  fm(x)| = |fn(x)  f(x) + f(x)  fm(x)| 

               |fn(x)  f(x)| + |fm(x)  f(x)| 

              < /2 + /2 =  for all x E 

Hence the condition is necessary. 

Conversely, suppose that Cauchy condition is satisfied, that is, 

(1.1.5)   |fn(x)  fm(x)| < ,       n, m > N and x  E. 

This implies that <fn(x)> is a Cauchy sequence of real numbers and so is convergent.  Let f(x) = 
n
lim fn(x), x E.  We 

shall show that fn f uniformly on E.  Let  >0 be given.  We can choose N such that (1.1.5) is satisfied.  Fix n, and let 

m  in (1.1.5).  Since fm(x) f(x) as m , this yields 

   |fn(x)  f(x)| < , n > N, x E  

Hence fn f uniformly on E. 

1.2. Tests for Uniform Convergence.  



 

 

11 

 

Theorem 2. Suppose 
n
lim fn(x) = f(x), x  E and let Mn = 

Ex
lub |fn(x)  f(x)|.  Then fn f uniformly on E if and only if 

Mn 0 as n .  (This result is known as Mn  Test for uniform convergence) 

Proof. We have 

   
Ex

lub |fn(x) f(x)| = Mn 0 as n . 

Hence   
n
lim |fn(x) f(x)| = 0  x  E 

Hence to each >0, there exists an integer N such that n>N, x  E imply 

   |fn(x) f(x)| <  

Hence fn f uniformly on E.  

Weierstrass contributed a very convenient test for he uniform convergence of infinite series of functions. 

Theorem 3. (Weierstrass M-test). Let <fn> be a sequence of functions defined on E and suppose 

   |fn(x)|  Mn (x E, n = 1, 2, 3,…),  

where Mn is independent of x.  Then  fn converges uniformly as well as absolutely on E if  Mn converges. 

Proof. Absolute convergence follows immediately from comparison test. 

To prove uniform convergence, we note that 

   |Sm(x)  Sn(x)| = n

m

1i
n

m

1i

)x( ff  

     = | fn+1(x) + fn+2(x) +…+ fm(x)| 

      Mn+1 + Mn+2 +…+ Mm 

But since  Mn is convergent, given  > 0, there exists N (independent of x) such that 

   |Mn+1 + Mn+2+…+Mn| < , n > N 

Hence 

   |Sm(x)  Sn(x)| < , n > N, x E 

and so  fn(x) converges uniformly by Cauchy criterion for uniform convergence. 

Lemma (Abel’s Lemma). If v1, v2,…, vn be positive and decreasing, the sum 

   u1 v1 + u2 v2 +…+ un vn 

lies between A v1 and B v1, where A and B are the greatest and least of the quantities 

   u1, u1 + u2, u1 + u2 + u3,…, u1 + u2 +…+ un 

Proof. Write 

   Sn = u1 + u2 +…+ un 

Therefore   

u1 = S1, u2 = S2 S1,…, un = Sn  Sn 1 

Hence    

    
n

1i

uivi = u1v1 + u1v2 +…+ unvn 

         = S1 v1 + (S2 S1) v2 + (S3  S2) v3 +…+ (Sn Sn 1) vn 
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        = S1 (v1  v2) + S2(v2  v3) +…+ Sn 1(vn 1 vn) + Sn vn 

        = A [v1  v2 + v2  v3 +…+ vn 1  vn + vn] 

        = A v1 

Similarly, we can show that  

     
n

1i

ui vi > B v1 

Hence the result follows.  

Theorem. 4. (Abel‟s Test) The series 
n

1n

un(x) vn(x) converges uniformly on E if 

 (i) {vn(x)} is a positive decreasing sequence for all values of x  E 

 (ii)  un(x) is uniformly convergent 

 (iii) v1(x) is bounded for all x E, i.e., v1(x) < M. 

Proof. Consider the series  un(x) vn(x), where {vn(x)} is a positive decreasing sequence for each x E.  By Abel‟s 

Lemma 

  |un(x) vn(x) + un+1(x) vn+1(x) +…+ um(x) um(x)| < Avn(x) 

where A is greatest of the magnitudes 

  |un(x)| , |un(x) + un+1(x)|,…, |un(x) + un+1(x) +…+ um(x)| 

clearly A is a function of x. 

 Since  un(x) is uniformly convergent, it follows that 

   |un(x) + un+1(x) +…+ um(x)| < 
M

for all n > N, x E  

and so A <
M

 for all n > N (independent of x) and for all x  E. Also, since {vn(x)} in decreasing, vn(x) < v1(x) < M 

since v1(x) is bounded for all x  E 

Hence   

 | un(x) vn(x) + un+1(x) vn+1(x) +…+ um(x) vm(x)| <  

for n > N and all x E and so 
n

1n

un(x) vn(x) is uniformly convergent.  

Theorem. (Dirichlet‟s test). The series 
n

1n

un(x) vn(x) converges uniformly on E if 

 (i) {vn(x)} is a positive decreasing sequence for all values of x E, which tends to zero uniformly on E 

 (ii)  un(x) oscillates or converges in such a way that the moduli of its limits of oscillation remains less than a 

fixed number M for all x  E. 

Proof. Consider the series 
1n

un(x) vn(x), where {vn(x)} is a positive decreasing sequence tending to zero uniformly 

on E. By Abel‟s Lemma 

   |un(x) vn(x) + un+1(x) vn+1(x) +…+ um(x) vm (x) | < A vn(x), 
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where A is greatest of the magnitudes 

   |un(x)|, |un(x) + vn+1(x)|,…, |un(x) + un+1(x) +…+ um(x)| 

and is a function of x.  

Since  un(x) converges or oscillates finitely in such a way that )x(un

s

r

< M for all     x  E, therefore. A is less 

than M. Furthermore since vn(x) 0 uniformly as n , to each >0 there exists an integer N such that  

   vn(x) < 
M

for all n > N and all x E 

Hence  

  |unx) un(x) + vn+1(x) vn+1(x) +…+ um(x) vm(x)| <
M

. M =   

for all n > N and x E and so 
1n

 un(x) vn(x) is uniformly convergent on E.  

Examples. 1. Consider the series 
1n

pn

θncos
.  We observe that  

   
pp n

1

n

θncos
 

Also, we know that 

   
1n

pn

1
 

is convergent if p > 1. Hence, by Weierstrass M-Test, the series 
pn

θncos
converges absolutely and uniformly for all 

real values of  if p > 1.  

Similarly, the series 
1n

pn

θnsin
converges absolutely and uniformly by Weierstrass‟s M-Test.    

2. Taking Mn = r
n
, 0 < r < 1, it can be shown by Weierstrass‟s M-Test that the series  

    r
n
 cos n ,  r

n
 sin n ,  r

n
 cos

2
 n ,  r

n
 sin

2
 n  converge uniformly and absolutely 

3. Consider 
1n )nx1(n

x
2

, x R. 

We assume that x is +ve, for if x is negative, we can change signs of all the terms.  We have  

   fn(x) = 
)nx1(n

x
2

 

and   fn (x) = 0 

implies nx
2
 = 1.  Thus maximum value of fn(x) is 

2/3n2

1
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Hence   fn(x)  
2/3n2

1
 

Since 
2/3n

1
is convergent, Weierstarss‟ M-Test implies that 

1n )nx1(n

x
2

 is uniformly convergent for all x  

R. 

4.  Consider the series 
1n

22 )xn(

x
, x  R. We have  

   fn  (x) =
22 )xn(

x
 

and so    
42

222

n
)xn(

x2)xn(x2)xn(
)x(f  

Thus fn (x) = 0 gives 

   x
4
 + x

2
 + 2nx

2
  4nx

2
  4x

4
 = 0 

    3x
4
  2nx

2
 + n

2
 = 0 

or   3x
4
 + 2nx

2
  n

2+ 
 = 0 

or   x
2
 = 

3

n
 or x = 

3

n
 

Also fn (x) is ve. Hence maximum value of fn(x) is 
2n16

33
.  Since 

2n

1
is convergent, it follows by Weierstrass‟s 

M-Test that the given series is uniformly convergent.  

5. The series  
n2

n2
n

1n
n2

n
n

1n x1

xa
and

x1

xa
 

converge uniformly for all real values of x is  an is absolutely convergent. The solutions follow the same line as for 

example 4. 

6. Consider the series  

   
n2

n2

p

n

1n x1

x
.

n

)1(
 

We note that if p > 1, then 
p

n

n

)1(
is absolutely convergent and is independent of x. Hence, by Weierstrass‟s M-Test, 

the given series is uniformly convergent for all x R. 

If 0  p  1, the series 
p

n

n

)1(
is convergent but not absolutely. Let 

   vn(x) = 
n2

n2

x1

x
 

Then <vn(x)> is monotonically decreasing sequence for |x| , 1 because 
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   vn(x) vn+1(x) =
n2

n2

x1

x
  

2n2

2n2

x1

x
 

               = 
)x1)(x1(

)x1(x
2n2n2

2n2

    (+ve) 

Also   v1(x) = .1
x1

x
2

2

 

Hence, by Abel‟s Test, the series 
n2

n2

p

n

1n x1

x
.

n

)1(
in uniformly convergent for 0 < p  1 and |x| < 1. 

6.  Consider the series 

    an . n2

n

x1

x
, 

under the condition that an is convergent. Let 

             vn(x) = 
n2

n

x1

x
 

Then      

                 
)x1(x

x1

)x(v

)x(v
n2

2n2

1n

n
 

and so    

 
)x1(x

)x1)(x1(
1

)x(v

)x(v
n2

2n2

1n

n
 

which is positive if 0 < x < 1.  Hence  

    vn > vn+1 

and so <vn(x)> is monotonically decreasing and positive.  Also v1(x) = 
2x1

x
is bounded. Hence, by Abel‟s test, the 

series  an. n2

n

x1

x
is uniformly convergent in (0, 1) if  an is convergent.  

7. Consider the series  an n

1n

x1

)x1(nx
under the condition that  an is convergent.  We have  

 vn(x) = 
n

1n

x1

)x1(nx
 

Then  

                    
n

1n

1n

n

x1

x1
.

x)1n(

n

)x(v

)x(v
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Since 
1n

n
0 as n , taking n sufficient large 

          1
x1

x1

)x(v

)x(v
n

1n

1n

n
if 0 < x < 1.  

Hence < un(x)> is monotonically decreasing and positive.  Hence, by Abel‟s Test, the given series converges 

uniformly in (0, 1). 

1.3. Uniform Convergence and Continuity.  

We know that if f and g are continuous functions, then f + g is also continuous and this result holds for the sum of 

finite number of functions.  The question arises “Is the sum of infinite number of continuous function a continuous 

function?”.  The answer is not necessary. The aim of this section is to obtain sufficient condition for the sum function 

of an infinite series of continuous functions to be continuous.  

Theorem. 6. Let <fn> be a sequence of continuous functions on a set E  R and suppose that <fn> converges 

uniformly on E to a function f : E R.  Then the limit function f is continuous. 

Proof. Let c E be an arbitrary point. If c is an isolated point of E, then f is automatically continuous at C. So suppose 

that c is an accumulation point of E. We shall show that f is continuous at c.  Since fn f uniformly, for every  > 0 

there is an integer N such that n  N implies 

   |fn(x)  f(x)| < 
3

for all x E. 

Since fM is continuous at c, there is a neighbourhood S (c) such that x  S (c)  E (since c is limit point) implies  

   |fM(x)  fM(c)| < /3. 

By triangle inequality, we have  

   |f(x)  f(c)| = |f(x)  fM(x) + fM(x)  fM(c) + fM(c)  f(c)| 

           |f(x)  fM(x)| + | fM(x)  fM(c)| + | fM(c)  f(c)| 

          < 
333

 

Hence    

|f(x)  f(c) | < , x  S ( )  E. 

which proves the continuity of f at arbitrary point c  E. 

Remark. Uniform convergence of <fn> in the above theorem is sufficient but not necessary to transmit continuity 

from the individual terms to the limit function.  For example, let fn : [0, 1] R be defined for n  2 by 

   fn(x) = 

1x
n

2
for0

n

2
x

n

1
for

n

2
xn

n

1
x0forxn

2

2

 

Each of the function fn is continuous on [0, 1].  Also fn(x)  0 as n  for all x  [0, 1].  Hence the limit function f 

vanishes identically and is continuous. But the convergence fn f is non-uniform. 

The series version of Theorem 6 is the following: 

Theorem. 7. If the series  fn(x) of continuous functions is uniformly convergent to a function f on [a, b] , then the 

sum function f is also continuous on [a, b]. 

Proof. Let Sn(x) = 
n

1i

fn(x), n N and let >0.  Since   fn converges uniformly to f on [a, b], there exists a positive 

integer N such that    
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(1.3.1.)   |Sn(x)  f(x)| <
3

for all n  N and x  [a, b]. 

Let c be any point of [a, b], then (1.3.1) implies  

(1.3.2)   |Sn(c)  f(c)| < 
3

 for all n  N. 

Since fn is continuous on [a, b] for each n, the partial sum 

   Sn(x) = f1(x) + f2(x) +…+ fn(x)  

is also continuous on [a, b] for all n.  Hence to each  > 0 then exist a  > 0 such that  

(1.3.3)   |Sn(x)  Sn(c)| <
3

 whenever |x c| <  

Now, by triangle inequality, and using (1.3.1), (1.3.2) and (1.3.3), we have  

   |f(x)  f(c)| = |f(x) Sn(x) + Sn(x)  Sn(c) + Sn(c)  f(c)| 

           | f(x)  Sn(x)| + |Sn(x)  Sn(c)| + |Sn(c)  f(c)| 

          < /3 + /3 + /3 = , whenever |x c| <  

Hence f is continuous at c.  Since c is arbitrary point of [a, b], f is continuous on [a, b]. 

However, the converse of Theorem 6 in true with some additional condition on the sequence <fn> of continuous 

functions. The required result goes as follows.  

Theorem. 8. Let E be compact and let {fn] be a sequence of functions continuous on E which converges of a 

continuous function on E.  If fn(x)  fn+1(x) for n = 1, 2, 3,..., and for every x  E, than fn f uniformly on E.  

Proof. Take   

gn(x) = fn(x) f(x). 

Being the difference of two continuous functions, gn(x) is continuous. Also gn 0 and  gn  gn+1.  We shall show that 

gn 0 uniformly on E.  

Let  > 0 be given.  Since gn 0, there exists an integer n  Nx such that 

   |gn(x) 0| < /2 

In particular 

   |gNx(x)  0| < /2 

i.e.   0  gN(x) < /2 

The continuity and monotonicity of the sequence {gn} imply that there exists an open set J(x) containing x such that 

   0  gn(t) <  

if t  J(x) and x  Nx. 

 Since E is compact, there exists a finite set of points x1, x2, x3…, xm such that  

   E  J(x1)  …  J(xm) 

Taking 

   N = max (Nx1, Nx2,…,Nxm) 

it follows that 

  0  gn(t)   

for all t  E and n  N. Hence gn 0 uniformly on E and so fn f uniformly on E. 

1.4.  Uniform convergence and Integrability. 

We know that if f and g are integrable, then 

   (f +g) =  f +  g 

and this result holds for the sum of a finite number of functions. The aim of this section is to find sufficient condition 

to extend this result to an infinite number of functions. 

Theorem. 9. Let  be monotonically increasing on [a, b]. Suppose that each term of the sequence {fn} is a real valued 

function such that fn  R( ) on [a, b] for n = 1, 2, 3,… and suppose fn  f uniformly on [a, b].  Then f  R( ) on [a, b] 

and  

   
b

a
f d  = 

n
lim  

b

a
fn d , 
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that is,   
b

a
n
lim   

fn(x) d (x) = 
n
lim

b

a
 fn(x) d (x) 

(Thus limit and integral can be interchanged in this case. This property is generally described by saying that a 

uniformly convergent sequence can be integrated term by term).  

Proof. Let  be a positive number.  Choose  > 0 such that 

(1. 4. 1)  [ (b)  (a)]  
3

 

This is possible since  is monotonically increasing. Since fn f uniformly on [a, b], to each >0 there exists an 

integer n such that  

(1.4.2)   |fn(x)  f(x)|  , x  [a, b] 

Since fn  R( ), we choose a partition P of [a, b] such that 

(1.4.3)   U (P, fn, )  L(P, fn, ) < 
3

 

The expression (1.4.2) implies 

   fn(x)    f(x)   fn(x) +  

Now f(x)  fn(x) +  implies, by (1.4.1) that  

(1.4.4)   U (P, f, ) , U (P, fn, ) + 
3

 

Similarly, f(x)  fn(x)   implies 

(1.4.5)    L(P, f, )  L(P, fn, )  
3

 

Combining (1.4.3), (1.4.4) and (1.4.5), we get 

   U (P, f, )  L(P, f, ) <  

Hence f  R( ) on [a, b]. 

Further uniform convergence implies that to each >0, there exists an integer N such that for n  N 

   |fn(x)  f(x)| <
)]a(α)b(α[

, x  [a, b] 

Then for n > N, 

   |
b

a
fd  

b

a
fnd | = |

b

a
(f fn) d   

b

a
|f fn| d     

               <
)]a(α)b(α[

b

a
 d (x) dx 

               = 
)a(α)b(α

)]a(α)b(α[
  

               = .  

Hence  

          
b

a
      f d  = 

n
lim   fn d  

and the result follows.  

The series version of Theorem 9 is : 

Theorem. 10. Let fn  R, n = 1, 2,… If  fn converges uniformly to f on [a, b], then f  R and    

   
b

a
 f(x) d  = 

1n

b

a
fn(x) d , 

 

i.e. the series  fn is integrable term by term. 
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Proof. Let <Sn> denote the sequence of partial sums of fn. Since fn  converges uniformly to f on [a, b], the sequence 

<Sn> converges uniformly to f. Then Sn being the sum of n integrable function is integrable for each n.  Therefore, by 

theorem 9, f is also integrable in Riemann sense and  

     
b

a
 f(x)dx = 

n
lim  

b

a
Sn(x) dx 

But    
b

a
Sn(x) dx = 

b

a
f1(x) dx + 

b

a
f2(x) dx +…+ 

b

a
fm(x) dx 

             =  
n

1i

b

a
 fi(x) dx 

Hence    

 
b

a
 f(x)  dx = 

n
lim

1i

b

a
 fi(x) dx   

            =
1i

b

a
fi(x) d , 

and the proof of the theorem is complete.  

Example. 1. Consider the sequence <fn> for which fn(x) = 
2nxenx , n  N, x  [0, 1].  We note that  

   f(x) = 
n
lim fn(x) 

          = 
n
lim

...
2

xn

1

nx1

nx
222

  = 0,   x  (0, 1] 

Then     

       
1

0
f(dx) = 0 

and    

 
1

0
fn(x) dx = 

1

0

2nxenx dx 

           = 
n

0
2

1
e

t
 dt , t = nx

2
 

           = 
2

1
[1 e

n
] 

Therefore      

        
n
lim  fn(x) dx = 

n
lim

2

1
 [1 e

n
] 

          = 
2

1
 

If < fn > were uniformly convergent, then 
1

0
f(x) dx should have been equal to 

n
lim   fn9x) dx.  But it is not the case.  

Hence  the given sequence is not uniformly convergent to f infact, x = 0 is the point of non-uniform convergence.  

2. Consider the series 
22

1n )xn(

x
. This series is uniformly convergent and so in integrable term by term. Thus 

 

   
1

0 22

1

0

m

1nm22
1n )xn(

x
limdx

)xn(

x
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              = 
1

0

m

1nm
lim n(n + x

2
)

2
 dx 

              = 

1

0

12m

1nm 2

)xn(
lim  

              = 
1n

1

n

1

2

1
lim

m

1nm
 

              = 
1m

1

m

1
...

3

1

2

1

2

1
1

2

1
lim

m
 

              = 
2

1

1m

1
1

2

1
lim

m
 

3. Consider the series 
2222

1n x)1n(1

x)1n(

xn1

nx
 ,      a  x  1.   

Let Sn(x) denote the partial sum of the series. Then  

            Sn(x) = 
22xn1

nx
 

and so   f(x) =
n
lim Sn(x) = 0 for all x [0, 1]   

As we know that 0 is a point of non-uniform convergence of the sequence <Sn(x)>, the given series is not uniformly 

convergent on [0, 1]. But 

      
1

0
f(x) dx =

1

0
0 dx = 0 

and   

  
1

0
Sn(x) dx = 

1

0
dx

xn1

nx
22

 

            = dx
xn1

xn2

n2

1
22

2
1

0  

            = 
1

0
22 )xn1(log

n2

1
    

            = 
n2

1
log (1 + n

2
) 

Hence  

      form)n1log(
n2

1
limdx)x(Slim 2

n
n

1

0
n

 

           = lim form
n1

n
2

 

           = 0
n2

1
lim
n

 

Thus  

            
1

0
f(dx) dx = 

n
lim

1

0
Sn(x) dx,  

and so the series is integrable term by term although 0 is a point of non-uniform convergence.  
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Theorem. 11. Let {gn} be a sequence of function of bounded variation on [a, b] such that gn(a) = 0, and suppose that 

there is a function g such that   

   
n
lim V(g  gn) = 0 

and g(a) = 0. Then for every continuous function f on [a, b], we have  

   
n
lim

b

a
f dgn = 

b

a
f dg. 

and gn g uniformly on [a, b]. 

Proof. If V denotes the total variation on [a, b], then  

   V(g)  V(gn) + V(g gn) 

Since gn is of bounded variation and 
n
lim  V(g  gn) = 0 it follows that total variation of g is finite and so g is of 

bounded variation on [a, b]. Thus the integrals in the assertion of the theorem exist.  Suppose |f(x)|  M on [a, b]. Then 

   |
b

a
fdg  

b

a
f dgn| = |

b

a
fd (g gn) 

              M V(g  gn) 

Since V (g gn) 0 as n , it follows that 

                      
b

 fdg = 
n
lim

b
 f dgn 

Furthermore, 

   |g(x)  gn(x)|  V(g gn),          a  x  b    

Therefore, as n , we have 

   gn f uniformly. 

1.5. Uniform Convergence and Differentiation  

If f and g are derivable, then 

   
dx

d
[f(x) + g(x)] = 

dx

d
f(x) + 

dx

d
 g(x) 

and that this can be the extended to finite number of derivable function.  In this section, we shall extend this 

phenomenon under some suitable condition to infinite number of functions. 

Theorem. 12. Suppose {fn} is a sequence of functions, differentiable on [a, b] and such that      [fn (x0)} converges for 

some point x0 on [a, b]. If {fn } converges uniformly on [a, b], then {fn} converges uniformly on [a, b], to a function f, 

and  

   f (x) =
n
lim fn (x) (a  x  b). 

Proof. Let >0 be give.  Choose N such that n  N, m  N implies 

(1.5.1)   |fn(x0)  fm(x0)| < 
2

 

and   

(1.5.2)   |fn (t)  fm (t)| < 
)ab(2

  (a  t < b)   

Application of Mean Value Theorem to the function fn  fm, (1.5.2) yields 

(1.5.3)   |fn(x)  fm(x)  fn(t) + fm(t)|  
2)ab(2

|tx|
 

for any x and t on [a, b] if n  N, m  N.  Since  

 

   | fx(x)  fm(x)|  fn(x)  fm(x)  fn(x0) + fm(x0)| 

                + | fn(x0)  fm(x0)|, 

the relation (1.5.1) and (1.5.3) imply for n  N, m  N, 

   | fx(x)  fm(x)| < /2 + /2 =   (a  x  b) 
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Hence, by Cauchy criterion for uniform convergence, it follows that {fn} converges uniformly on [a, b]. Let 

   f(x) = 
n
lim fn(x)  (a  x < b). 

For a fixed point x  [a, b], let us define  

(1.5.4)   n(t) = 
xt

)x()t( nn ff
,       (t) = 

xt

)x()t( ff
 

for a  t  b, t  x. Then  

(1.5.5)    
xt

lim n(t) = 
xt

lim
xt

)x()t( nn ff
= fn (x)  (n = 1, 2,…) 

Further, (1.5.3) implies 

   | n(t)  m(t)|  
)ab(2

 (n  N, m  N). 

Hence { n} converges uniformly for t  x.  We have proved just now that {fn} converges to f uniformly on [a, b]. 

Therefore (1.5.4) implies that 

(1.5.6)   
n
lim       n(t) = (t) 

uniformly for a  t  b, t  x. Therefore using uniform convergence of < n> and (1.5.5) we have 

    
xt

lim (t) = 
xt

lim
n
lim  n(t) 

       = 
n
lim

xt
lim  n(t) 

       =
n
lim  fn (x) 

But 
xt

lim (t) = f (x).  Hence 

   f (x) = 
n
lim  fn (x). 

Remark. If in addition to the above hypothesis, each fn  is continuous, then the proof becomes simpler. Infact, we 

have then  

Theorem 13. Let <fn> be a sequence of functions such that 

(i) Each fn is differentiable on [a, b] 

(ii) Each fn  is continuous on [a, b] 

(iii) <fn> converges to f on [a, b] 

(iv) <fn > converges uniformly to g on [a, b], then f is differentiable and f (x) = g(x) for all x  [a, b]. 

Proof. Since each fn  is continuous on [a, b] and <fn > converges uniformly to g on [a, b], the application of theorem 6 

of this chapter implies that g is continuous and hence Riemann-integrable.  Therefore, Theorem 9 implies 

   
t

a
g(x) dx =

n
lim

t

a
fn (x) dx 

But, by Fundamental Theorem of Integral calculus, 

   
t

a
 fx (x) dx = fn(t)  fn(a)  

Hence    

            
t

a
 g(x) dx =

n
lim [fn(t)  fn(a)] 

Since <fn> converges to f on [a, b], we have  

   
n
lim        fn(t) = f(t) and 

n
lim  fn(a) = f (a) 

Hence   

     
t

a
g(x) dx = f(t)  f(a) 

and so 
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dt

d
(

t

a
g(x) dx) = f (t) 

or                 g(t) = f (t), t  [a, b] 

This completes the proof of the theorem. 

 The series version of theorem 13 is  

Theorem. 14. If a series  fn converges to f on [a, b] and 

(i) each fn is differentiable on [a, b] 

(ii) each fn  is continuous on [a, b] 

(iii) the series  fn  converges uniformly to g on [a, b] 

then f is differentiable on [a, b] and f (x) = g(x) for all x  [a, b]. 

Proof. Let <Sn> be the sequence of partial sums of the series 
1n

fn.  Since fn converges to f on [a, b], the sequence 

<Sn> converges to f on [a, b]. Further, since fn  converges uniformly to g on [a, b], the sequence <Sn > of partial sums 

converges uniformly to g on [a, b]. Hence, Theorem 13 is applicable and we have 

   f (x) = g(x) for all x  [a, b]. 

Examples. 1. Consider the series 
1n

2222 x)1n(1

x)1n(

xn1

nx
 

For this series, we have 

   Sn(x) = 
22xn1

nx
, 0  x  1 

We have seen that 0 is a point of non-uniform convergence for this sequence. We have 

      f(x) =
n
lim  Sn(x) = 

n
lim

22xn1

nx
 

          = 0 for 0  x  1 

Therefore 

   f (0) = 0 

   Sn (0) = 
0n

lim
h

)0(S)h0(S nn
  

             = 
0n

lim  n
hn1

n
22

 

Hence     

       
n
lim  Sn (0) =  

Then     

   f (0)  
n
lim  Sn (0). 

2. Consider the series 
1n

3n

nxsin
, x  R.  We have 

    fn(x) = 
3n

nxsin
 

   fn (x) = 
2n

nxcos
 

Thus    

fn (x) = 
2n

nxcos
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Since 
22 n

1

n

nxcos
and 

2n

1
is convergent, therefore, by Weierstrass‟s M-test the series fn (x) is uniformly as 

well as absolutely convergent for all x  R and so fn can be differentiated term by term.  

Hence    n
1n

( f )  = 
1n

fn  

or   

'

3
1n n

nxsin
=

1n

 
2n

nxcos
 

1.6. Weierstrass’s Approximation Theorem. 

Weierstrass proved an important result regarding approximation of continuous function which has many application in Numerical 
Methods and other branches of mathematics.  

The following computation shall be required for the proof of Weierstrass’s Approximation Theorem. 

For any p, q  R, we have, by Binomial Theorem  

(1.6.1)   
n
k

n

0k

pk qn k = (p +q)n, n  I, 

where  

        
kn|k|

n|n
k . 

Differentiating with respect to p, we obtain  

         
n
k

n

0k

k pk 1 qn k = m (p + q)n 1,  

which implies 

(1.6.2)   
n
k

n

0k n

k
pk qn k = p(p+q)n 1, n  I 

Differentiating once more, we have 

   
n
k

n

0k

2

n

k
p

k 1
 q

n k
 = p(n 1) (p + q)

n 2
 + (p + q)

n 1
 

and so 

(1.6.3)   
n
k

n

0k
2

2

n

k
p

k
 q

n k
 = p

2
 

1n2n )qp(
n

p
)qp(

n

1
1  

Now if x [0, 1], take p = x and q = 1 x. Then (1.6.1), (1.6.2) and (1.6.3) yield  

(1.6.4)   

n

x

n

1
1x)x1(x

n

k

x)x1(x
n

k

1)x1(x

2knkn
k2

2n

0k

knkn
k

n

0k

knkn
k

n

0k

 

On expanding 

2

x
n

k
, it follows from (1.6.4) that 

(1.6.5) 
n

)x1(x
)x1(xx

n

k knkn
k

2
n

0k

   (0  x  1)  



 

 

25 

 

For any f [0, 1], we define a sequence of polynomials 
1nnB as follows:  

(1.6.6.)   Bn(x) 
n

k
)x1(x knkn

k

n

0k

f ,      0  x  1, n  I. 

The polynomial Bn is called the nth Bernstein Polynomial for f. 
We are now in a position to state and prove Weierstrass’s Theorem. 

Theorem. 15. (Weierstrass’s Approximation Theorem).  Let f be a continuous function defined on [a, b].  Then 

given  > 0, there exists a polynomial P such that  

   |P(x)  f(x)| < , a  x  b 

Proof. We first show that it is sufficient to prove the theorem for the case in which [a, b] = [0, 1]. 

Suppose that the theorem is true for continuous functions defined on [0, 1].  If f is continuous on [a, b] and >0 we 

must show that there is a polynomial P such that 

(1.6.7)   |P(x)   f(x)| <    a  x  b 

Define g by   g(x) = f (a + [b  a]x)   ( 0  x  1) 

Then g(0) = f(a), g(1) = f(b).  Clearly g is continuous on [0, 1].  Since the theorem holds for continuous function 

defined on [0, 1], there is a polynomial Q such that  

(1.6.8)   |g(y)  Q(y)| <  (0  y  1) 

If we put                    y = 
ab

ax
 

Then     

             g(y) = g
ab

ax
)ab(((af

ab

ax
 

             = f(x) 

Therefore (1.6.8) reduces to 

   |f(x)  Q
ab

ax
| <          (a < x < b) 

If we define P by  

   P(x) = Q
ab

ax
 , 

then P is a polynomial (because Q is polynomial).   Hence 

   |f(x)  P(x)| < , a  x < b. 

Thus we prove the theorem for functions f which are continuous over (0, 1] 

Since f is continuous over compact set [0, 1], it is uniformly continuous on [0, 1]. Hence given  > 0 there exists >0 

such that 

   |f(x)  f(y) | < 
2

 , (|x y| < ; x, y  [0, 1]) 

Suppose N  I such that  

(1.6.9)   
4 N

1
 <  

and such that   

(1.6.10)  
||4N

1

f
  (| f | > 0) 

Fix x  [0, 1]. Multiplying the first identity in (1.6.4) by f and subtracting (1.6.6), we obtain for any n  I, 

(1.6.11)  f(x)  Bn(x) = 
hn

k

n

0k

x
n

k
f)x(f (1 x)

n k
 

           = 1 + 2, say, 
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where 1 is the sum over those values of k such that  

(1.6.12)  |
n

k
x| < 

4 N

1
 , 

while 2 is the sum over other values of k.  If k does not satisfy (1.6.12), that is, if |
n

k
x| >

n4

1
, 

then   

         (k nx)
2
 = n

2
 

3

2

nx
n

k
 

Hence 

    | 2| = | 2[f(x)  f 
n
k]

n

k
x

k
 (1 x)

n k
| 

          2[|f(x)| +| f 
n
k]|

n

k
x

k
 (1 x)

n k
 

           2|f(x)| 2 
n
k x

k
 (1 x)

n k
 

           2 
3n

|| f
2 (k nx)

2
 

n
k x

k
 (1 x)

n k
 

           
3n

||2 f n

0h

(k nx)
2
 

n
k  x

k
 (1 x)

n k
 

Here, by (1.6.5) 

   | 2|  
3n

||2 f
n x (1 x) 

          
n

||2 f
 

If n  N, it follows from (1.6.10) that 
||4n

1

f
  and so  

   | 2| < /2. 

Moreover, if n  N and k satisfies (1.6.12), then by (1.6.9) and (1.6.12), x
n

k
<  and so 

   |f(x)  f 
n

k
| < /2 

Thus   | 1| = | 1[f(x)  f 
n

k
] 

n
k x

k
 (1 x)

n k
| 

          < 
2

1 
n
k x

k
 (1 x)

n k
 

and so by first identity of (1.6.4), we have 

   | 1| < 
2

 

Thus, (1.6.11) yields  

   | f(x)  Bn(x)  | 1| + | 2| 

              < 
2

 + 
2

 = . 
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Since x was arbitrary point in [0, 1] and n any integer with n  N, this shows that  

   | f(x)  Bn(x)| < ,  0  x  1, n  I. 

This completes the proof of the theorem.  

Example. If f is continuous on [0, 1] and if 

   
1

0
x

n
 f(x) dx = 0 for n = 0, 1, 2, …, 

use Weierstrass‟s Approximation Theorem to prove that f(x) = 0 on [0, 1] 

Solution. The given hypothesis is that the integral of the product of f with any polynomial is zero. We shall show that 
1

0
f 

2
 = 0.  We have, by Weierstrass‟s Approximation Theorem 

   
1

0
 f 

2
   

1

0
P(x) f(x) = 0 

   f = 0 

1.7. Power Series 

In this section we shall consider power series with real coefficients, and study its properties.  

Definition. A series of the form 
0n

an x
n
 is called a power series 

Applying Cauchy‟s root test, we observe that the power series
0n

an x
n 
is convergent if 

   |x| < 
l

1
 , 

where   

 l = iml  |an|
1/n 

The series is divergent if |x| > 
l

1
 

Taking   

 r = 
n/1

n |a|lim

1
 

We say that the power series is absolutely convergent if |x| < r and divergent if |x| > r.  If a0, a1,… are all real and if x 

is real, we get an interval r < x < r inside which the series is convergent. 

If x is replaced by a complex number z, the power series  an z
n
 converges absolutely at all points z inside the circle |z| 

= r and does not converge at any point outside this circle. The circle is known as circle of convergence and r is called 

radius of convergence. In case of real power series the interval ( r, r) is called interval of convergence. 

If  iml  |an|
1/n

 = 0, then r =  and the power series converges for all finite value of x(r z).  The function represented by 

the sum of the series is then called an Entire function or an integral function.  For example, e
z
, sin z and cos z are 

integral functions. 

If iml  |an|
1/n

 = , r = 0, the power series does not converge for any value of x except       x = 0. 

Theorem. 16. Suppose the series 
0n

an x
n
 converges for |x| < r and define 

   f(x) = 
0n

an x
n
           (|x| < r) 

Then 
0n

an x
n
 converges uniformly on [ r + ,  r  ], >0.  The function f is continuous and differentiable in ( r, 

r) and  
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   f (x) = 
1n

n an x
n 1

  (|x| < r) 

Proof. Let  be a positive number.  If |x|  r  , we have 

   | an x
n
|   |an (r )

n
 | 

Since every power series converges absolutely in the interior of its interval of convergence by Cauchy‟s root test, the 

series an (r )
n
 converges absolutely and so, by Weierstrass‟s M-test, an x

n
 converges uniformly on [ r + , r ]. 

Also then the sum f(x) of an x
n
 is a continuous function at all points inside the interval of convergence.  

Since (n)
1/n

  1 as n , we have 

   iml (n|an|)
1/n

 = iml  (|an|)
1/n

 

Hence the series 
0n

an x
n
 and 

0n

n an x
n 1

 have the same interval of convergence. Since  

0n

n an x
n 1

 is a power series, it converges uniformly in [ r + , r ] for every >0. Then, by term by term 

differentiation (Theorem 14) yields. 

    n an x
n 1

 = f (x) if |x|  < r . 

But, given any x such that |x| < r, we can find an >0 such that |x| < r .  Hence 

    n an x
n 1

 = f (x) if |x| < r. 

Theorem 17. Under the hypothesis of Theorem 16, f hs derivative of all orders in ( r, r) which are given by 

   f 
(k)

(x) = 
kn

n (n 1) (n 2)…(n k+1) an x
n k

 

In particular    

f 
(k)

(0) = |k ah, k = 0, 1, 2,… 

Proof. Let  

       f(x) = 
0n

 an x
n
 

Then by the above theorem 

   f (x) =  n an x
n 1

 

Now applying the theorem 16 to f (x), we have 

   f (x) =  n (n 1) an x
n 2

  

   ………………………… 

   ………………………… 

   f 
(k) 

(x) = 

kn

n(n 1) (n 2)…(n k+1) an x
n k

 

Clearly f 
(k)

(0) = k ak ; the other terms vanish at x = 0. 

Remark. If the coefficients of a power series are known, the values of the derivatives of f at the centre of the interval 

of convergence can be found from the relation 

   f 
(k)

(0) = |k ak. 

Also we can find coefficients from the values at origin of t,  f , f ,… 

Theorem. 18.  (Uniqueness Theorem). If  an x
n
 and  bnx

n
 converge on some interval ( r, r),       r > 0 to the same 

function f, then 

   an = bn for all n N. 

Proof. Under the given condition, the function f have derivatives of all order in ( r, r) given by 

   f 
(k)

(x) = 

kn

n(n 1) (n 2)…(n k+1) an x
n k

 

Putting x = 0, this yields 
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   f 
(k)

(0) = |k ak and f 
k
(0) = |k bk 

for all k N. Hence 

   ak = bk for all k N. 

This completes the proof or the theorem.  

Theorem. 19. (Abel). Let ( r, r) be the interval of convergence of the power series 

   f(x) =
0n

an x
n
 

If the series is convergent when x = r, then  

   
0rx

lim f(x) = f(r) 

A similar result holds if the series is convergent when x = r. 

Putting x = ry, we obtain the power series  

   
0n

an r
n
 y

n
 = 

0n

bn y
n
, say, 

whose interval of convergence  in ( 1, 1). It is therefore sufficient to prove the theorem for r = 1.  Hence we shall prove the 
following. 

Theorem. 19. (Abel). Let ( 1, 1) be interval of convergence for the power series  an x
n
.  if 

0n

an = S, than 

01x
lim

0n

an x
n
 = S. 

Proof. Let Sn = a0 + a1 +…+ an, S 1 = 0. Then  

   
m

0n

an x
n
 = 

m

0n

(Sn  Sn 1) x
n
 

       = 
m

0n

Sn x
n
  

m

0n

Sn 1 x
n
 

       = 
1m

0n

Sn x
n
 + Sm x

m
  

m

0n

Sn 1 x
n
 

       = 
1m

0n

Sn x
n
  x 

m

0n

Sn 1 x
n 1

 + Sm x
m

 

       = (1 x) 
1m

0n

Sn x
n
 + Sm x

m
 

For |x| < 1, let m  and obtain 

(1.7.1)   f(x) = (1 x) 
0n

Sn x
n
 

Since  an = S, Sn S as n . So to each >0, there exists an integer N such that n>N implies 

   |S  Sn| < /2 

Also we know that 

   (1 x) 
0n

x
n
 = 1 (|x| <1) 

or 

(1.7.2)   S = (1 x) 
0n

Sx
n
 (|x| <1) 

Then (1.7.1) and (1.7.2) yield 
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   | f(x)  S| = |(1 x) 
0n

(Sn  S) x
n
| 

         (1 x) 

N

0n

|Sn S| |x|
n
 + 

1Nn

|Sn S| |x|
n
 

         (1 x) 
N

0n

|Sn  S| |x|
n
 + 

2
 

But for a fixed N, (1 x) 
N

0n

|Sn S| |x|
n
 is a positive continuous function of x having zero value at x = 1.  Therefore 

there exists >0 such that for 1   < x < 1, (1 x) 
N

0n

|Sn S| |x|
n
 is less than

2
. Hence 

   | f(x) S| <
2

+
2

= , 1  < x < 1 

and so   
1x

lim  

f(x) = S = 
0n

an 

Tauber’s Theorem. The converse of Abel‟s theorem proved above is false in general. If f is given by  

   f(x) = 
0n

anx
n
,       r < x < r 

the limit f(r ) may exist but yet the series  an r
n
 may fail to converge.  For example, if               an = ( 1)

n
, then     

   f(x) = 
x1

1
, 1 < x < 1 

and f(x) 
2

1
as x 1 .  However  ( 1)

n
 is not convergent. Tauber showed that the converse of Abel‟s theorem can 

be obtained by imposing additional condition on the coefficients an.  A large number of such results are known now a 

days as Tauberian Theorems.  We present here only Tauber‟s first theorem.  

Theorem. 20. (Tauber). Let f(x) = 
0n

anx
n
 for 1 < x < 1 and suppose that 

n
lim n an = 0. If f(x)  S as x 1 , then 

0n

an converges and has the sum S. 

Proof. Let n n = 
n

0h

k |ak|. Then n  0 as n . Also, 
n
lim  f(xn) = S if xn = 1  

n

1
.  Therefore to each  >0, we 

can choose an integer N such that n  N implies 

   | (fxn)  S| < 
3

,    n < 
3

 ,     n |an| < 
3

. 

Let Sn =
n

0h

ak . Then for 1 < x < 1, we have  

   Sn  S = f(x)  S + 

n

0k

 ak (1 x
k
) 

1nh

ak x
k
 

Let x  (0, 1). Then 

   (1 x
k
) = (1 x) (1+x + + x

k 1
)  k(r x) 

for each k.  Therefore, if n  N and 0 < x < 1, we have 
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   |Sn  S|  |f(x)  S| + (1 x) 
n

0h

k |ak| + 
)x1(n3

 

Putting x = xn = 1
n

1
, we find that 

   |Sn  S| < 
3

+
3

+
3

  = 1 

which completes the proof.      
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2 
 

FUNCTIONS OF SEVERAL VARIABLES 
 
2.1. In this chapter, we shall study derivatives and partial derivatives of functions of several variables alongwith their properties. 

2.2. Linear Transformations 

Definition. A mapping  f of a vector space X into a vector space Y is said to be a linear 
transformation if  

   f(x1 + x2) = f (x1) + f (x2), 

   f(cx) = cf(x) 

for all x, x1, x2  X and  all scalars c. 

 Clearly, if f is linear transformation, then f (0) = 0. 

 A linear transformation of a vector space X into X is called linear operator on X. 

 If a linear operator T on a vector space X is one-to-one and onto, then T is invertible and its inverse is 

denoted by T
1
. Clearly T

1
 (Tx) = x for all x X. Also, if T is linear, then T

1
 is also linear. 

Theorem 1.  A linear operator T on a finite dimensional vector space X is one-to-one  if and only if the range of T is 

whose of X. 

Proof. Let R(T) denote range of T. Let (x1, x2, …, xn) be a basis of X.  Since T is linear the set (Tx1, Tx2,…, Txn) 

spans R(T).  The range of T will be whole of X if and only if {Tx1, Tx2,…, Txn} is linearly independent  

So, Suppose first that T is one-to-one. We shall prove that {Tx1, Tx2,…, Txn} is linearly independent.  Hence, let  

   c1Tx1, c2Tx2+…+ cnTxn = 0 

Since T is linear, this yields 

   T(c1x1 + c2x2 +…+ cnxn) = 0 

and so   c1x1 + c2x2 +…+ cnxn = 0 

Since (x1, x2,…, xn} is linearly independent, we have 

   c1 = c2 = … cn = 0 

Thus {Tx1, Tx2,…, Txn} is linearly independent and so R(T) = X if T is one-to-one. 

Conversely, suppose {Tx1, Tx2,…, Txn} is linearly independent and so 

(2.2.1)   c1Tx1 + c2Tx2 +…+ cnTxn = 0 

implies c1 = c2=…= cn = 0. Since T is linear, (2.2.1) implies 

   T(c1x1 + …+ cnxn) = 0 

  c1x1 +…+ cnxn = 0 

Thus T(x) = 0 only if x = 0. Now 

        T (x) = T(y)   T(x y) = 0        x  y = 0   x = y  

and so T is one-to-one.  This completes the proof of the theorem 

Definition. Let L(X, Y) be the set of all linear transformations of the vector space X into the vector space Y.  If T1, T2 

 L(X, Y) and if c1, c2 are scalars, then c1 T1 + c2 T2 is defined by  

   (c1T + c2T2) (x) = c1T1x + c2T2x, x X. 

It can be shown that c1 T1 + c2 T2  L(X, Y). 

Definition. Let X, Y, Z be vector spaces over the same field. If T, S  L(X, Y) we define their product ST by 

 (ST) (x) = S(Tx) , x X 

Also    ST  L(X, Y). 

Definition. Let R
n
 denote n-dimensional Euclidean space and let T L (R

n
, R

m
). Then 

   lub {|Tx | : x R
n
, |x|  1}  

is called Norm of T and is denoted by ||T||. The inequality 
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   |Tx|  ||T|| |x| 

holds for all x R
n
. Also if  is such that  

|Tx|  |x|, x  R
n
, then ||T||  . 

We are now in a position to prove the following theorem. 

Theorem. 2. Let T, S L (R
n
, R

m
) and c be a scalar. Then 

 (a)   ||T|| <  and T is uniformly continuous mapping of R
n
 into R

m
. 

 (b)   ||S + T||  ||T|| + ||S|| 

              ||CT|| = |C| ||T||. 

 (c) If d(T, S) = ||T S||, than d is a metric  

Proof. (a) Let  {e1, e2,…, en} be the standard basis in R
n
 and let x R

n
.  Then x = 

n

1i

ci ei.  Suppose |x| < 1 so that |ci| 

 1 for i = 1, 2, …n. Then  

   |Tx| = |  ciT ei|   |ci| |Tei| 

         |Tei| 

Taking lub over x R
n
, |x|  1 

   ||Tx||   

n

1i

|Tei| < . 

Further 

   |Tx  Ty| = |T(x y)|  ||T|| |x y| ; x, y, R
n
  

so if |x y| <  
||t||

, then 

   |Tx  Ty| < , x, y, R
n
. 

Hence T is uniformly continuous. 

 (b) We have 

   |(T + S) x | = |Tx + Sx| 

           |Tx| + |Sx| 

           ||T|| |x| + ||S|| |x| 

           = (||T||  ||S||) |x| 

Taking lub over x R
n
, |x|  1, we have 

   ||T +S||  ||T|| + ||S|| 

Similarly, it can be shown that 

   ||cT|| = |c| ||T||. 

(c) We have          d(T, S) = ||T S||  0 and d (T, S) = ||T  S|| = 0   T = S. 

Also           d(T, S) = ||T S|| = ||S T|| = d(S, T) 

Further, if S, T, U  L (R
n
 , R

m
), then 

         ||S  U|| = ||S  T + T  U|| 

         ||S  T|| + || T  U|| 

Hence d is a metric. 

Theorem. 3. If T  L(R
n
, R

m
) and S L (R

m
, R

k
), then 

   ||S T||  ||S|| ||T|| 

Proof. We have 

   |(ST) x| = | s(Tx)|  ||S|| | Tx| 

           ||S|| ||T|| |x| 

Taking sup. over x, |x|  1, we get 
   ||ST||  ||S|| ||T||. 

In Theorem 2, we have seen that the set of linear transformation form a metric space. Hence the concepts of 

convergence, continuity, open sets, etc make sense in R
n
. 

Theorem. 4. Let C be the collection of all invertible linear operator on R
n
 . 
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 (a) If T  C, ||T
1
|| =  

1
, S L (R

n
, R

n
) and ||S  T|| =  < , then S C. 

 (b) C is an open subset of L(R
n
, R

n
) and the mapping T  T

1
 is continuous on C. 

Proof. We note that  

   |x| = |T
1
 T x|  ||T

1
|| |Tx|  

              = 
1

 |Tx| for all x R
n
  

and so 

(2.2.2)   (  ) |x| = |x|  |x| 

         |Tx|   |x| 

         |Tx|  |(S T) x| 

         |Sx| for all x R
n
. 

Thus kernel of S consists of 0 only.  Hence S is one-to-one. Then theorem 1 implies that T is also onto. Hence S is 

invertible and so S  C. But this holds for all S satisfying ||S T|| < .  Hence every point of C is an interior point and 

so C  is open.   

Replacing x by S
1
 y in (2.2.2), we have  

   (  ) |S
1
 y|  |SS

1
 y| = |y| 

or   |S
1
 y|   

|| y
 

and so   ||S
1
||   

1
 

Since         S
1
  T

1
 = S

1
 (T  S) T

1
. 

We have 

(2.2.3)   ||S
1
  T

1
||  ||S

1
|| || T S|| ||T

1
|| 

             
)(

 

Thus if f is the mapping which maps T T
1
, then (2.2.3) implies 

   ||f(S)  f(T)||   
)(

||TS||
 

Hence, if ||S T|| 0 then f(S)  f(T) and so f in continuous. This completes the proof of the theorem. 

2.3. Total derivative of f defined on a subset E of R
n
.   

In one-dimensional case, a function f with a derivative at c can be approximated by a linear polynomial. In fact if f (c) 

exists, let r(h) denote the difference  

(2.3.1)   r(h) =  
h

)x(f)hx(f
 f (x) if h  0  

and let r(0) = 0.  Then we have 

(2.3.2)   f (x + h) = f (x) + h f (x) + h r(h), 

an equation which holds also for h = 0.  The equation (2.3.2) is called the First Order Taylor Formula for 

approximating f (x +h)  f(x) by h f (x).  The error committed in this approximation is h r(h). From (2.3.1), we 

observe that r(h)  0 as h  0.  The error h r(h) is said to be of smaller order than h as h 0.  We also note that hf (x) 

is a linear function of h.  Thus, if we write Ah = hf (x), then 

   A(a h1 + b h2) = aAh1 + bAh2 

The aim of this section is to study total derivative of a function f from R
n
 to R

m
 in such a way that the above said 

properties of h f (x) and h r(h) are preserved.  
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Definition. Suppose E is an open set in R
n
 and let f : E R

n
 be a function defined on a set E in R

n
 with values in R

m
. 

Let x E and h be a point in R
n
 such that |h| < r and x + h  B(x, r).  Then f is said to be differentiable at x if there 

exists a linear transformation A of R
n
 into R

m
 such that   

(2.3.3) f(x + h) = f (x) + Ah + r (h),  

where the remainder r(h) is small in the sense that 

    
||

|)(r|
lim

0h h

h
= 0. 

and we write f (x) = A. 

The equation (2.3.3) is called a First Order Taylor Formula. 

The equation (2.2.4) can bw written as  

(2.3.4)   
|h|

|hf(x)h)f(x| A
lim

0h
 = 0 

The equation (2.3.4) thus can be interpreted as “For fixed x and small n, f (x +h)  f (x) 

is approximately equal to f (x)h, that is, the value of a linear function applied to h.” 

Also (2.3.3) shows that f is continuous at any point at which f is differentiable  

The derivatives Ah derived by (2.3.3) or (2.3.4) is called total derivative of f at x or the differential of f at x. 

In particular, let f be a real valued function of three variables x,y, z say. Then f is differentiable  at the point (x, y, z) if 

it possesses a determinate value in the neighbourhood of this point and if f = f(x + x, y + y, z + z)  f(x, y, z) = 

A x + B y + C z  + , where  = | x| + | x| + | z|, 0 as 0 and A, B, C are independent of x, y, z. In this 

case A x + B y + C z is called differential of f at (x, y, z). 

Theorem 5. (Uniqueness of Derivative of a function).  Let E be an open set in R
n 

and f maps E in R
m 

and x E.  

Suppose h R
n
 is small enough such that x + h E.  Then f has a unique derivative. 

Proof. If possible, let there the two derivatives A1 and A2. Therefore 

   
||

A)(f|
lim 1

0 h

|hf(xh)x

h
= 0  

and   
||

A)(f|
lim 2

0 h

|hf(xh)x

h
= 0 

Consider B = A1  A2.  Then 

   Bh = A1h  A2h 

         = f(x +h) f(x) + f(x)  f(x +h) + A1h  A2h 

         = f (x +h) f (x)  A2h + f(x)  f(x +h) + A1h 

and so   |Bh| < |f (x +h) f(x) A1h |+| f(x+h)  f(x)  A2h| 

which implies 

  
||

A)(|

||

A)(|
lim

|B|
lim 22

0h0 h

|hf(xh)xf

h

|hf(xh)xf

h

h

h
 

                  = 0 

For fixed h  0, it follows that 

(2.3.5)   
|t|

|)t(B|

h

h
 0 as t 0 

The linearity of B shows that L.H.S. of (2.3.5) is independent of t. Thus Bh = 0 for all h R
n
. Hence B = 0, that is, A1 

= A2, which proves uniqueness of the derivative.  

The following theorem, known as chain rule, tells us how to compute the total derivatives of the composition of two functions. 

Theorem. 6. (Chain rule). Suppose E is an open set in R
n
 , f maps E into R

m
, f is differentiable at x0 will total 

derivative f (x0), g maps on open set containing f (E) into R
k
 and g is differentiable at f (x0) with total derivative g  
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(f(x0)). Then the composition map F = f o g mapping E into R
k
 and defined by F(x) = g(f(x)) is differentiable at x0 and 

has the derivative 

   F (x0) = g  (f(x0)) f (x0) 

Proof. Take 

   y0 = f(x0), A = f  (x0), B = g (y0) 

and define 

   r1(x) = f(x)  f(x0)  A(x x0) 

   r2(y) = g(y)  g(y0)  B(y y0) 

   r(x) = F(x)  F(x0)  BA(x x0) 

To prove the theorem it is sufficient to show that 

   F (x0) = BA, 

That is, 

(2.3.6)   
|xx|

r(x)

0

0 as x  x0 

But, in term of definition of F (x), we have  

r(x) = g(f(x))  g(y0) B(f(x) f(x0)  A(x x0)) 

so that 

(2.3.7)   r(x) = r2 (f(x)) + B r1 (x) 

If  >0, it follows from the definitions of A and B that there exist  > 0 and  > 0 such that 

   
||

|)(r|

0

2

yy

y
  if |y y0| <   

or   |r2(y)|   |y y0| if |y y0| < , i.e. if |f(x)  f(x)| <  

and   |r1(x)|   |x x0| if |x x0| < . 

Hence 

(2.3.8)   |r2 (f(x))|   |f(x)  f(x0) | 

        =  |r1(x) + A(x x0)| 

         
2
 |x x0| +  ||A||(x x0) 

and 

(2.3.9)   |B r1(x)|  ||B|| | r1(x)| 

       ||B|| |x x0|  if |x x0| < . 

Using (2.3.8) and (2.3.9), the expression (2.3.7) yields 

   |r(x)| < 
2
 |x x0| +  ||A|| |x x0| +  ||B|| |x x0|   

and so   
||

|)x(r|

0xx
  

2
 +  ||A|| +  ||B|| 

        =  [  + ||A|| + ||B||] if |x x0| <  

Hence   
||

|)x(r|

0xx
0 as x x0 

which in turn implies 

   F (x0) = BA = g (f(x0)) f (x0) 

2.4. Partial Derivatives. Let {e1, e2,…, en} be the standard basis of R
n
. Suppose f maps on open set E  R

n
 into R

m
 

and let f1, f2,…, fm be components of f. Define Dk fi on E by 

(2.4.1)   (Dk fi) (x) = 
0t

lim
t

)(f)t(f iki xex
 

provided the limit exists. 

Writing fi (x1, x2,…,xn) in place of fi(x), we observe that Dk fi is the derivative of fi with respect to xk, keeping the other 

variable fixed.  That is why, we use 

k

i

x

f
oftenly in place of Dk fi. 

Since f = (f1, f2,…, fn), we have 
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   Dk f(x) = (Dk f1(x), Dk f2(x),…, Dk fn(x)) 

which is partial derivative of f with respect to x
k
.    

Furthermore, if f is differentiable at x, then the definition of f (x) shown that 

(2.4.2)   
0t

lim
t

)()t( k xfhxf
= f  (x) hk 

If we take hk = ek, taking components of vector is (2.4.2), it follows that 

 “If f is differentiable at x, then all partial derivatives (Dk fi) (x) exist.” 

In particular, if f in real valued (m = 1), then (2.4.1) takes the form  

 (Dk f) (x) = 
0t

lim
t

)(f)t(f xx
  

For example, if f is a function of three variables x, y, and z, then  

   Df(x) = 
xΔ

)z,y,x()z,y,xΔx(
lim

0xΔ

ff
 

   Df(y) = 
yΔ

)z,y,x()z,yΔy,x(
lim

0yΔ

ff
 

and   Df(z) = 
zΔ

)z,y,x()zΔz,y,x(
lim

0zΔ

ff
 

and are known respectively as partial derivatives of f with respect to x, y, z. 

 The next theorem shown that Ah = f (x) (h) is a linear combination of partial derivatives of f 

Theorem. 7. Let E  R
n
 and let f : E R

n
 be differentiable at x (interior point of open set E).  If h = c1 e1 + c2 e2 +…+ 

cn en, where {e1, e2,…, en} is a standard basis for R
n
, then 

   f (x) (h) = 

n

1k

ck Dk f(x)  

Proof. Using the linearity of f  (x), we have 

   f (x) (h) = 

n

1k

 f (x) (ck eh) 

      = 

n

1k

ch f (x) eh 

But, by (2.4.2), 

   f (x) eh = (Dh f) (x) 

Hence    f (x) (h) = 

n

1k

ck Dk (f) (x) 

If f is real valued (m = 1), we have 

   f (x) (h) = (D1f(x), D2f(x),…, Dnf(x)). h. 

Definition. A differentiable mapping f of an open set E  R
n
 into R

m
 is said to be continuously differentiable in E if f  

is continuous mapping of E into L(R
n
, R

m
). 

 Thus to every  > 0 and every x E there exists a >0 such that 

   ||f (y)  f (x)|| <  if y E and |y x| < . 

 In this case we say that f is a C -mapping in E or that f C (E). 

Theorem. 8. Suppose f maps an open set E  R
n
 into R

m
.  Then f is continuously differentiable if and only if the 

partial derivatives Dj fi  exist and are continuous on E for 1  i  m, 1  j  n. 

Proof. Suppose first that f is continuously differentiable in E. Therefore to each x E and >0, there exist a >0 such 

that 

   ||f (y)  f (x)|| <  if y E and |y x| < . 



 

 

38 

We have then 

(2.4.3) |f(y) ej  f(x) ej| = |(f  (y) f (x)) (ej)| 

     ||f (y)  f (x)|| ||ej|| 

   = ||f  (y)  f (x)|| 

   <  if y E and |y x| < . 

Since f is differentiable, partial derivatives Dj fi exist. Taking components of vectors in (2.4.3), it follows that 

   |(Dj fi) (y)  Dj fi(x)| < , if y E and |y x| < .  

Hence Dj fi are continuous on E for 1  i  m, 1  j  n. 

Conversely, suppose that Dj fi are continuous on E for 1  i  m, 1  j  n. It is sufficient to consider one-dimensional 

case, i.e., the case m = 1. Fix x E and >0.  Since E is open, x is an interior point of E and so there is an open ball B 

 E with centre at x and radius r. The continuity of Dj f implies that r can be chosen so that 

(2.4.4)   |(Dj f) (y)  (Dj f) (x) | < ,
n

 y B, 1  j  n. 

Suppose h =  hj ej, |h| < r, and take v0 = 0 

and   vk= h1 e1 + h2 e2 +…+ hk ek for 1  k  n.   

Then 

(2.4.5)   f(x +h)  f(x) = 
n

1j

[f (x + vj)  f (x + vj 1)] 

Since |vh| < r for 1  k  n and since s is converse, the end points x + vj 1 and x + vj lie in s.  Further, since 

   vj = vj 1 + hj ej 

Mean Value Theorem implies 

(2.4.6)    f(x + vj)  f(x + vj 1) = f (x + vj 1 + hj ej)  f(x + vj 1) 

               = hj ej (Di f) (x + vj 1 + vj hj ej) 

for some  (0, 1) and by (2.4.4) this differ from hj (Di f) (x) by less than |hj|
n

.  Hence (2.4.5) gives 

   | f(x + h)  f(x) 
n

1j

hj (Di  f) (x)|  
n

1 n

1j

|hj|  

             = |h|  

for all h satisfying |h| < r. 

Hence f is differentiable at x and f (x) is the linear function which assigns the number  hj(Di f) (x) to the vector h =  

hj ej.  The matrix [f  (x)] consists of the row (Di f ) (x),…, (Dn f) (x). Since D1 f, D2 f,…, Dn f are continuous functions 

on E, it follows that f  is continuous and hence f C  (E). 

2.5. Classical Theory for Functions of more than one Variable   

Consider a variable u connected with the three independent variables x, y and z by the functional relation 

   u = u (x, y, z) 

If arbitrary increments x, y, z are given to the independent variables, the corresponding increment u of the dependent 
variable of course depends upon the three increments assigned to x, y and z. 

Definition. A function u = u(x, y, z) is said to be differentiable at the point (x, y, z) if it possesses a determinate value 

in the neighbourhood of this point and if.  

   u = A x + B y + C z + , 
where  = | x| + | y| + | z|, 0, as 0 and A, B, C are independent of x, y, z. 

In the above definition  may always be replaced by , where 

    = 
222 zΔyΔxΔ  

Definition. If the increment ratio 

   
xΔ

)z,y,x(u)z,y,xΔx(u
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tends to a unique limit as x tends to zero, this limit is called the partial derivative of u with respect to x and is 

written .uor
x

u
x  

Similarly 
z

u
and

dy

u
can be defined. 

The differential coefficients:  If in the equation 

   u = A x + B y, + C z +  

we suppose that y = z = 0, then, on the assumption that u is differentiable at the point (x, y, z), 
   u = u(x + x, y, z)  u (x, y, z) 

               = A x + | x| 

and dividing by x,  

   
xΔ

)z,y,x(u)z,y,xΔx(u
= A +  

and by taking the limit as x 0, since 0 as x 0, we get A
x

u
 

 Similarly .C
z

u
andB

y

u
 

Hence, when the function u = u(x, y, z) is differentiable, the partial derivatives 
z

u
,

y

u
,

x

u
are respectively the 

differential coefficients A, B, C and so 

   u = ρzΔ
z

u
yΔ

y

u
xΔ

x

u
 

The differential of the dependent variable du is defined to be the principal part of u so that the above expression may be written 
as  

   u = du + . 

Now as in the case of functions of one variable, the differentials of the independent variables are identical with the arbitrary 
increments of these variables.  It we write u = x, u = y, u = z. respectively, it follows that 

   dx = x, dy = y, dz = z 

Therefore, expression for du reduces to 

   du = dz
z

u
dy

y

u
dx

x

u
 

The distinction between derivatives and differential coefficients 

We know that the necessary and sufficient condition that the function y = f(x) should be differentiable at the point x is 

that it possesses a finite definite derivative at that point.  Thus for  functions of one variable, the existence of the 

derivative f (x) implies the differentiability of f(x) at any given point.    

For functions of more than one variable this is not true. If the function u = u (x, y, z) is differentiable at the point (x, y, 

z), the partial derivatives of u with respect to x, y and z certainly exist and are finite at this point, for then they are 

identical with differential coefficients A, B and C respectively. The partial derivatives, however, may exist at a point 

when the function is not differentiable at that point. In other words, the partial derivatives need not always be 

differential coefficients.   

Example.1. Let f be a function defined by f(x, y) = ,
yx

yx
22

33

where x and y are not simultaneously zero, f(0, 0) = 0. 

If this function is differentiable at the origin, then, by definition,  

(2.5.1)   f(h, k)  f(0, 0) = Ah + Bk + ,     (1) 

where  = 
22 kh and 0 as 0. 
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Putting h =  cos , k =  sin  in (2.5.1) and dividing through by , we get 

   cos
3

  sin
3

 = A cos  + B sin  + . 

Since 0 as 0, we get, by taking the limit as 0 

   cos
3

  sin
3

 = A cos  + B sin  

which is impossible, since  is arbitrary. 

The function is therefore not differentiable at (0, 0).  But the partial derivative exist however, for  

   fx(0, 0) = 
0h

lim
h

)0,0()0,h( ff
= 

0h
lim 1

h

0h
 

   fy(0, 0) = 
0k

lim
k

)0,0()k,0( ff
= 

0k
lim 1

k

k
. 

Example. 2.   f(x, y) = 

0yxif0

0yxif
yx

xy 22

22  

Then    fx(0, 0) = 0 = fy(0, 0) 

and so partial derivatives exist. If it is different, then  

df = f (h, k)  f(0, 0) = Ah + Bh + , where A = fx(0, 0) B = fy (0, 0),  

This yields  

 

 
22 kh

hh
= 

22 hh ,  = 
22 kh  

 or          hk = h
2
 + k

2
  

Putting k = mh we get 

          mh
2
 = h

2
 (1+m

2
)  

 or 
2m1

m
 =   

Hence  
0k

lim     
2m1

m
 = 0 ,  

which is impossible. Hence the function is not differentiable at the origin.  

Remarks: 

1. Thus the information given by the existence of the two first partial derivatives is limited.  The values of fx(x, y) and 

of fy(x, y) depend only on the values of f(x, y) along two lines through the point (x, y) respectively parallel to the axes 

of x and y.  This information is incomplete, and tells us nothing at all about the behaviour of the function f(x, y) as the 

point (x, y) is approached along a line which is inclined to the axis of x at any given angle  which is not equal to 0 or 

/2. 

2. Partial derivatives are also in general functions of x, y and z which may posses partial derivatives with respect to 

each of the three independent variables, we have the definition 

 (i) 
xΔ

)z,y,x(u)z,y,xΔx(u
lim

x

u

x

xx

0xΔ
  

 (ii) 
yΔ

)z,y,x(u)z,yΔyx(u
lim

x

u

y

xx

0yΔ
  

 (iii) 
zΔ

)z,y,x(u)zΔz,y,x(u
lim

x

u

z

xx

0zΔ
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Provided that each of these limits exist.   We shall denote the second order partial derivatives by 

xy

u
,uor

x

u 2

xx2

2

or uyx and 
xz

u2

or uzx. 

Similarly we may define higher order partial derivatives of 
z

u
and

y

u
.  

The following example shows that certain second partial derivatives of a function may exist at a point at which the function is not 
continuous.  

Example. 3. Let  (x, y) = 
yx

yx 33

when x  y 

   (x, y) = 0 when x = y. 

This function is discontinuous at the origin. To show this it suffices to prove that if the origin is approached along different path, 
(x, y) does not tend to the same definite limit. For, if (x, y) were continuous at (0, 0), (x, y) would tend to zero (the value of the 

function at the origin) by what ever path the origin were approached.  

Let the origin be approached along the three curves 

 (i) y = x  x
2
,   (ii) y = x  x

3
,  (iii) y = x  x

4
  ; 

then we have 

 (i) (x, y) = 
2

43

x

)x(0x2
0 as x 0 

 (ii) (x, y) = 
3

43

x

)x(0x2
z as x 0 

 (iii) (x, y) = 
4

43

x

)x(0x2
 as x 0 

Certain partial derivatives, however, exist at (0, 0), for if x,x denote 
xx

we have, for example, 

   x(0, 0) = 
0h

lim
h

)0,0()0,h(
= 

0h
lim 0

h

h 2

, 

   xx(0, 0) = 
0h

lim
h

)0,0()0,h( xx

0h
lim  ,2

h

h2
 

since (x, 0) = x
2
, x(x, 0) = 2x when x  0. 

The following example shows that uxy is not always equal to uyx. 

Example. 4. Let 

   f(x, y) = 
22

22

yx

)yx(xy
 

   f(0, 0) = 0. 

When the point (x, y) is not the origin, then  

(2.5.2)   
222

22

22

22

)yx(

yx4

yx

yx
y

x

f
        

(2.5.3)   
222

22

22

22

)yx(

yx4

yx

yx
x

y

f
       

while at the origin, 
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(2.5.4)   fx(0, 0) = 
0h

lim 0
h

)0(,)0,h( ff
      

and similarly fy(0, 0) = 0. 

From (2.5.2) and (2.5.3) we see that 

(2.5.5)   fx(0, y) = y (y  0)        

(2.5.6)   fy(x, 0) = x  (x  0)        

Now we have, using (2.5.4), (2.5.5) and (2.5.8) 

   fxy (0, 0) = 
0h

lim 1
h

h
lim

h

)0,0()0,h( yy ff
 

   fyx (0, 0) = 
0k

lim 1
k

k
lim

k

)0,0()k,0( xx ff
 

and so fxy (0, 0)  fyx(0, 0). 

Example. 5. Prove that the function 

   f(x, y) = (|xy|)
1/2

 

is not differentiable at the point (0, 0), but that 
y

and
x

ff
both exist at the origin and have the value zero. 

Hence deduce that these two partial derivatives are continuous except at the origin.  

Solution.  We have 

   0
)0,0()0,h(

lim)0,0(
x 0h h

fff
 

   fy(0, 0) = 0
k

)0,0()k,0(
lim

0k

ff
 

If f(x, y) is differentiable at (0, 0), then we must have  

   f(h, k) = 0.h + 0.k +  
22 kh  

where 0 as 
22 kh 0 

Now    = 
22

2/1

kh

|hk|
 

Putting h =  cos , k =  sin , we get 

    = |θcosθsin|  

  |θcosθsin|lim
0ρ

  |sinθcos| =0 which is impossible for arbitrary 0. 

Hence, f is not differentiable. 

Now suppose that (x, y)  (0, 0). Then  

   
x

f
= 

0h
lim

h

)y,x()y,hx( ff
 

         = 
0h

lim  
h

|xy||y)hx(|
 

         = 
0h

lim  
|xy|y)hx(h

|xy||y)hx(|
= 

0h
lim |y|

]|x|hx[h

|x||hx|
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Now, we can take h so small that x + h and x have the same sign.  Hence the limit is 
|x|

|y|

2

1
or

|xy|2

|y|
.  

Similarly 
|y|

|x|

2

1
or

|xy|2

|x|

y

f
 Both of these are continuous except at (0, 0). 

We now prove two theorems, the object of which is to set out precisely under what conditions it is allowable to 

assume that  

   fxy (a, b) = fyx (a, b) 

Theorem. 9. (Young) If (i) fx and fy exist in the neighbourhood of the point (a, b) and (ii) fx and fy are differentiable at 

(a, b); then  

   fxy = fyx 

Proof. We shall prove this theorem by taking equal increments h both for x and y and calculating 
2
 f in two different 

ways, where  

   
2
 f = f(a + h, b + h)  f (a +h, b)  f(a, b+h) + f(a, b). 

Let    

          H(x) = f(x, b+h)  f(x, b) 

Then, we have 

   
2
 f = H(a +h)  H(a) 

Since fx exists in the neighbourhood of (a, b), the function H(x) is derivable in (a, a+h).  Applying Mean Value 

Theorem to H(x) for 0 <  < 1, we obtain 

   H(a + h)  H(a) = h H (a + h). 

Therefore 

(2.5.7)   
2
f = hH (a + h) 

         = h[fx (a + h, b + h)  fx (a + h, b)] 

By hypothesis (ii) of the theorem, fx(x, y) is differentiable at (a, b) so that  

   fx(a + h, b+h)  fx(a, b) = hfxx (a, b) + h fyx (a, b) +  h 

and    

   fx (a + h, b)  fx(a, b) = h fxx + h , 

where  and  tend to zero as h 0. Thus, we get (on subtracting) 

   fx(a + h, b+h)  fn (a + h, b) = hfyx (a, b) + h (   ) 

Putting this value in (1), we obtain  

(2.5.8) 2
f = h

2
 fyx + 1 h

2
,  

where 1 =   , 

so that 1 tends to zero with h . 

Similarly, if we take 

   K(y) = f(a + h, y)  f(a, y), 

Then we can show that 

(2.5.9)   
2
f = h

2
 fxy + 2 h

2
 

where 2 0 with h. 

From (2.5.8) and (2.5.9), we have 

   
2

2

h

f
= fyx (a, b) 1 = fxy(a, b) + 2 

Taking limit as h 0, we have 

    
0λ

lim
2

2

h

Δ f
= fyx (a, b) = fxy (a, b) 

which establishes the theorem. 

Theorem. 10. (Schwarz). If (i) fx, fy, fyx all exist in the neighbourhood of the point (a, b) and (ii) fyx  is continuous at (a, 

b), then fxy also exists at (a, b) and fxy = fyx. 
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Proof. Let (a + h, b + k) be point in the neighbourhood of (a, b). Let (as in the above theorem) 

   
2
f = f(a+ h, b+k)  f(a + h, h)  f(a, b + k) + f (a, b) 

and     

         H(x) = f(x, b + k)  f(x, b), 

so that we have 

   
2
f = H(a +h)  H(a). 

Since fx exists in the neighbourhood of (a, b), H(x) is derivable in (a, a+h). 

Applying Mean Value Theorem for 0 < 0 < 1, we have 

   H(a + h)  H(a) = hH (a + h) 

and therefore 

   
2
f = hH (a + h) = h [fx (a + h, b+k)  fx (a + h, h)]. 

Now, since fyx(x) exists in the neighbourhood of (a, b), the function fx is derivable with respect to y in (b, b+k). 

Therefore by Mean Value Theorem, we have      

   
2
f = hk fyx (a + h, b + k) , 0 <  < 1 

That is  

             
k

)b,a(f)kb,a(f

k

)b,ha(f)kb,ha(f

h

1
= fyx (a + h, b + k) 

Taking limit as k tends to zero, we obtain 

(2.5.10)  
h

1
[(a + h, b)  fy (a, b)] = lim [fyx(a + h, b+ k)] 

         = fyx(a + h, b)     

Since fyx is given to be continuous at (a, b), we have 

   fyx (a + h, b) = fyx(a, b) + , 

where 0 as h  0. 

Hence taking limit as h  0 in (2.5.10), we have 

   
0h

lim
h

)b,a(f)b,ha(f yy
= 

0h
lim  [fyx (a, b) + ] 

that is,    fxy (a, b) = fyx(a, b) 

This completes the proof of the theorem 

Remark.  The condition of Young or Schwarz‟s Theorem are sufficient for fxy = fyx but they are not necessary. For 

example, consider the function  

   f(x, y) = 

0yx,0

0y,0x,
yx

yx
22

22

 

We have  fx(0, 0) = 
0h

lim
h

)0,0()0,h( ff
= 0 

   fy(0, 0) = 
0k

lim
k

)0,0()k,0( ff
= 0 

Also, for (x, y)  (0, 0), we have 

   fx(x, y) = 
222

4

222

22222

)yx(

xy2

)yx(

x2.yxxy2)yx(
 

   fy(x, y) = 
222

4

)yx(

yx2
 

Again    fyx (0, 0) = 
0k

lim
k

)0,0()k,0( xx ff
= 0 and fxy (0, 0) = 0 
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So that fyx (0, 0) = fxy (0, 0) 

For (x, y)  (0, 0), we have fyx(x, y) = 
422

2242223

)yx(

)yx(y4.xy2)yx(xy8
 

              = 
222

33

)yx(

yx8
 

Putting y = mx, we can show that 

   
)0,0()y,x(

lim fyx  0 = fyx(0, 0) 

so that fxy is not continuous at (0, 0). Thus the condition of Schwarz‟s theorem is not satisfied. 

 To see that conditions of Young‟s Theorem are also not satisfied,  we notice that 

   fxx(0,0) =
0h

lim
h

)0,0()0,h( xx ff
= 0  

If fx is differentiable at (0, 0) we should have 

   fx(h, k)  fx(0, 0) = fxx(0, 0). h + fyx(0, 0). k +  

   
222

4

)kh(

hk2
=  , where 0 as 0. 

Put h =  cos , k =  sin , then  = 
22 kh =  

so we have 

   
4

44

ρ

θsinρ.θcosρ2
=  

i.e. 2 cos  sin
4
  =  

Taking limit as 0, we have 

   2 cos  sin
4
  = 0 

which is impossible for arbitrary  

Euler’s theorem on homogeneous functions. 

Definition. A function f(x, y, z,…) is a homogeneous function of degree n if it has the property 

   f(tx, ty, tz,…) = t
n
 f(x, y, z,…)     (1) 

 (1) To prove Euler‟s theorem, write x  = tx, y  = ty,…, then 

   f(x , y , z ,…) = t
n
 f(x, y, z,…)      (2) 

and if we take partial derivatives with respect to t, we get  

   
t

'y
.

'yt

'x
.

x

ff
+…= n t

n 1
 f(x, y, z), 

that is, 

   x
'y

y
'x

ff
+… = nt

n 1
 f(x, y, z) 

Now put t = 1, so that x  = x, y  = y,… and we get 

   x
y

y
x

ff
+…= nf(x, y,)      (3) 

which is known as Euler’s theorem. 

(2) Differentiate the equation (2) m times; since t is the only independent variable, we have 

   d
m
f = n(n 1)…(n m+1) t

n m
 f(x, y, z,…) dt

m
 

Now   d
m
f = 

m

m

m
m

m

m

'dy
'y

'dx
'x

ff
+…, 

and since x
m
 = t

m
 x

m
, y

m
 = t

m
 y

m
 ,…, when t = 1 we get 
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m

...
y

y
x

x  f(x, y, z) = n(n 1)…(n m+1) f(x, y, z,…) 

which is the generalization of Euler‟s theorem.  

2.6. In view of Taylor‟s theorem for functions of one variable, it is not unnatural to expect the possibility of expanding 

a function of more than one variable f(x + h, y + k, z + l,) in a series of ascending powers of h, k, l, To fix the ideas, 

consider a function of two variables only; the reasoning in the general case is precisely the same.  

Taylor’s Theorem.  If f(x, y) and all its partial derivatives of order n are finite and continuous for all point (x, y) in 

the domain a  x  a + h, b  y  b + k, then  

  f(a + h, b+k) = f (a, b) + df(a, b) + 
2|

1
d

2
 f (a, b) +…+ 

1n|

1
d

n 1
 f(a, b) + Rn  

where        Rn = 
n|

1
d

n
 f(a h, b + k), 0 < 0 < 1. 

Proof.  Consider a circular domain of centre (a, b) and radius large enough for the point (a + h,    b + k) to be also with 

in the domain. Suppose that f(x, y) is a function such that all the partial derivatives of order n of f(x, y) are continuous 

in the domain. Write 

  x = a + ht, y = b+kt, 

so that, as t ranges from 0 to 1, the point (x, y) moves along the line joining the point (a, b) to be point (a +h, b+k); 

then  

   f(x, y) = f(a + ht, b + kt) = (t). 

Now, (t) = f,d
y

f
k

x

f
h

dt

dy
.

y

f

dt

dx
.

x

f
 

and similarly 

   (t) = d
2
f,…, 

(n)
(t) = d

n
(f).. 

We thus see that (t) and its n derivatives are continuous functions of t in the interval 0  t  1, and so, by Maclaurin’s theorem 

   (t) = (0) + t (0) + 
2|

t 2

(0) +…+ 
n|

t n
(n)

 ( t), 

where 0 <  < 1.  Now put t = 1 and observe that  

   (1) = f (a + h, b+k), (0) = f (a, b), (0) = d f(a, b) 

   (0) = d
2
f (a, b),…., 

(n)
 (  t) = d

n
 f (a + h, h + k). 

It follows immediately that 

(2.5.11) f (a + h, b + k) = f(a, b) + d f (a, b) + 
2|

1
d

2
 f(a, b) +… 

           + 
1n|

1
d

n 1
 f(a, b) + Rn  

where Rn = 
n|

1
 d

n
 f(a + h, b + k), 0 <  < 1. 

We have assumed here that all the partial derivatives of order n are continuous in the domain in question.  Taylor 

expansion does not necessarily hold if these derivatives are not continuous. 

Maclaurin’s theorem. If we put a = b = 0, h = x, k = y, we get at once, from the equation 

   f(a + h, b + k) = f(a, b) + df (a, b) + 
2|

1
d

2
 f(a, b) + 

            +
1n|

1
 d

n 1
 f(a, b) + Rn 
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where    Rn = 
n|

1
d

n
 f(a + h, b + k), 0 < 0 < 1, 

that    f(x, y) = f(0, 0) + df(0, 0) + 
2|

1
d

2
 f(0, 0) +…+ 

1n|

1
 d

n 1
 f(0, 0) + Rn 

where   Rn = 
n|

1
d

n
 f (0x, h), 0 <  < 1. 

The theorem easily extend to any number of variables.  

Example. 6. If f (x, y) = (|x y|)
1/2

, prove that Taylor‟s expansion about the point (x, x) is not valid in any domain which 

includes the origin. Give reasons. 

Solution. If a Taylor expansion were possible (n = 1) 

   f(x + h, x + h) = f(x, x) + h {fx( , ) + fy( , )} 

where x <  < x + h. This is not valid for all x, h for it implies that  

    |x + | = |x| + h,   0 

    = |x|,  = 0 

(The reason is that the partial derivatives 
z

and
x

ff
are not continuous at the origin). 

2.7. Implicit functions 

Let  F(x1, x2,…, xn, u) = 0       (1) 

be a functional relation between the n + 1 variables x1,…, xn, u and let x = a1, x2 = a2,…, xn = an be a set of values such 

that the equation 

   F(a1,…, an, u) = 0       (2) 

is satisfied for at least one value of u, that is the equation (2) in u has at least one root. We may consider u as a 

function of the x‟s : u = (x1, x2,…, xn) defined in a certain domain, where         (x1, x2,…, xn) has assigned to it at 

any point (x1, x2,…, xn) the roots u of the equation (1) at this point. We say that u is the implicit function defined by 

(1). It is, in general, a many valued function. 

More generally, consider the set of equations 

   Fp (x1,…, xn, u1,…, um) = 0 (p = 1, 2,…, m)    (3) 

between the n +m variables x1,…, xn, u1,…, um and suppose that the set of equations (3) are such that there are points 

(x1, x2,…, xn) for which these m equations are satisfied for at least one set of values u1, u2,…, um. We may consider the 

u‟s as functions of the x‟s, 

   up = p (x1, x2,…, xn) ( p = 1, 2,…, m)  

where the functions  have assigned to them at the point (x1, x2,…, xn) the values of the roots u1, u2,…, um at this 

point.  We say that u1, u2,…, um constitute a system of implicit functions  defined by the set of equation (3).  These 

functions are in general many valued.  

Theorem. 12 (Existence Theorem). Let F(u, x, y) be a continuous function of the variables u, x, y.  Suppose that  

 (i) F(u0, a, b) = 0 

 (ii) F(u, x, y) is differentiable at (u0, a, b)  

 (iii) The partial derivative 
u

F
(u0, a, b)  0 

Then there exists at least one function u = u (x, y) reducing to u0 at the point (a, b) and which, in the neighbourhood of 

this point, satisfies the equation F (u, x, y) = 0 identically. 

Also, every function u which possesses these two properties is continuous and differentiable at the point (a, b).  
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Proof. Since F(u0, a, b) = 0 and 
u

F
(u0, a, b)  0, the function F is either an increasing or decreasing function of u 

when u = u0. Thus there exists a positive number  such that F(u0  , a, b) and F(u0 + , a,b) have opposite signs. 

Since F is given to be continuous, a positive number  can be found so that the functions 

   F(u0  , x, y) and F(u0 + , x, y) 

the values of which may be as near as we please to 

   F(u0  , a, b) and F(u0 + , a, b) 

will  also have opposite signs so long as |x  a| <  and |y b| < . 

Let x, y be any two values satisfying the above conditions.  Then F(u, x, y) is a continuous function of u which 

changes sign between u0  and u0 +  and so vanishes somewhere in this interval.  Thus for these x and y there is a u 

in [u0  , u0 + ] for which F(u, x, y) = 0. This u is a function of x and y, say u (x, y) which reduces to u0 at the point 

(a, b). 

Suppose that u, x, y are the increments of such function u and of the vanishes x and y measured from the point (a, 

b).  Since F is differentiable at (u0, a, b), we have 

   F = [Fu(u0, a, b) + ] u + [Fx(u0, a, b) + ] x 

          + [Fy (u0, a, b) + ] y = 0 

since F = 0 because of F = 0. The numbers , ,  tend to zero with u, x and y and can be made as small as 

we please with  and .  Let  and  be so small that the numbers , ,  are all less than 
2

1
|Fu(u0, a, b)|, which is 

not zero by our hypothesis. The above equation then shows that u 0 as x 0 and y 0 which means that the 

function u = u(x, y) is continuous at (a, b). 

Moreover, we have  

u = 
)b,a,u(F

yΔ]'')b,a,u(F[xΔ]')b,a,u(F[

0u

0y0x
 

        =  
)b,a,u(F

)b,a,u(F
xΔ

)b,a,u(F

)b,a,u(F

0u

0y

0u

0x
y + 1 x + 2 y, 

1 and 2 tending to zero as  x and y tend to zero.  

Hence u is differentiable at (a, b). 

Cor.1. If 
u

F
exists and is not zero in the neighbourhood of the point (u0, a, b), the solution u of the equation F = 0 is 

unique.  

Suppose that there are two solutions u1 and u2.  Then we should have, by Mean Value Theorem, for u1 < u  < u2 

     = F(u1, x, y)  F(u2, x, y) = (u1  u2) Fu(u , x, y) , 

and so Fu (u, x, y) would vanish at some point in the neighbourhood of (u0, a, b) which is contary to our hypothesis 

Cor. 2. If F(u, x, y) is differentiable in the neighbourhood of (u0, a, b), the function u = u(x, y) is differentiative in the 

neighbourhood of the point (a, b).  

This is immediate, because the preceding proof is then applicable at every point (u, x, y) in that neighbourhood. 

Corollary 1 is of great importance, for by considering a function of wo variables only,              F(u, x) = 0, and taking 

F(u, x) = f(u) x, we can enunciate the fundamental theorem on inverse functions as follows. 

Theorem. 13 (Inverse Function Theorem).  If, in the neighbourhood of u = u0, the function f(u) is a continuous 

function of u, and if (i) f(u0) = a, (ii) f (u)  0 in the neighbourhood of the point u = u0, then there exists a unique 

continuous function u = (x), which is equal to u0 when x = a, and which satisfied identically the equation 

   f(u)  x = 0, 

in the neighbourhood of the point x = a. 

The function u = (x) thus defined is called the inverse function of x = f(u). 

2.8. Extreme Values 
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Definition. A function f(x, y, z) of several independent variables x, y, z,… is said to have an extreme value at the 

point (a, b, c,…) if the increment 

 f = f(a + h, b + k, c +l ) f (a, b, c)  

preserves the same sign for all values of h, k, l, whose moduli do not exceed a sufficiently small positive number . 

If f is negative, then the extreme value is a maximum and if f is positive it is a minimum. 

Now we find necessary and sufficient conditions for extreme values. We will consider a function of two independent variables. 

By Taylor‟s theorem we have 

   f(x + h, y + k,…)  f(x, y, …) = h
y

k
x

ff
+…+ terms of the second and higher orders.  

Now by taking h, k, l, sufficiently small, the first degree terms can be made to govern the sign of the right hand side 

and therefore of the left side also, of the above equation, therefore by changing the sign of h, k, l, the sign of the left 

hand member would be changed.  Hence as a first condition for the extreme value we must have  

   h 
z

l
y

k
x

fff
+  …  =  0, 

and since these arbitrary increments are independent of each other, we must have 

   ,0
z

,0
y

,0
x

fff
 … 

which are necessary conditions for extreme points. These conditions are not sufficient for extreme points.  

To find sufficient conditions we will consider only the case of two variables.  

Let f  be a real valued function of two variables.  Let (a, b) be an interior point of the domain of f such that f admits of 

second order continuous partial derivatives in this neighbourhood.  We suppose that fx(a, b) = 0 = fy(a, b). 

We write r, s, t for the values of 
2

22

2

2

y
,

yx
,

x

fff
respectively when x = a and y = b.  That is, 

   fx,x(a, b) = r, fx, y(a, b) = S, fy,y(a, b) = t 

If (a  + h, b + k) is any point of neighbourhood of (a, b), then by Taylor‟s theorem we have  

   f(a  h, b +k)  f(a, b) = h fx(a, b) + k fy(a, b) 

               + 
2

1
[h

2
 fx,x(a, b) + 2 fxy(a, b) hk + k

2
 fy,y(a, b)] 

    + R3 = 
2

1
[h

2
 + 25hk + tk

2
] + R3   0)b,a(

y
)b,a(

x

ff
  

where R3 consists of terms of the third and higher orders of small quantities, and by taking h and k sufficiently small 

the second degree terms now can be made to govern the sign of the right hand side and therefore of the left hand side 

also.  If these terms are of permanent sign for all such values of h and k, we shall have a maximum or minimum for 

f(x, y,…) according as that sign is negative or positive. 

Now condition for the invariable sign of (r h
2
 + 25hk + tk

2
) is that rt  S

2
 shall be positive and the sign will be that of 

r. If rt  S
2
 is positive, it is clear that r and t must have the same sign. 

Thus, if rt  S
2
 is positive we have a maximum or minimum according as r and t are both negative or both positive.  

This condition was first pointed out by Lagrange and is known as Lagrange’s condition. 

If, However, rt = S
2
, the quadratic terms 

   rh
2
 + 2shk + tk

2
 becomes 

r

1
(hr + ks)

2
     (*) 

and are therefore of the same sign as r or t unless 

   B
r

S

k

h
say for which * vanishes 
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In this case we must consider terms of higher degree in the expansion f(a + h, h + k)  f(a, b).  The cubic term  must 

vanish collectively when 
k

h
= ; otherwise, by changing the sign of both h and k we could  change the sign of f(a + h, 

b + k)  f(a, b).  And the biquadratic terms must collectively be of the same sign as r and t when 
k

h
 = . 

If r = 0, S  0, * changes sign with k and there is no extreme value.  If r = 0 = S * does not change sign but it vanishes 

where h = 0 (without h = 0).  This is a doubtful case.  

In the case in which x, s, t are each of them zero, the quadratic terms are altogether absent, and the cubic terms would change 
sign with h and k and therefore all the differential coefficients of the third order must vanish separately when x = a and y = b and 

the biquadratic terms must be such that they retain the same sign for all sufficiently small values of h, k.  
 

Therefore we may state that 
The value f(a, b) is an extreme value of f(x, y) if 

   fx(a, b) = fy(a, b) = 0 
and if   fxx(a, b) fyy(a, b) > fxy

2(a, b) 
and the value is maximum or a minimum according as fxx (or fyy) is negative or positive. 

Example.7. Let  u = xy + ,
y

a

x

a 33

 

   

0
b

a
x

y

u

0
x

a
y

x

u

2

3

2

3

 putting x = a, y = a 

Hence 2
y

a2

y

u
,1

yx

u
,2

x

a2

x

u
3

3

2

22

3

3

2

2

 

Therefore r and t are +ve when x = a = y and rt  s2 = 2.2 1= 3 (+ve) therefore there is a minimum value of u, viz. u = 3a2. 

Example. 8. Let 

   f(x, y) = y
2
 + x

2
 y + x

4
. 

It can be verified that 

   fx(0, 0) = 0, fy (0, 0) = 0 

   fxx(0, 0) = 0, fyy(0, 0) = 2 

   fxy (0, 0) = 0. 

So, at the origin we have 

   fxx fyy = fxy
2
. 

However, on writing  

   y
2
 + x

2
y  + x

4
 = (y + ,

4

x3
)x

2

1 4
22

 

it is clear that f(x, y) has a minimum value at the origin, since 

   f = f(h, k)  f(0, 0) = 
4

h3

2

h
k

4
2

2

 

is greater than zero for all values of h and k.  

Example. 9. Let 
   f(x, y) = 2x

4
  3x

2
 y + y

2  

Then 0)0,0(
y

y2x3
y

;0)0,0(
x

xy6x8
x

23 ffff
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   r = 
2

2

x

f
= 24x

2
  6y = 0 at (0, 0), S = 

yx

2 f
= 6x = 0 at (0, 0) 

   t = 
2

2

y

f
= 2. Thus rt  S

2
 = 0.  Thus it is a doubtful case 

However, we can write f(x, y) = (x
2
 y) (2x

2
 y), f(0, 0) = 0 

   f(x, y)  f(0, 0) = (x
2

y) (2x
2

y) > 0 for y < 0 or x
2
 > y > 0 

           < 0 for y > x
2
 > 0

2

y
 

Thus  f does not keep the some sign mean (0, 0).  Therefore it does not have maximum or minimum at(0, 0).  

2.9. Lagrange’s Method of Undermined Multipliers  
Let u =  (x1, x2, xn) be a function of n variables which are connected by m equations 

   f1(x1, x2,…, xn) = 0, f2 (x1, x2,…, xn) = 0, …, fm (x1, x2,…, xn) = 0,  
so that only n m of the variables are independent.  

When u is a maximum or minimum 

   du = 0dx
x

u
...dx

x

u
dx

x

u
dx

x

u
n

n

3

3

2

2

1

1

 

Also   df1 = 0dx
x

...dx
x

dx
x

dx
x

n

n

1
3

3

1
2

2

1
1

1

1 ffff
 

   df2 = 0dx
x

...dx
x

dx
x

dx
x

n

n

1
3

3

1
2

2

1
1

1

1 ffff
 

………………………………………………………. 
   ………………………………………………………. 

   dfm = 0dx
x

...dx
x

dx
x

dx
x

n

n

m
3

3

m
2

2

m
1

1

m ffff
 

Multiplying these lines respectively by 1, 1, 2,…, n and adding, we get a result which may be written 
   P1 dx1 + P2 dx2 + P3 dx3 +…+ Pn dxn = 0  , 

where   Pr = 

r

m
m

r

2
2

r

1
1

r x
λ...

x
λ

x
λ

x

u fff
 

The m, quantities 1, 2,…, m are at our choice. Let us choose them so as to satisfy the m linear equations 
   P1 = P2 = P3…= Pm = 0 

The above equation is now reduced to 
   Pm+1 dxm+1 + Pm+2 dxm+2 +…+ Pn dxn = 0 

It is indifferent which n  m of the n variables are regarded as independent.  Let them be xm+1, xm+2, …, xn. Then since n m 
quantities dxm+1, dxm+2,…, dxn are all independent their coefficients must be separately zero.  Thus we obtain the additional n m 

equations  
   Pm+1 = Pm+2 =…= Pn = 0 

Thus the m + n equations 
   f1 = f2 = f3 =…= fm = 0 

and   P1 = P2 = p3 =…= Pn = 0 
determines the m multipliers 1, 2,…, m and values of the n variables x1, x2,…, xn for which maxima and minima values of u are 

possible.  

Example. 10. Find the length of the axes of the  section of the ellipsoid 1
c

z

b

y

a

x
2

2

2

2

2

2

by the plane lx + my + nz = 0 

Solution. We have to find the extreme values of the function r2 where r2 = x2 + y2 + z2, subject to the two equations of condition 

   01
c

z

b

y

a

x
2

2

2

2

2

2

, 

   lx + my + nz = 0 
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Then   x dx + y dy + z dz = 0       (1) 

   dx
a

x
2

+ 0dz
c

z
dy

b

y
22

      (2) 

   l dx + mdy + ndz = 0       (3) 

Multiplying these equation by 1, 1 and 2 and adding we get 

   x + 1 2a

x
+ 2 l = 0       (4) 

   y + 1 2b

y
+ 2 m = 0       (5) 

   z + 1 2c

z
+ 2 n = 0       (6) 

Multiplying (4), (5) and (6) by x, y, z and adding we get 

   (x2 + y2 + z2) + 1 2

2

2

2

2

2

c

z

b

y

a

x
+ 2 (lx, my + nz) = 0 

or   r2 + 1 = 0  1 = r2 

Hence from (4) (5) and (6) we have 

   x = 

1
c

r

n
z,

1
b

r

m
y,

1
a

r

l

2

2

2

2

2

2

2

2

2
 

But lx + my + nz = 0   2 22

22

22

22

22

22

cr

cn

br

bm

ar

al
= 0 and since 2  0, the equation giving the 

values of r2, which are the squares the length of the semi-axes required in the quadratic in r2 is  

 0
cr

cn

br

bm

ar

al
22

22

22

22

22

22

 

Example. 11. Investigate the maximum and minimum radii vector of the sector of “surface of elasticity” (x2 + y2 + z2)2 = a2 x2 + b2 
y2 + c2 z2 made by the plane lx + my + nz = 0 

Solution. We have 

   xdx + ydy + zdz       (1) 

   a2xdx + b2ydy + c2zdz = 0      (2) 

and    ldx + mdy + ndz = 0       (3) 

Multiplying these equations by 1, 1, 2 respectively and adding we get 

   x + a2x 1 + l 2 = 0       (4) 

   y + b2y 1 + m 2 = 0       (5) 

   z + c2 2 1 + n 2 = 0       (6) 

Multiplying by x, y, z respectively and adding we get 

   (x2 + y2 + z2) + (a2 x2 + b2y2 + c2 z2) 1 + (ln + my + nz) 2 = 0 
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   r2 + 1 r
4 = 0   1 = 

2r

1
 

   x = 
22

2
2

22

2
2

22

2
2

rc

nrλ
z,

rb

rmλ
y,

ra

rlλ
    

Then lx + my + nz = 0      
22

22
2

22

22
2

22

22
2

rc

rnλ
z,

rb

rmλ
y,

ra

rlλ
= 0 

   0
rc

n

rb

m

ra

l
22

2

22

2

22

2

 

It is a quadratic in r and gives its required values. 

Example. 12. Prove that the volume of the greatest rectangular parallelopiped that can be inscribed in the ellipsoid 

2

2

2

2

2

2

c

z

b

y

a

x
= 1 is 

33

abc8
. 

Solution. Volume of a parallelepiped is = 8xyz.  Its maximum value is to be find under the condition that it is inscribed in the 

ellipsoid 
2

2

2

2

2

2

c

z

b

y

a

x
= 1. We have 

   u = 8xyz 

   f1 = 
2

2

2

2

2

2

c

z

b

y

a

x
= 1. 

Therefore 

   du = 8yz dx + 8xz dy + 8xydz = 0     (1) 

   dfi = dz
c

z
dy

b

y
dx

a

x
2

2

2

2

2

2

= 0     (2) 

Multiplying (1) by 1 and (2) by  and adding we get 

   yz  
2a

x
 = 0        (3) 

   zx + 
2

2

b

y
 = 0        (4) 

   zy + 
2c

z
 = 0        (5) 

From (3), (4) and (5) we get  

          = 
z

xyc

y

zxb

x

yza 222

 

and so   
z

xyc

y

zxb

x

yza 222

 

Dividing throughout by x, y, z we get 
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2

2

2

2

2

2

z

c

y

b

a

a
  

Hence            
2

2

a

x3
 = 1 or x = 

3

a
 .  Similarly y = 

3

c
z,

3

b
 

It follows therefore that  

   u = 8 xyz = 

33

abc8
 

Example 13. Find the point of the circle x2 + y2 + z2 = k2, lx + my + nz = 0 at which the function u = ax2 + by2 + cz2 + 2fyz + 
2gzx + 2hxy attain its greatest and its least value. 

Solution. We have    

   u = ax2 + by2 + cz2 + 2fyz + 2gzx  + 2hxy 

   f1 = lx + my + nz = 0 

   f2 = x2 + y2 + z2 = k2 

Then   ax dx + by dy + czdz + fy dz + fz dy + gz dx + gx dz + hx dy + hydx = 0 

   l dx + mdy + ndz = 0 

   x dx + ydy + zdz = 0 

Multiplying by 1, 1, 2 respectively and adding 

   ax + ky, gz + 1l + 2x = 0 

   by + hx + fz + 1m + 2 y = 0 

   cz + gx + fy + 1 n + 2z = 0. 

Multiplying by x, y, z respectively and adding we get 

   u + 2 = 0  2 = u 

Putting this value in the above equation we have 

   x(a u) + hy + gz + l 1 = 0  

   hx + y(b u) + fz + m 1 = 0 

   gx + fy + z(c u) +n 1= 0 

   lx + my + zx + 0 = 0 

Eliminating x, y, z and 1 we get 

   

onml

nucg

mubh

lghua

f

f
= 0 Ans.  

Example. 14. If a, b, c are positive and  

   u = (a2 x2 + b2 y2 + c2z2)/x2y2z2, ax2 + by2 + cz2 = 1, 

show that a stationary value of u is given by  

   x2 = ,
)cμ(c2

μ
z,

)bμ(b2

μ
y,

)aμ(a2

μ 22
 

where  is the +ve root of the cubic 

   3  (bc + ca + ab)   2abc = 0 
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Solution. We have 

   u = 
222

222222

zyx

zcybxa
      (1) 

   ax2 + by2 + cz2 = 1       (2) 

Differentiating (1), we get  

    
2

2

2

2

3 y

c

z

b

x

1
dx = 0 

which on multiplication with x2 y2 z2 yields 

   
x

1
(b2y2 + c2z2) dz = 0      (3) 

Differentiating (2) we have 

    ax dx = 0        (4) 

Using Lagrange’s multiplier we obtain 

   
x

1
 (b2 y2 + c2 z2) =  ax 

i.e.   b2y2 + c2z2 =  ax2       (5) 

Similarly  c2z2 + a2x2 =  by2       (6) 

   a2x2 + b2y2 =  c z2+       (7) 

Then (6) +  (7)  (5) yields 

   2a2 x2 = (by2 + cz2  ax2) 

             = (a  2ax2) by (2) 

Therefore 

   2a (a + ) x2 =  

   x2 = 
)μa(a2

μ
 

Similarly   y2 = 
)μb(b2

μ
 and z2 = 

)cμ(c2

μ
 

Substituting these values of x2, y2 and z2 in (2) we obtain  

   1
)μc(2

μ

)μb(2

μ

)μa(2

μ
 

which is equal to  

   3  (bc + ca + ab)  2 abc = 0     (8) 

Since a, b, c are +ve, any one of (5), (6), (7) shows that  must be +ve. Hence  is the +ve root (8)  

2.10. Jacobians 

If u1, u2,…, un be n functions of the n variables x1, x2, x3,…, xn the determinant 
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n

n

2

n

1

n

n

2

2

2

1

2

n

1

2

1

1

1

x

u
,...,

x

u
,

x

u

.............................

x

u
,...,

x

u
,

x

u

x

u
,...,

x

u
,

x

u

 

is called the Jacobian of u1, u2,…, un with regard to x1, x2,…, xn.  This determinant is often denoted by 

   
)x,...,x,x(

)u,...,u,u(

n21

n21
,   J (u1, u2,…, un) 

or shortly J, when there can be no doubt as to the variables referred to 

Theorem. 14. If u1, u2,…, un are n differentiable functions of the n independent variables x1, x2,…,xn, and there exists an identical 
differentiable functional relation (u1, u2, …, un) = 0 which does not involve the x’s explicity, then the Jacobian 

   
)x,...,x,x(

)u,...,u,u(

n21

n21
 

vanishes identically provided that , as a function of the u’s has no stationary values in the domain considered. 

Proof. Since 

   (u1, u2,…, un) = 0, 

we have 

(2.10.1)  0du
u

...du
u

du
u

n

n

2

2

1

1

   

But 

(2.10.2)  

n

n

n
2

2

n
1

1

n
n

n

n

1
2

2

1
1

1

1
1

dx
x

u
...dx

x

u
dx

x

u
du

................................................................

dx
x

u
...dx

x

u
dx

x

u
du

  

and on substituting these values in (2.10.1) we get an equation of the form  

(2.10.3)  A1 dx1 + A2 dx2 +…+ An dxn = 0 

and since dx1, dx2,…, dxn are the arbitrary differentials of the independent variables, it follows that 

   A1 = 0, A2 = 0,…, An = 0 

In other words,  
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(2.10.4)  

0
x

u

u
...

x

u
.

ux

u
.

u

...................................................................

0
x

u

u
...

x

u
.

ux

u
.

u

0
x

u

u
...

x

u
.

ux

u
.

u

n

n

nn

2

2n

1

1

n

n

n2

2

22

1

1

1

n

n1

2

21

1

1

 

and since, by hypothesis, we cannot have 

   0
u

...
uu n21

 

on eliminating the partial derivatives of  from the set of equation (2.10.4) we get 

   0
)x,...,x,x(

)u,...,u,u(

n21

n21
 

which establishes the theorem. 

Theorem. 15. If u1, u2,…, un are n functions of the n variables x1, x2,…, xn say um = fm(x1, x2,…, xm), (m = 1, 2,…n), and if 

0
)x,...,x,x(

)u,...,u,u(

n21

n21
, then if all the differential coefficients concerned are continuous, there exists a functional relation 

connecting some or all of the variables u1, u2,…, un which is independent of x1, x2,…, xn 

Proof. First we prove the theorem when n = 2.  We have u = f(x, y), v = g (x, y) and  

   

y

v

x

v

y

u

x

u

= 0 

If v does not depend on y, then 
y

v
= 0 and so either 

y

u
 = 0 or else 0

x

v
.  In the former case u and v are functions of x 

only, and the functional relation sought is obtained from 

   u = f(x), v = g(x). 

by regarding x as a function of v and substituting in u = f(x).  In the latter case v is a constant, and the functional relation is  

   v = a 

If v does depend on y, since 
y

v
  0 the equation v = g(x, y) defines y as a function of x and v, say 

   y  =  (x, v), 

and on substituting in the other equation we get an equation of the form 

   u = F(x, v).  

(The fn. F [x, g (x, y)] is the same function of x and y as f(x, y)) 

Then 
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       0 = 

y

v

x

v

0
x

F

y

v

x

v

y

v

v

F

x

v
.

v

F

x

F

x

v

x

v

y

u

x

u

 

(obtained on multiplying the second now by 
u

F
and subtracting from the first) and so, either 

y

v
= 0, which is contrary to 

hypothesis or else 
x

F
=0, so that F is a function of v only ; hence the functional relation is 

   u = F(v)  

Now assume that the theorem holds for n 1. 

Now un must involve one of the variables at least, for if not there is a functional relation un = a.  Let one such variable be called 

xn Since 

n

n

x

u
 0 we can solve the equation 

   un = fn (x1, x2,…, xn) 

for xn in terms of x1, x2,…, xn 1 and un, and on substituting this value in each of the other equations we get n 1 equations of the 
form 

(2.10.5)  ur = gr (x1, x2,…, xn 1, un), (r = 1, 2,…, n 1)   (2) 

If now we substitute fn (x1, x2,…, xn) for un the functions gr (x1, x2,…, xn 1, un) become 

   fr (x1, x2,…, xn 1, xn), (r = 1, 2,…, n 1) 

Then  

  0 = 

n

n

2

n

1

n

n

2

2

2

1

2

n

1

2

1

1

1

x
,...,

xx

............................

x
,...,

xx

x
,...,

xx

fff

fff

fff

 

     = 

n

n

1n

n

1

n

n

n

n

2

1n

n

n

2

1n

2

1

n

n

2

1

2

n

n

n

1

1n

n

n

1

1n

1

1

n

n

1

1

1

x

u
,

x

u
..,..........,

x

u

.....................................................................................

x

u
.

u

g
,

x

u
.

u

g

x

g
,...,

x

u
.

u

g

x

g

x

u
.

u

g
,

x

u
.

u

g

x

g
,...,

x

u
.

u

g

x

g
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     = 

n

n

1n

n

1

n

1n

2

1

2

1n

1

1

1

x

u
,

x

u
,...,

x

u

.............................

0,
x

g
,...,

x

g

0,
x

g
,...,

x

g

 

by subtracting the elements of the last row multiplied by  

   

n

1n

n

2

n

1

u

g
,...,

u

g
,

u

g
 

from each of the others.  Hence 

   0
)x,...,x,x(

)g,...,g,g(
.

x

u

1n21

1n21

n

n
. 

Since 

n

n

x

u
 0  we must have 0

)x,...,x,x(

)g,...,g,g(

1n21

1n21
, and so by hypothesis there is a functional relation between g1, g2,…, 

gn 1, that is between u1, u2,…, un 1 into which un may enter, because un may occur in set of equation (2.10.5) as an auxiliary 
variable.  We have therefore proved by induction that there is a relation between u1, u2,…, un. 

Properties of Jacobian 

Lemma. If U, V are functions of u and v, where u and v are themselves functions of x and y, we shall have  

   
)y,x(

)v,u(
.

)v,u(

)V,U(

)y,x(

)V,U(
 

Proof. Let   U = f (u, v), V = F(u, v) 

   u = (x, y), v = (x, y) 

Then   
x

v

v

U

x

u
.

u

U

x

U
 

   
y

v

v

U

y

u
.

v

U

y

U
 

   
x

v

v

V

x

u
.

u

V

x

V
 

   
y

v

v

V

y

u
.

u

V

y

V
 

and    

y

v

x

v

y

u

x

u

v

V

u

V
v

U

u

U

)y,x(

)v,u(
.

)v,u(

)V,U(
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      =

y

v

v

V

y

u

u

V

x

u

v

V

x

u

u

V

y

v

v

U

y

u

u

U

x

v

v

U

x

u

u

U

 

   = 
)y,x(

)V,U(

y

V

x

V
y

U

x

U

 

The same method of proof applies if there are several functions and the same number of variables. 

Lemma. If J is he Jacobian of system u, v with regard to x, y and J  the Jacobian of x, y with regard to u, v, then J J  = 1. 

Proof. Let u = f(x, y) and v = F(x, y), and suppose that these are solved for x and y giving 

   x = (u, v) and y = (u, v), 

we then have an differentiating u = f(x, y) w.r.t u and v; = F(x, y) w.r.t u and v 

    

v

y
.

y

u

v

x

x

u
0

u

y
.

y

u

u

x

v

u
1

 obtained from u = f(x, y) 

u

y
.

y

v

v

x

x

v
1

u

y
.

y

v

u

x

x

v
0

obtained from v = F(x, y) 

Also          J J  = 

v

y

v

x
u

y

u

x

y

v

x

v

y

u

x

u

 

     = 

v

y
.

y

v

v

x

x

v
,

u

y
.

y

v

u

x

x

v

v

y
.

y

u

v

x

x

u
,

u

y
.

y

u

u

x

x

u

 

     = 1
10

01
 

Example15. If  u = x + 2y + z, v = x  2y + 3z 
    w = 2xy  xz + 4yz  2z2, 

prove that   
)z,y,x(

)w,v,u(
= 0, and find a relation between u, v, w. 

Solution. We have 
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z

w

y

w

x

w

z

v

y

v

x

v
z

u

y

u

x

u

)z,y,x(

)w,v,u(
 

 

      = 

z4y4xz4x2zy2

321

121

 

      = 

z3y2xy4z6x2zy2

241

001

 Performing c2 2c1 and c3 c1 

 
 

      = 
z3y2x0

20

z3y2xy4y6x2

24
Performing c1+2c2 

                = 0 
Hence a relation between u, v and w exists 

Now, 
   u = v = 2x + 4z 
   u v = 4y  2z 

   w = x(2y z) + 2z(2y 3) 
       = (x+2z) (2y z) 

                      4w = (u+v) (u v) 
   4w = u2  v2 

which is the required relation.  

Example. 16. Find the condition that the expressions px + qy + rz, p x + q y + r z are connected with the expression ax2 + by2 + 
cz2 + 2fyz + 2gzx + 2hxy. By a functional relation. 

Solution. Let 
   u = px + qy + rz 
   v = p  + q y + r z 

   w = ax2 + by2 + cz2 + 2fyz + 2gzx + 2hxy 
We know that the required condition is 

   0
)z,y,x(

)w,v,u(
 

Therefore   

   

z

w

y

w

x

w

z

v

y

v

x

v

z

u

y

u

x

u

 = 0 

But 
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'r
z

v
,'q

y

y
'p

x

v

r
z

u
,q

y

u
,p

x

u

 

   
x

w
= 2ax + 2hy + 2gz 

   
y

w
= 2hx + 2by + 2fz 

   
z

w
= 2gx + 2fy + 2cz 

Therefore 

   

cz2yf2gx2zf2by2hx2gz2hy2ax2

'r'q'p

rqp

= 0 

   0

cg

'r'q'p

rqp

,0

bh

'r'q'p

rqp

,0

gha

'r'q'p

rqp

ff

 

which is the required condition. 

Example. 17. Prove that if f(0) = 0, f (x) = then,
x1

1
2

 

   f(x) + f(y) = f 
xy1

yx
 

Solution. Suppose that 
   u = f(x) + f(y) 

   v = 
xy1

yx
 

Now    J (u, v) = 

y

v

x

v

y

u
,

x

u

 

      

  = 

2

2

2

2

22

)xy1(

x1

)xy1(

y1

y1

1

x1

1

= 0 

Therefore u and v are connected by a functional relation 
Let                 u = (v), that is, 

   f(x) + f(y) = 
xy1

yx
 

Putting y = 0, we get 
   f(x) + f(0) = (x) 

   f(x) + 0 = (x)     f(0) = 0 
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Hence   f(x) + f(y) = f 
xy1

yx
 

Example. 18. The roots of the equation in  
   (  x)3 + ( y)3 + ( z)3 = 0 

are u, v, w  Prove that 
)vu)(uw)(wv(

)yx)(xz)(zy(
2

)z,y,x(

)w,v,u(
 

Solution. Here u, v, w are the roots of the equation 3  (x + y + z) 2 + (x2 + y2 + z2)  
3

1
(x3 + y3 + z3) = 0 

Let   x + y + z = , x2 + y2 + z2 = , 
3

1
(x3 + y3 + z3) =     (1) 

and then  u +v +w = , vw + wu + uv = , uvw =     (2) 
Then from (1) 

  

222 zyx

z2y2x2

111

),y,x(

)z,,(
= 2 (y z) (z x) (x y)   (3) 

Again, from (3), we have 

   

uvwuvw

vuuwwv

111

)w,u,v(

),,(
= (v w) (w h) (u v)  (4) 

Then from (3) and (4) 

   
)vu)(uw)(wu(

)yx)(xz)(zy(
2

),y,x(

),,(
.

),,(

)w,v,u(

)z,y,x(

)w,v,u(
 

Example. 19. If , ,  are the roots of the equation in k : 

   ,1
kc

z

kb

y

ka

x
 

then  

          
)ac)(cb)(ba(

)αγ)(γβ)(βα(

)γ,β,α(

)z,y,x(
 

Solution. The equation in k is  
 k3 + k2 (a+b+c x y z) +k [ab + bc + ca x(b+c) y(c+a) z(a+b)]   (*) 

      + abc  bcx  cay  abz = 0 
Now , ,  are the roots of this equation.  Therefore 

    +  +  = (a +b +c) +x +y +z 
     +  +  = ab + bc + ca x(b+c) y (c+a) z (a+b) 

and  
        = abc + bcx + cay + abz. 

Then, we have 

   1 = 
α

z

α

y

α

x
 

   1 = 
β

z

β

y

β

x
 

   1 = 
γ

z

γ

y

γ

x
 

   +  = (b+c) 
α

z
)ba(

α

y
)ac(

α

x
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   +  = (b+c) 
β

z
)ba(

β

y
)ac(

β

x
 

   +  = (b+c) 
γ

z
)ba(

γ

y
)ac(

γ

x
 

    = bc 
α

z
ab

α

y
ca

α

x
 

    = bc 
β

z
ab

β

y
ca

β

x
 

    = bc 
γ

z
ab

γ

y
ca

γ

x
 

Now,   

γ

z

γ

y

γ

x

β

z

β

y

β

x
α

z

α

y

α

x

 

abcabc

)ba()ac()cb(

111

 

   = 

αβγαβγ

βααγγβ

111

 

Hence  

   
)γ,β,α(

)z,y,x(
(b c) c a) (a b) = ( ) ( ) ( ) 

   
)ba)(ac)(cb(

)αγ)(γβ)(βα(

)γ,β,α(

)z,y,x(
   

Second Method.  After the step (*) let a+b+c (x +y+z) = , ab + bc + ca x (b+a)  y(c+a) z (a+b) =  
     abc  bcx  cay  abz =     (1) 
    +  +  = ,  +  +  = ,  =     (2) 

then  

111

),,(

),,(
and

abcabc

)ba()ac()cb(

111

)z,y,x(

),,(
 

   = (a  b) (b c) (c a) =  ( ) ( ) ( ) 

Therefore  
)ac)(cb)(ba(

))()((

,,(

z,,(
.

,,(

)z,y,x(

,,(

)z,y,x(
    

Example. 20. Prove that the three functions U, V, W are connected by an identical functional relation if  

   U = x + u z, V = x y+z, W = x2 + y2 + z2  2yz 

and find the functional relation. 

Solution. Here 
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)yz(2)zy(2x2

111

111

z

W

y

W

x

W

z

V

y

V

x

V

z

U

y

U

x

U

)z,y,x(

)W,V,U(
 

               = 0

0)zy(2x2

011

011

 

Hence there exists some functional relation between U, V and W. 

Moreover, 

   U + V = 2x 

   U V = 2(y z) 

and   (U +V)2 + (U V)2 = 4(x2 + y2 + z2 2yz) 

           = 4W 

which is the required functional relation.  

Example. 21. Let V be a function of the two variables, x and y. Transform the expression  

   
2

2

2

2

y

V

x

V
 

by the formulae of plane polar transformation. 

   x = r cos , y = r sin . 

Solution. We are given a function V which is function of x and y and therefore it is a function of r and . From x = r cos  & y = r 
sin , we have 

   r = 
22 yx ,  = tan 1 y/x 

Now    

           
x

θ
.

u

V

x

r
.

r

V

x

V
 

         = cos 
r

sin

x
,cos

x

rV

r

sin

r

V
  

and    
y

θ
.

θ

V

y

r
.

r

V

y

V
 

         = sin 
r

cos

y
,sin

y

rV

r

cos

r

V
  

Therefore  
θr

θsin

r
θcos

x
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θr

θcos

r
θsin

y
 

Hence   
θr

θsin

r
θcos

x

V
2

2

θ

V

r

θsin

r

V
θcos  

            = cos  
θr

θsin

θ

V

r

θsin

r

V
θcos

r θ

V

r

θsin

r

V
θcos  

            = cos  
θx

V

r

θsin

θ

V

r

θsin

r

V
θcos

2

22

2

   

          
r

θsin
2

22 V

r

sinV

r

cos

r

V
sin

rx

V
cos  

          = cos2  
2

2

2

22

2

2

θ

V

r

θsin

θr

V

r

θcosθsin
2

r

V
 

           + 
θ

V

r

θcosθsin2

r

V

r

θsin
2

2

   (1) 

and      
θ

V

r

θcos

r

V
θsin

θr

θcos

r
θsin

y

V
2

2

 

           = sin 
θ

V

r

θcos

r

V
θsin

θr

θcos

θ

V

r

θcos

r

V
θsin

r
 

           = sin  
θr

V

r

θcos

θ

V

r

θcos

r

V
θsin

2

22

2

 

          + 
2

22

θ

V

r

θcos

θ

V

r

θsin

θ

V
θcos

rθ

V
θsin

r

θcos
  

          = sin2 
V

r

sincos

r

V

r

cossin

r

V
2

2

2

2

 

          + 
r

V

r

θcos

θ

V

r

θcos

rθ

V

r

θsinθcos 2

2

2

2

22

 

           
θ

V

r

θcosθsin
2

       (2) 

Adding (1) and (2) we obtain 

   
2

2

22

2

2

2

2

2 V

r

1

r

V
.

r

1

r

V

y

V

x

V
 



 

 

67 

 

which is the required result. 

Example. 22. Transform the expression 

   

2

y

Z
y

x

Z
x + (a2  x2  y2) 

22

y

Z

x

Z
 

by the substitution x = r cos , y = r sin  

Solution.  If V is a function of x, y, then 

   
y

V

r

y

x

V

r

x

r

y
.

y

V

r

x

x

V

r

V
 

   r v
x

y
x

x
y

V
y

x

V
x

r

V
 

   r
y

y
x

x
r

 

Similarly   
x

y
y

x
θ

 

Now   
θ

z

r

θsin

r

z
θcos

x

θ
.

θ

z

x

r
.

r

Z

x

Z
    (1) 

   
θ

Z
.

r

θcos

r

Z
θsin

y

Z
      (2) 

Therefore  

2

2

222

θ

Z

r

1

r

Z

y

Z

x

Z
 

and the given expression is equal to  

   

2

2

2

22

2

θ

Z

r

1

r

z
)ra(

r

Z
r  

   = a2 

2

2

22

θ

Z
1

r

a

r

Z
. 

Example. 23. If x = r cos , y = r sin , prove that 

   (x2  y2) 
2

2

2

2
2

2

2

2

2

2

θ

u

r

u
r

r

u
r

yx

u
xy4

y

u

x

u
 

where u is any twice differentiable function of x and y. 

Solution. We have 

   
r

y
.

y

u

x

x
.

r

u
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   = cos  
y

u

r

y

x

u

r

x

y

u
θsin

x

u
 

   r
y

u
y

x

u
x

r

u
       (1) 

Therefore   r
y

u
y

x

u
x

y
y

x
x

r

u
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    = x
y

u
y

x

u
x

y
y
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u
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u
x

x
 

    = x2 
y

u
y

x

u
x

y

u
y

xy

u
xy

yx

u
xy

x

u
2

2
2
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2

2

 

Therefore 

  r2 
y

u
y

x

y
x

y

u
y

yx

u
xy2

x

u
x

r

u
r

r

r
2

2
2

2

2

2
2

2

2

   (2) 

            r2 
2

2
2

2

2

2
2

2

2

y

u
y

xvy

u
xy2

x

u
x

r

u
      using (1) 

Again,        
θ

y
.

y

u

θ

x
.

x

u

θ

u
 

            = x
x

u
y

y

u
 

Therefore  
x

u
y

y

u
x

x
y

y
x

θ

u
2
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        = x
x

u
y

y

u
x

x
y

x

u
y

y

u
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y
 

        = x2 
y
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y

x

u
x

x

u
y

xu

u
xy2

y

u
2

2
2

2

2

2

   (3)  

From (1), (2) and (3) we get the required result.  

Example 24.  If x = r cos , y =  r sin , show that  

   
yx

θ2

=  r 2 cos 2  

Solution. We have 

   x = r cos , y = r sin  

Then   dx = dr cos   r sin  d  

   dy = dr sin  + r cos  d  
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   rd  = cos  dy  sin  dx 

   dr = cos  du + sin  dy 

   drd  + r d2  =  sin  d  dy  cos  d  dx 

            =  (sin  dy + cos  dx) d  

            =  (sin  dy + cos  dx) 
r

1
(cos  dy  sin  dx) 

  r d2  = 
r

1
 (sin  dy + cos  dx) (cos  dy  sin  dx) 

r

1
(cos  dx + sin  dy)  

          (cos  dy sin  dx) 

 d2  = 
2r

1
[(sin dy + cos  dx (cos  dy  sin  dx) + (cos dx + sin  dy) 

          (cos  dy  sin  dx)] 

       = 
2r

1
[sin  cos  dy2  sin2  dx dy + cos2  dx dy  sin  cos  dx2 

   + cos2  dx dy  sin  cos dx + sin  cos  dy2  sin2  dxdy] 

       = 
2r

1
[2 cos2  dx dy  2 sin2  dx dy + 2 sin  cos  dy2  2 sin  cos  dx] 

 
2

2

22
2

2

2

dy
y

θ
dxdy

yx

θ
2dx

x

θ
 

     = 
2r

1
[2 cos2  dx dy  2 sin2  dx dy + 2 sin  cos  dy2  2 sin  cos  dx] 

Now  
22

2

22

2

r

cossin2

y
,

r

sincos2

x
 

Therefore  

 
2

2

r2

1

yx

θ
[2 cos2   2 sin2 ] 

  = 
2r

1
cos 2  = 

2r

θ2cos
. 
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3 

 

 

     PART A :  THE RIEMANN - STIELTJES INTEGRAL  

3.1  We have been dealing with Riemann integrals in our undergraduate level studies in mathematics. The aim of 

this chapter is to consider a more general concept than that of Riemann. This concept is known as Riemann – Stieltjes 

integral which involve two function f and . In what follows, we shall consider only real – valued functions.  

3.2 Definitions and Notations  

Definition.  Let [a, b] be a given interval.  By a partition (or subdivision) P of [a, b] , we mean a finite set of points  

 P = {x0, x1, …….., xn} 

such that  

 a = x0  x1  x2 …….. xn-1  xn = b. 

Definition. A partition P* of [a, b] is said to be finer than P (or a refinement of P) if P*  P, that is, if every point of P 

is a point of P*. 

Definition.  The P1 and P2 be two partitions of an interval [a, b]. Then a partition P* is called their common 

refinement if P* = P1 U P2. 

Definition.  The length of the largest subinterval of a partition P = {x0, x1,…,xn}of [a, b] is called the Norm (or Mess) 

of P. We denote norm of  P by | P | . Thus 

  |P| = max xi = max [xi  xi 1 : i = 1,2,…,n] 

We notice that if P*  P , then | P * |  | P | . Thus refinement of a partition decreases its norm. 

Let f be a bounded real function defined on [a, b].   Corresponding to each partition P of [a,b], we 
put  
Mi = lub f(x)   (xi-1  x  xi) 

Mi = glb f(x)   (xi-1  x  xi) 

Let  be a monotonically increasing function on [a, b]. Then  is bounded on [a, b] since (a) and 

(b) are finite. 

Corresponding to each partition P of [a, b], we put 

i = (xi) - (xi-1) 

The monotonicity of  implies that i  0. 

For any real valued bounded function f on [a, b], we take  

 L(P, f, ) = 

n

i

iim
1

 

U(P, f, ) = 

n

i

iim
1

, 

Where mi and Mi are bounds of f defined above. The sums L(P, f, )  and U(P, f, )  are respectively called Lower 

Stieltjes sum and Upper Stieltjes sum corresponding to the partition P. We further  define 

 

b

a

f d  = lub L (P, f, ) 

  

b

a

f d  = glb U(P, f, ), 
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where lub and glb are taken over all possible partitions P of [a, b]. Then 

b

a

f d  and 

b

a

f d  are respectively called 

Lower integral and Upper integrals of f with respect to . 

If the lower and upper integrals are equal, then their common value, denoted by 

b

a

f d , is called the Riemann – 

Stieltjes integral of f with respect to , over [a, b] and in that case we say that f is integrable with respect to , in the 

Riemann sense and we write f ( ). 

The functions f and  are known as the integrand and the integrator respectively. 

In the special case, when (x) = x, the Riemann - Stieltjes integral reduces to Riemann – integral. In such a case we 

write L(P, f), U(P, f), 

b

a

f, 

b

a

f and f  respectively in place of L(P, f, ), U(P, f, ), f d ,

b

a

 

b

a

f d  and f  

( ). 

Clearly, the numerical value of  f d  depends only on f, ,  a and b and does not depend on the symbol x. In fact x 

is a “dummy variable” and may be replaced by any other convenient symbol. 

3.3. In this section, we shall study characterization of upper and lower Stieltjes sums, and upper and lower 

Stieltjes integrals. 

The next theorem shows that for increasing function , refinement of the partition increases the lower sums and 

decreases the upper sums. 

Theorem 1.  If P* is a refinement of a partition P of [a, b], then  

 L(P, f, )  L(P*, f, ) and  

 U(P*, f, )  U(P, f, ). 

Proof.   Suppose first that P* contains exactly one more point than the partition P of [a, b]. Let this point be x* and let 

this point lie in the subinterval [xi-1, xi ]. Let  

 W1 = glb f (x) (xi-1  x  x*)       
 W2=glb f (x) (x*  x  xi) 

Then w1  mi, and w2  mi where 

 mi = glb f(x) (xi-1  x  xi) 

Hence  

 L(P*, f, )  L(P,f, ) = w1[ (x*)  (xi 1 )] –w2[ (xi)  (x*)]  mi[ (xi)  (xi 1)] 

    = (w1-mi) [ (x*)- ( xi –1)] + (w2 –mi) [ (xi) - (x*)]  

 0  

Hence L(P*, f, )  L(P, f, ). 

If P* contains k points more than P, we repeat the above reasoning k times. 

The proof for U(P*, f, )  U(P, f, ) is analogous.   

Theorem 2.  If  is monotonically increasing on [a, b], them for any two partitions P1and P2, we have      

 L(P1, f, )  U(P2, f, )  

Proof.   Let P be the common refinement of P1 and P2, that is, P = P1 U P2.  Then we have, using Theorem1,  

L(P1, f, )  L(P, f, )  U(P, f, )  U (P2, f, ).  

Remark.  It also follows from this theorem that  

m [ (b)- (a)]  L(P1, f, )  U(P2, f, )  M[ (b )- (a)] , 
where m and M are as usual inf and sup of f on [a, b].  
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Theorem 3.  If  is increasing on [a, b], then    

  

b

a

f d   

b

a

f d . 

Proof.   Let P* be the common refinement of two partitions P1 and P2. Then , by Theorem 1, 

 L(P1, f, )  L(P*, f, )  U(P*,f, )  U(P2, f, )   

Hence  

 L(P1, f, )  U(P2, f, ) 

We keep P2 fixed, and take lub over all P1.  We obtain  

f d   U(P2, f, ) 

Taking glb over all P2, we get  

  

f d   f d . 

Example.  Let (x) = x and define f on [0, 1] by  

 f(x) = 
irrationalisxif

rationalisxif

0

1
 

Then for every partition P of [0, 1], we have  

 mi = 0, Mi = 1,  

because every subinterval [xi-1, xi] contain both rational and irrational number. Therefore  

 L(P, f, ) = 

n

i

ii xm
1

 

        = 0 

  U(P, f, ) = 

n

i

ii xM
1

 

                             = 

n

i 1

(xi-xi-1) = xn-x0 =1 0 

     =1 

Hence, in this case  

 f d   f d . 

Theorem 4.  Let     on [a, b].  Then f ( ) if and only if for every 0 there exists a partition P such that  

  U(P, f, )  L(P, f, )    . 

Proof.   Suppose first that for every P we have  

 U(P, f, )-L(P, f, ) . 

This gives us  

 [U(P, f, ) 

b

a

f d ]+[

b

a

f d  

b

a

f d ]+[

b

a

f d   L(P, f, )] < . 

Since, each one of the three numbers  

U(P, f, )- f d ,  f d - f d ,  f d -L(P, f, ) is non-negative, we have  
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 0  

a

f d - f d  < . 

Since  is arbitrary positive number, we note that the non-negative number  f d - f d   is less than every 

positive number and hence  

f d   f d  = O  

  which yields  

 f d  = f d  

and so f  ( ). 

Conversely, suppose that f  ( ) and that  > 0 be given. Then  

 f d  = f d  = f d  

and there exist partitions P1and P2 such that 

(3.3.1)  U(P2, f, ) < f d  + 
2

= f d  + 
2

 

(3.3.2)  L(P1, f, ) > f d   
2

= f d   
2

 

Let P the common refinement of P1 and P2.Then  

  U(P, f, )   U(P2,f, )  

and  

  L(P, f, )  L(P, f, )  

Thus the relation (3.3.1) and (3.3.2) reduce to  

(3.3.3)  U(P, f, ) < f d  + 
2

 

(3.3.4)   L(P, f, ) > f d  - 
2

 

Combining (3.3.3) and (3.3.4), we obtain 

  f d   
2

< L(P, f, ) < U(P, f, ) < f d  + 
2

 

which yields  

U(P, f, )  L(P, f) < . 

This completes the proof of the theorem.   

3.4.   In this section, we shall discuss integerability of continuos and monotonic functions alongwith properties of 

Riemann-Stieltjes integrals.  

Theorem 5.   If f is continuous on [a, b], then ( ). 

(i) f  ( ) 

(ii) to every > 0 there corresponds a  > 0 such that  

|

n

i 1

f(ti) i 

b

a

f d  | <  
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for every partition P of [a, b] with | P | <  and for all ti  [xi-1, xi].    

Proof.  (i) Let  > 0 and select  > 0 such that  

(3.4.1)   [ (b) - (a)]  >  

which is possible by monotonicity of  on [a, b]. Also f is continuous on compact set [a, b]. Hence 

f is uniformly continuous on [a, b].  Therefore there exists a  > 0 such that  
(3.4.2)   | f(x) - f(t) | <  whenever | x - t | <  for all x [a, b], t [a, b].    

Choose a partition P with | P | < . Then (3.4.2) implies 

  Mi - mi             (i =1, 2,……,n)   

Hence  

 U(P, f, )  L(P, f, ) = 

n

i

iiM
1

  

n

i

iim
1

 

                                               = 

n

i

iii mM
1

)(
n

i

i

1

  

                                               =

n

i

iii xx
1

1)]()([  

                                               = [ (b)  (a)]  

< .  = , 

which is necessary and sufficient condition for f  ( ). 

(ii) We have  

L(P, f, )  

n

i

iitf
1

)(  U(P, f, ) 

 and 

  L(P, f, )  

b

a

fd   U(P, f, )  

Since f  ( ), for each >0 there exists  > 0 such that for all partition P with | P | < , we have  
  U(P, f, )  L(P, f, ) <  

Thus  

 | 

n

i

iitf
1

)(

b

a

f d  | < U(P, f, )  L(P, f, )  

   <  

Thus for continuous functions f, lim|P| 0

n

i

iitf
1

)( exits and is equal to 

b

a

f d . 

Theorem 6. If f is monotonic on [a, b] and if  is both monotonic and continuous on [a, b], then f  ( ).  

Proof.   Let  be a given positive number. For any positive integer n, choose a partition P of  [a, b] such that  

i =
n

ab )()(
 (i = 1, 2 , …..,n).    

This is possible since  is continuous and monotonic on [a, b] and so assumes every value between its bounds (a) 

and (b). If is sufficient to prove the result for monotonically increasing function f, the proof for monotonically 

decreasing function being analogous. The bounds of f in [xi-1, xi] are then  

  mi = f(xi-1), Mi = f(xi), i =1, 2,…..,n.        

Hence  
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  U(P, d, ) - L(P, f, ) = 

n

i

iii mM
1

)(  

                                                = 
n

ab )()(
 

n

i

ii mM
1

)(  

= 
n

ab )()( n

i

ii xfxf
1

1)]()(  

= 
n

ab )()(
[f(b) - f(a)]  

<  for large n.  

Hence f  ( ). 

Example.  Let f be a function defined by  

  f(x*) = 1 and f(x) = 0 for x  x*, a  x*   b. 

Suppose  is increasing on [a, b] and is continuous at x*. Then f  ( ) over [a, b] and  

b

a

f d  

= 0 

Solution. Let P = {x0, x1,…...xn} be a partition of [a, b] and let x*  xi. Since  is continuous at x*, to each  > 0 there 

exists  > 0 such that  

  | (x)  (x*) | < 
2

 whenever | x  x* | <  

Again since  is an increasing function,  

(x)  (x*) <  
2

  for 0 < x  x* <  

and  

  (x*)  (x) <  
2

 for 0 < x*  x <  

Then for a partition P of [a, b],  

 i = (xi)  (xi-1) 

                          = (x)  (x*) + (x*)  (xi-1)  

      < 
2

 + 
2

 = . 

Therefore 

n

1i ii

i
i1

.*xt,

*xtif0
)t(f  

    

 that is,  

| 

n

i

iitf
1

)(  0 | <  

Hence  

  lim|P| 0

n

i

iitf
1

)( = 

b

a

f d  = 0. 
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and so f  ( ) and 

b

a

f d  = 0 . 

Theorem 7.  Let f1  ( ) and f2   ( ) on [a,b], then (f1 + f2)   ( ) and  

 

b

a

(f1 + f2)d  = 

b

a

f1d  +

b

a

f2d   

Proof.   Let P = [a = x0, x1,……xn = b] be any partition of [a, b].  Suppose further that Mi , mi , Mi , mi and Mi, mi are 

the bounds of f1, f2 and f1 + f 2 respectively in the subinterval [xi-1,xi]. If 1, 2  [xi-1, xi], then  

[f1( 2) + f2( 2)] - [f1( 1) + f2( 1)]  

 | f1( 2) - f1( 1) | + | f2( 2 ) – f2( 1)]  

 (Mi  - mi  ) + (Mi  - mi ) 

Therefore, since this hold for all 1, 2 [xi 1, xi], we have         

(3.4.3) Mi – mi  (Mi  - mi  ) + (Mi  - mi ) 

Since f1, f2 ( ), there exits a partition P1 and P2 of [a, b] such that  

(3.4.4)  

2
),f,P(L),f,P(U

2
)f,P(L),f,P(U

2222

,1111

 

These inequalities hold if P1 and P2 are replaced by their common refinements P. 

Thus using (3.4.3), we have for f = f1 + f2, 

U(P, f , ) – L(P, f , ) = 

n

i

iii mM
1

)(  

 

n

i

iii mM
1

)''( +

n

i

iii mM
1

)""(  

< 
2

 + 
2

 (using 3.4.4)          

= . 

Hence f = f1 + f2  ( ). 

Further, we note that  

Mi  – mi    mi   Mi   Mi  + Mi  

Multiplying by I and adding for I = 1, 2, …..,n, we get 

(3.4.5) L(P, f1, ) + L(P, f2, )  L(P, f, )    U(P, f , )  

   U (P, f1, )  U(P, f1, ) + U(P, f2, ) 

Also 

(3.4.6)   U(P, f1, ) < 

b

a

f1 d  + 
2

 

(3.4.7)   U(P, f2, ) < 

b

a

f2 d  + 
2

 

Combining (3.4.5), (3.4.6) and (3.4.7), we have 
b

a

f d   U(P, f , )  U (P, f 1, ) + U(P, f2, )  

< 

b

a

f1 d  + 

b

a

f2 d   + 
2

 + 
2

 



 

 

77 

 

Since  is arbitrary positive number, we have 

(3.4.8) 

b

a

f d   

b

a

f1 d  + 

b

a

f2 d  

Preceding with (-f1), (-f2)  in place of f1 and f2 respectively, we have 
b

a

( f) d   

b

a

( f1) d  + 

b

a

( f2) d  

or 

(3.4.9)     
b

a

f d   

b

a

f1 d  + 

b

a

f2 d  

Now (3.4.8) and (3.4.9) yield 
b

a

f d  = 

b

a

(f1+ f2 )d  = 

b

a

f1 d  + 

b

a

f2 d   

Theorem 8.   If f  ( ) and f  ( ) then f  (  + ) and 
b

a

f d(  + ) = 

b

a

f d  + 

b

a

f d . 

Proof.  Since f  ( ) and f  ( ), there exists partition P1 and P2 such that 

U(P1, f, ) – L(P1, f , ) < 
2

 

U(P2, f, ) – L(P2, f , ) < 
2

   

These inequalities hold if P1 and P2 are replaced by their common refinement P. 

Also 

( i + i ) = [ (xi) - (xi-1)] + [  (xi) -  (xi-1)] 

Hence, if Mi and mi are bounds of f in (xi-1, xi), 

U(P, f, (  + ))  L(P, f, (  + )) = 

n

i

iiii mM
1

)()(  

                = 

n

i

iii mM
1

)( + 

n

i

iii mM
1

)(   

        < 
2

 + 
2

 = . 

Hence f  (  + ). 

Further    

U(P, f, ) < 

b

a

f d  + 
2

 

 U(P, f, ) < 

b

a

f d  + 
2

 

and  

U(P, f, + ) = iiii MM  

Also, then 
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b

a

f d(  + )  U(P, f,  + ) = U(P, f, ) + U(P, f, )  

 <  

b

a

f d  + 
2

 +  

b

a

f d  + 
2

  

 = 

b

a

f d  + 

b

a

f d  +  

Since  is arbitrary positive number, therefore 
b

a

f d(  + )  

b

a

f d    + 

b

a

f d . 

Replacing f by –f, this inequality is reversed and hence 
b

a

f d(  + ) = 

b

a

f d    + 

b

a

f d . 

Theorem 9.  If f  ( ) on [a, b], then f  ( ) on [a, c] and f ( ) on [c, b] where c is a point of [a, b] and  
b

a

f d  = 

c

a

f d    + 

b

c

f d . 

Proof.  Since f  ( ), there exits a partition P such that 

U(P, f, ) – L(P, f, ) < ,  > 0. 

Let P* be a refinement of P such that P* = P U{c}. Then  

L(P, f, )  L(P*, f, )  U(P, f, )  L(P, f, )  

which yields  

(3.4.10) U(P*, f , ) – L(P*, f, )  U(P, f, ) – L(P, f, )  

    <  

Let P1 and P2 denote the sets of points of P* between [a, c], [c, b] respectively. Then P1 and P2 are partitions of [a, c] 

and [c, b] and P* = P1 U P2. Also   

(3.4.11) U(P*, f, ) = U(P1, f, ) + U(P2, f, ) 

and  

(3.4.12)   L(P*, f, ) = L(P1, f, ) + L(P2, f, ) 

Then (3.4.10), (3.4.11), and (3.4.11) imply that 

U(P*, f, ) – L(P*, f, ) = [U(P1, f, ) – L(P1, f, )] + [U(P2, f, ) – L(P2, f , )]  

  <  

Since each of U(P1, f, ) – L(P1, f, ) and U(P2, f, ) – L(P2, f, ) is non – negative, it follows that  

U(P1, f, ) – L(P1, f, ) <  

and  

U(P2, f, ) – L(P2, f, ) <  

Hence f is integrable on [a, c] and [c, b]. 

Taking inf for all partitions, the relation (3.4.11) yields 

(3.4.13)  

_

f d  

c

a

f d  + 

b

c

f d  

But since f in integrable on [a, c] and [c, b], we have 

(3.4.14)  

b

a

f(x) d  

c

a

f d  + 

b

c

f d   

The relation (3.4.12) similarly yields 
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(3.4.15)  

b

a

f d  

c

a

f d  + 

b

c

f d  

Hence (3.4.14) and (3.4.15) imply that 
b

a

f d  =

c

a

f d  + 

b

c

f d  

Theorem 10.   If f  ( ), then 

(i) cf  ( ) and 

b

a

(cf) d  = c

b

a

f d , for every constant c, 

(ii) If  in addition | f(x) |  K on [a, b], then 

| 

b

a

f d  |  K[ (b) - (a)]. 

Proof.   (i) Let f  ( ) and let g = cf. Then 

U(P, g, ) = 

n

i

iiM
1

' = 

n

i

iicM
1

 

                 = 

n

i

iiMc
1

 

                 = c U(P, f, ) 

Similarly 

L(P, g, ) = c L(P, f, ) 

Since f  ( ),  a partition P such that for every  >0,  

U(P, f, ) – L(P, f, ) < 
c

 

Hence  

U(P, g, ) – L(P, g, ) = c [ U(P, f, ) – L(P, f, )]  

 < c 
c

 = . 

Hence g = c f  ( ). 

Further, since U(P, f, ) < 

b

a

f d  + 
2

 , 

b

a

g d   U(P, g, ) = c U(P, f, )  

  < c(

b

a

f d  + 
2

 ) 

Since  is arbitrary 
b

a

g d   c

b

a

f d  

Replacing f by –f, we get  
b

a

g d   c

b

a

f d  
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Hence 

b

a

(cf) d  = c

b

a

f d  

(ii) If M and m are bounds of f  ( ) on [a, b], then it follows that 

(3.4.16)  m[ (b) - (a)]  

b

a

f d   M[ (b) - (a)] for b  a. 

In fact, if a = b, then (3.4.16) is trivial.  If b > a, then for any partition P, we have 

m[ (b) - (a)]  

n

1i
iim = L(P, f, )  

 

b

a

f d   

 U(P, f, ) = iiM  

 M (b – a) 

which yields 

(3.4.17)           m [ (b) - (a)]  
b

a

f d   M (b – a) 

Since | f(x) |  k for all x (a, b), we have  

–k  f(x)  k     
so if m and M are the bounds of f in (a, b),  

   –k  m  f(x)  M  k for all x (a, b). 

If b  a, then (b) - (a)  0 and we have by (3.4.17)  

  –k[ (b) - (a)]  m[ (b) - (a)]  

b

a

f d   

   M[ (b) - (a)]  k[ (b) - (a)]      

Hence  

              |

b

a

f d  |  k[ (b) - (a)] 

Theorem 11. Suppose f  ( ) on [a, b], m  f  M,  is continuous on [m, M] and h(x) = [f(x)] on [a, b]. Then h  

( ) on [a, b]. 

Proof.  Let  > 0. Since  is continuous on closed and bounded interval [m, M], it is uniformly continuous on [m, M]. 

Therefore there exists  > 0 such that  <  and 

  | (s)  (t) | <  if | s  t |  , s, t [m, M]. 

Since f  ( ), there is a partition P = {x0, x1, …….., xn} of [a, b] such that   

(3.4.18)  U(P, f, )  L(P, f, ) < 
2
.  

Let Mi, mi and M*i, mi* be the lub, g. l. b of f(x) and (x) respectively in [xi-1, xi]. Divide the number 1,2,…..,n into 

two classes : 

i  A if Mi – mi <  

and    
 i  B if Mi – mi  . 

For i  A, our choice of   implies that Mi* - mi*   . Also, for i  B, Mi* - mi*  2k where      k = lub | (t) |, t [m, 

M]. Hence, using (3.4.18), we have  

(3.5.19)  
Bi

i  
Bi

iii mM )(  < 
2
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so that 
Bi

i < . Then we have  

U(P, h, ) – L(P, h, ) =
Ai

iii mM )**(  + 
Bi

iii mM *)*(  

 [ (b) - (a)] + 2 k   

< [ (b) - (a)] + 2k] 

Since  was arbitrary,  

 U(P, h, ) – L(P, h, ) < *, * >0. 

Hence h  f( ). 

Theorem 12.  If f  ( ) and g  ( ) on [a, b], then f g  , | f |  ( ) and  

  | 

b

a

f d  |  

b

a

| f | d . 

Proof.  Let   be defined by (t) = t
2
 on (a,b].  Then h(x) = [f(x)] = f

2
  ( ) by Theorem 11. Also  

   fg = 
4

1
 [(f + g)

2
 – (f  g)

2
].           

Since f, g  ( ), f + g  ( ), f - g  ( ). Then, (f + g)
2
 and (f - g)

2 
 ( ) and so their difference multiplied by 

4

1
 also belong to ( ) proving that fg  . 

If we take (f) = | t |, again Theorem 11 implies that | f |  ( ). We choose c = 1 so that    

  c f d   0 

Then 

 | f d  | = c f d  = c f d  | f | d   

because cf  | f |. 

3.5. Riemann-Stieltjes integral as limit of sums.  In this section, we shall show that Riemann-Stieltjes integral f 

d  can be considered as the limit of a sequence of sums in which Mi, mi involved in the definition of  f d  are 

replaced by values of f.  

Definition.   Let P = {a = x0, x1,……., xn = b} be a partition of [a, b] and let points t1, t2,….., tn be such that tI [xi-1=, 

xi]. Then the sum 

 S(P, f, ) = 

n

i

iitf
1

)(  

is called a Riemann-Stieltjes sum of f with respect to .  

Definition.   We say that  

  lim|P| 0 S(P, d, ) = A        
If for every  > 0, there exists a  > 0 such that | P | <  implies  

 | S(P, f, ) – A | < . 

Theorem 13. If lim|P| 0 S(P, f, ) exists, then f   ( ) and  

lim|P| 0 S(P, f, ) =  

b

a

f d . 

Proof.   Suppose lim|P| 0 S(P, f, ) exists and is equal to A.  Then given  > 0 there exists a >0 such that | P| <  

implies  

     | S(P, f, ) – A | < 
2
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or  

(3.5.1)   A  
2

 < S(P, f, ) < A + 
2

    

If we choose partition P satisfying | P | <  and if we allow the points ti to range over [xi-1, xi], taking lub and glb of the 

numbers S(P, f, ) obtained in this way, the relation (3.5.1) gives  

  A  
2

  L(P, f,  )  U((P, f,  )  (U,f, )   A + 
2

      

and so 

  U((P, f,  ) - L(P, f,  ) < 
2

+ 
2

 =  

Hence f  ( ). Further  

 A  
2

   L(P, f, )   fd   U (P, f, )  A + 
2

      

which yields 

 

 A  
2

  f d   A + 
2

 

or 

           f d  = A = lim|P| 0 S(P, f, ). 

Theorem 14. If  

(i)  f is continuous, then  

lim|P| 0 S(P, f, ) =  

b

a

f d  

(ii)   f  ( ) and  is continuous on [a, b], then  

lim|P| 0 S(P, f, ) =  

b

a

f d  

Proof.  Part (i) is already proved in Theorem 5(ii) of this chapter.  

(ii)   Let f  ( ),  be continuous and  > 0. Then there exists a partition P* such that  

(3.5.2)     U(P*, f, ) < f d  + 
4

 

Now,  being uniformly continuous, there exists 1 > 0 such that for any partition P of [a,b] with |P| < 1 ,  we have  

i = (xi) – (xi-1) < 
Mn4

 for all i  

where n is the number of intervals into which [a, b] is divided by P*. C onsider the sum          U(P, 

f, ). Those intervals of P which contain a point of P* in their interior contribute no more than  

(3.5.3)     (n – 1) max i. M < 
nM

Mn

4

)1(
 < 

4
. 

Then (3.5.2) and (3.5.3) yield 
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(3.5.4)    U(P, f, ) <  f d  + 
2

  

for all P with | P | < 1. 

Similarly, we can show that there exists a 2 > 0 such that  

(3.5.5)   L(P, f, ) >   f d  - 
2

 

for all P with | P | < 2. 

Taking  = min ( 1 - 2), it follows that (3.5.3) and (3.5.4) hold for every P such that | P | < . 

Since  

  L(P, f, )  S(P, f, ) < U(P, f, ) 

(3.5.4) and (3.5.5) yield  

  S(P, f, ) < f d  + 
2

 

and 

  S(P, f, ) < f d  -
2

 

Hence  

  | S(P, f, ) - f d  | < 
2

 

for all P such that | P | <  and so 

  lim|P| 0 S(P, f, ) = f d  

This completes the proof of the theorem. 

The Abel’s Transformation (Partial Summation Formula) for sequences reads as follows: 

Let <an> and <bn> be sequences and let  

  An = a0 + a1 +…….+ an (A-1 = 0),  

then  

   

q

pn

nnba = 

1q

pn
1nnn )bb(A  + Aq bq – Ap-1 bp 

3.6. Integration and Differentiation.  In this section, we show that integration and differentiation are inverse 

operations.  

Definition.  If f   on [a, b], than the function F defined by  

  

F(t) =  

t

a

f (x) dx, t [a, b] 

is called the “Integral Function” of the function f. 

Theorem 15. If f   on [a, b], then the integral function F of f is continuous on [a, b].  

Proof.   We have  

F(t) =  

t

a

f (x) dx 

Since f  , it is bounded and therefore there exists a number M such that for all x in [a, b],              

|f(x) |  M. 
Let  be any positive number and c any point of  [a, b]. Then  
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   F(c) =  

c

a

f (x) dx, F(c + h) 

hc

a

f (x) dx. 

Therefore  

 | F(c + h) –F(c) = |  

hc

a

f (x) dx   

c

a

f (x) dx  

  =  | 

hc

a

f (x) dx |  

    M | h |  

  <  if | h | < 
M

 

Thus | (c + h) – c | <  = 
M

 implies | F(c + h) –F(c) < . Hence F is continuous at any point C [a, b] and is so 

continuous in the interval [a, b].  

Theorem 16.   If f is continuous on [a, b], then the integral function F is differentiable and  

 F (x0) = f(x0), x [a, b].  

Proof.  Let f be continuous at x0 in [a, b]. Then there exists  > 0 for every  > 0 such that  

(3.6.1)   | f(t) – f(x0) | <  

whenever | t – x0 | < . Let x0    < s   x0  t < x0 +  and a  s < t  b, then  

   
st

sFtF )()(
  f(x0) = |

st

1
  

t

s

f (x) dx – f(x0) |  

                                                 = |
st

1
  

t

s

f (x) dx  
st

1
  

t

s

f (x0) dx | 

                = 
st

1
 | 

t

s

[f (x) - f (x0)]dx |  
st

1
 | 

t

s

f (x)  f (x0) |dx < ,  

(using (3.6.1)).  

Hence F (x0) = f (x0). This completes the proof of the theorem  

Definition.  A derivable function F such that F  is equal to a given function f in [a, b] is called Primitive of f.  

Thus the above theorem asserts that “Every continuous function f possesses a Primitive, viz the integral function 

t

a

f 

(x) dx”  
Furthermore, the continuity of a function is not necessary for the existence of primitive. In other words, the function 

possessing primitive are not necessary continuous. For example, consider the function f on [0, 1] defined by 

f(x) = 

0x,0

0x,
x

1
cos

x

1
sinx2

 

It has primitive 

F(x) = 

0,0

0,
1

sin2

x

x
x

x
 

Clearly F (x) = f(x) but f(x) is not continuous at x = 0, i.e., f is not continuous in [0,1]. 
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Theorem 17.(Fundamental Theorem of the Integral Calculus).  If f   on [a, b] and if there is a differential 

function F on [a, b] such that F  = f, then 

 

b

a

f(x) dx = F(b) – F(a) 

Proof.  Let P be a partition of [a, b] and choose ti (I = 1, 2, ……,n) such that xi-1  ti  xi. Then, by Lagrange‟s Mean 

Value Theorem, we have 

F(xi) – F(xi-1) = (xi – xi-1) F (ti) = (xi – xi-1) f(ti)  (since F  = f). 

Further 

F(b) – F(a) = 

n

i 1

[F(xi) – F(xi-1)]  

               = 

n

i 1

f(ti) (xi – xi-1)  

      = 

n

i 1

f(ti) xi  

and the last sum tends to 

b

a

f(x) dx as | P | 0, by Theorem 13 taking (x) = x .  Hence 

 

b

a

f(x) dx = F(b) – F(a). 

This completes the proof of the Theorem. 

The next theorem tells us that the symbol d (x) can be replaced by (x) dx in the Riemann – Stieltjes integral  
b

a

f(x) d (x). This is the situation in which Riemann – Stieltjes integral reduces to Riemann integral. 

Theorem 18.  If f   and    on [a, b], then f  ( ) and  
b

a

f d  =  

b

a

f(x) (x) dx. 

Proof.  Since f   ,   , it follows that their product f   . Let  > 0 be given. Choose M such that | f |  M. 

Since f    and   , using Theorem 14(ii) for integrator as x, we have 

(3.6.2)    |  f(ti) (ti) xi - f  | <  

if | P | < 1 and xi-1  ti  xi and 

(3.6.3)   | (ti) xi  | <  

if | P | < 2 and xi-1  ti  xi. Letting ti vary in (3.6.3), we have 

(3.6.4)   | (si) |  xi  | <  

if | P | < 2 and xi-1  si  xi. From (3.6.3) and (3.6.4) it follows that 

| (ti) |  xi  +   (si) xi |  

 | (ti) xi -  | + | (Si)  xi -  |  

<  +  = 2  

or 
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(3.6.5)  | (ti) - (si)|  xI < 2  

if | P | < 2 and xi-1  ti  xi, xi-1  si  xi. 

Now choose a partition P so that | P | <  = min ( 1, 2) and choose ti  [xi-1, xi]. By Mean Value Theorem, 

i = (xi) - (xi-1) = (Si) (xi – xi-1)  

         = (Si) xi 

Then, we have 

(3.6.6)  f(ti) i = f(ti) (ti) xi + f(ti)[ (Si) - (ti)] xi. 

Thus, by (3.6.2) and (3.6.5), it follows that  

| f(ti) i - f  | = | f(ti) (ti) xi  f   

                                           + f(ti)[ (Si) - (ti)] xi |  

                                       <  + 2  M = (1 + 2 M) 

Hence 

lim|p| 0  f(ti) xi =  

b

a

f(x) (x) dx 

or 

                      

b

a

f d  =  f(x) (x) dx 

Example.  Evaluate (i) 

2

0

x
2
 dx

2
, (ii) 

2

0

[x] dx
2 

Solution.   We know that 
b

a

f d  = 

b

a

f (x) (x) dx 

Therefore  

  

2

0

x
2
 dx

2
 = 

2

0

x
2
(2x) dx

2
 = 

2

0

2x
3
 dx  

  = 2| 

2

0

4

4

x
= 8  Ans. 

and 

                     

2

0

[x] dx
2
 = 

2

0

[x] 2x dx  

              = 

1

0

[x] 2x dx +

2

1

[x] 2x dx  

                                      = 0 + 

2

1

2x dx = 0 + 2| 

2

1

2

2

x
 

             = 0 + 3 = 3  Ans. 

We now establish a connection between the integrand and the integrator in a Riemann – Stieltjes integral. We shall 

show that existence of f d  implies the existence of  df. 

We recall that Abel‟s transformation (Partial Summation Formula) for sequences reads as follows: 

“Let <an> and <bn>  be two sequences and let An = a0 + a1 + …..+ an (A-1 = 0). Then 
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(3.6.7)    

q

pn

an bn = 

1q

pn

An (bn - bn-+1) + Aq bq – Ap-1bp.” 

Theorem (Integration by parts).   If f  ( ) on [a, b], then   (f) on [a, b] and 

f(x) d (x) = f(b) (b) – f(a) (a) -  (x) df(x) 

(Due to analogy with (3.6.7), the above expression is also known as Partial Integration Formula). 

Proof.   Let P = {a = x0, x1, ….,xn = b}be a partition of [a, b]. Choose t1, t2, ….,tn such that                xi-1  ti  xi and 

take t0 = a, tn+1 = b. Suppose Q is the partition{t0, t1, ….,tn+1}of [a, b]. By partial summation, we have 

S(P, f, ) = 

n

i 1

f(ti)[ (xi)  (xi-1)] = f(b) (b) – f(a) (a)  

1

1

n

i

(xi-1)[ f(ti)  f(ti-1)] 

    = f(b) (b) – f(a) (a) – S(Q, , f) 

since ti-1  xi-1  ti. If | P | 0, | Q | 0, then 

S(P, f, )  f d  and S(Q, , f)   df. 

Hence 

f d  = f(b) (b) – f(a) (a) -  df 

3.7.  Mean Value Theorems For Riemann – Stieltjes Integrals.   In this , section, we establish Mean Value 

Theorems which are used to get estimate value of an integral rather than its exact value. 

Theorem 19 (First Mean Value Theorem for Riemann – Stieltjes Integral).  If f is continuous and real valued and 

 is monotonically increasing on [a, b], then there exists a point x in [a, b] such that 

f d  = f(x) [ (b) - (a)] 

Proof.  If (a) = (b), the theorem holds trivially, both sides being 0 in that case (  become constant and so d  = 0). 

Hence we assume that (a) < (b). Let 

M = lub f(x), m = glb f(x). a  x  b 

Then 

m  f(x)  M 

or 

 m[ (b) - (a)]  f d   M[ (b) - (a)] 

Hence there exists some c satisfying m  c  M such that     

  

b

a

f d  = c[ (b) - (a)]  

Since f is continuous, there is a point x [a, b] such that f(x) =c and so we have  

 

b

a

f(x) d (x) = f(x)[ (b) - (a)] 

This completes the proof of the theorem.   

Theorem 20 (Second Mean – value Theorem for Riemann – Stieltjes Integral).  Let f be monotonic and  real and 

continuous. Then there is a point x [a, b] such that 

  

b

a

f d  = f(a)[ (x) - (a)] +f(b)[ (b) - (x)]  

Proof.  By Partial Integration Formula, we have  

 

b

a

f d  = f(b) (b) – f(a) (a) - 

b

a

 df  
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The use of First Mean –Value Theorem of Riemann – Stieltjes integral yields that there is x in  [a, 
b] such that  

 

b

a

df = (x)[f(b) – f(a)] 

Hence, for some x [a, b], we have. 

  

b

a

f d  = f(b) (b) – f(a) (a)  (x)[f(b) – f(a)]  

 = f(a)[ (x) - (a)] + f(b)[ (b)  (x)] 

which proves the theorem. 

3.8.   We discuss now change of variable. In this direction we prove the following result. 

Theorem 21.  Let f and  be continuous on [a, b]. If  is strictly increasing on [ , ], where            a = ( ), b = (b), 

then 

 

b

a

f(x) dx = f( (y)) d (y)  

(this corresponds to change of variable in 

b

a

f(x) dx by taking x = (y)]. 

Proof.  Since  is strictly monotonically increasing, it is invertible and so  

  = 
1
(a),  = 

1
(b). 

Let P = {a = x0,x1,…..,xn =b} be any partition of [a, b] and Q = {  = y0, y1,…..,yn = } be the corresponding partition 

of [ , ], where yi = 
1
(xi). Then  

   xi = xi  xi-1 

                           = ( yi)  ( yi-1) 

                          = i 

Let for any ci  xi, di   yi, where ci = (di). Putting g(y) = f[ (y)], we have  

(3.8.1) S(P, f) =  

n

1i

f(ci) xi  

=  

i
ii ))d((f  

                         = 

i

g(di) i 

                       =  S(Q, g, ) 

Continuity of f implies that S(P, f)  

b

a

f(x) dx as | P |  0 and continuity of g implies that             

S(Q, g, )

b

a

g(y) d  as | Q |  0. 

Since uniform continuity of  on [a, b] implies that | Q |  0 as | P |  0. Hence letting | P |  0 in (3.8.1), we have  

 

b

a

f(x) dx = g(y) d  =  f[( y)] d (y) 

This completes the proof of the theorem.  
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3.9.  Integration of Vector – Valued Functions.   Let f1, f2,……,fk be real valued functions defined on [a, b] and let f 

= (f1, f2,……,fk) be the corresponding mapping of [a, b] into R
k
. 

Let  be a monotonically increasing function on [a, b]. If fi  ( ) for i = 1, 2, ….., k, we say that f  ( ) and then 

the integral of f is defined as   

 

b

a

 f d  = (

b

a

f1 d , 

b

a

f2 d ,……..,

b

a

fk d ). 

Thus 

b

a

 f d  is the point in R
k 
whose ith coordinate is fi d . 

It can be shown that if f  ( ), g  ( ),  

then  

(i) 

b

a

(f +g)d  =

b

a

f d  + 

b

a

g d  

(ii) 

b

a

f d  = 

c

a

f d  + 

b

a

f d , a < c < b. 

(iii) if f  ( 1), f  ( 2),  then f  ( 1+ 2) 

and  

 

b

a

f d ( 1+ 2) = 

b

a

f d 1 +  

b

a

f d 2 

To prove these results, we have to apply earlier results to each coordinate of f. Also, fundamental 
theorem of integral calculus holds for vector valued function f . We have 

Theorem 22.  If f and F  map[a, b] into 
k
, if f  ( ) if F  = f, then 

   

b

a

f (t) dt = F (b)  F (a)  

Theorem 23.  If f  maps [a, b] into R
k
 and if f  R( ) for some monotonically increasing function  on [a, b], then | f 

|  R( ) and  

  | 

b

a

f d  |    

b

a

|f  | d . 

Proof.   Let   

  f  = (f1, ….,fk). 

Then 

  |f  | = (f1
2
 + ….+ fh

h
)

1/2 

Since each fi  R( ), the function fi
2
  R( ) and so their sum f1

2
 + ….+ fk

2
  R

( )
. Since x

2
 is a continuous function of 

x, the square root function is continuous on [0, M] for every real M. Therefore | f  |  R( ). 

Now, let y  = (y1, y2, ….,yk), where yi = fi d , then 

            y = f d   

and 

 |y |
2 
= 

i

yi
2
 = yi fi d   
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         = ( yi fi ) d  

But, by Schwarz inequality 

yi fi(t)  |y  | |f (t)| (a  t  b) 

Then 

(3.9.1)         |y  |
2
  |y  | | f | d  

If y = 0, then the result follows. If y  0, then divide (3.9.1) by |y | and get 

          |y |  |f | d   

 or      

b

a

| f  | d   |f | d . 

3.10. Rectifiable Curves.   The aim of this section is to consider application of results studied in this chapter to 

geometry.  

Definition.   A continuous mapping  of an interval [a, b] into R
k
 is called a curve in R

k
. 

If  : [a, b]  R
k
 is continuous and one – to – one, then it is called an arc. 

If for a curve r : [a, b]  R
k
, 

r(a) = r(b) 

but 

r(t1)  r(t2) 

for every other pair of distinct points t1, t2 in [a, b], then the curve  is called a simple closed curve. 

Definition.  Let f  : [a, b]  R
k
 be a map. If P = {x0, x1, …., xn}is a partition of [a, b], then  

V(f , a , b ) = lub 

n

i 1

| f(xi) – f(xi-1) | ,  

where the lub is taken over all possible partitions of [a, b], is called total variation of f on [a,b].   

The function f is said to be of bounded variation on [a, b] if V(f , a, b ) < + . 

Definition.   A curve  : [a, b]  R
k
 is called rectifiable if  is of bounded variation. The length of a rectifiable curve  

is defined as total variation of , i.e, V( , a, b). Thus length of rectifiable curve  = lub 

n

i 1

| (xi) – (xi-1) | for the 

partition (a = x0 < x1 < ….< xn = b). 

The ith term | (xi) – (xi-1) | in this sum is the distance in R
k
 between the points r(xi-1) and r(xi). Further 

n

i 1

| (xi) – 

(xi-1) | is the length of a polygon whose vertices are at the points (x0), (x1), …, (xn). As the norm of our partition 

tends to zero those polygons approach the range of more and more closely. 

Theorem 24.   Let  be a curve in R
k
. If  is continuous on [a, b], then  is rectifiable and has length  

 

b

a

| (t) | dt. 

Proof.   It is sufficient to show that |  | = V( , a, b). So, let {x0, ….,xn}be a partition of [a, b]. Using Fundamental 

Theorem of Calculus for vector valued function, we have 
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n

i 1

| (xi) – (xi-1) | = 

n

i 1

|

i

i

x

x 1

 (t) dt | 

 

n

i 1

i

i

x

x 1

| (t) | dt  

= 

b

a

| (t) | dt 

Thus 

(3.10.1)         V( , a, b)  |  |. 

To prove the reverse inequality, let  be a positive number. Since  is uniformly continuous on [a, b], there exists  > 

0 such that 

| (s) - (t) | < , if | s – t | < . 

If mesh (norm) of the partition P is less then  and xi-1  t   xi, then we have 

| (t) |  | (xi) | + , 

so that 

i

i

x

x 1

| (t) | dt    xi  (xi) | xI 

                                    = |

i

i

x

x 1

[  (t) + (xi)  (t)] dt | 

                                     |

i

i

x

x 1

| (t) dt | + |

i

i

x

x 1

[  (xi)  (t)] dt |  

                                     | (xi) – (xi-1) | +  xi 

Adding these inequalities for i = 1, 2, …., n, we get 
b

a

| (t) | dt  

n

i 1

| (xi) – (xi-1) | + 2  (b – a)  

                    = V( , a, b) + 2  (b – a) 

Since  is arbitrary, it follows that 

(3.10.2)   

b

a

| (t) | dt  V( , a, b) 

Combining (3.10.1) and (3.10.2), we have 
b

a

| (t) | dt = V( , a, b) 

Hence the length of r is 

b

a

| (t) | dt. 
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PART B : THEORY OF MEASURE AND INTEGRATION 

3.11.  In this section we shall define Lebesgue Measure, which is a generalization of the idea of length. 

Definition.  The length l(I) of an interval I with end points a and b is defined as the 
difference of the end points. In symbols, we write 

 l (I) = b – a. 

Definition.   A function whose domain of definition is a class of sets is called a Set Function. 

For example, length is a set function. The domain being the collection of all intervals. 

Definition.   An extended real – valued set function  defined on a class E of sets is called Additive if A  E, B  E, 

A  B  E and A  B = , imply 

 (A  B) =  (A) +  (B) 

Definition.  An extended real valued set function  defined on a class E of sets is called finitely additive if for every 

finite disjoint class {A1, A2,….,An}of sets in E, whose union is also in E, we have 

 (
n

i 1

Ai) = 

n

i 1

(Ai) 

Definition.   An extended real – valued set function  defined on a class E of sets is called countably additive it for 

every disjoint sequence {An} of sets in E whose union is also in E, we have 

 (
1i

Ai) = 

1i

(Ai) 

Definition.   Length of an open set is defined to be the sum of lengths of the open intervals of which it is composed of.  

Thus, if  is an open set, then 
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l (G) = 

n

l(In), 

where 

G = 
n

In , In1  In2 =  if n1  n2. 

Definition.  The Lebesgue Outer Measure or simply the outer measure m* of a set A is defined as 

m* (A) = 
nUIA

inf l(In), 

where the infimum is taken over all finite or countable collections of intervals {In} such that      A  In. 

Since the lengths are positive numbers, it follows from the definition of m* that m*(A)  0 and that m*  = 0.   
Further, if A is a singleton, then m* A = 0 and also if A  B, then M* A  M* B. 

Theorem 25.  Outer measure is translation invariant. 

Proof.    Let A be a set. We shall show that m* (A) = m*(A+x), 

where A + x = {y + x : y  A}. 

Let {In} be collection of intervals {In} such that A   In. Then, by the definition of outer measure, for  > 0, we have 

(3.11.1)   m* (A)  l(In) - . 

But,  A + x   (In + x), 

so by (3.11.1) 

  m* (A + x)  l(In + x) = l(In)  m*A +  

Since  is arbitrary positive number, we have 

(3.11.2)   m* (A + x)  m*(A) 

On the other hand  

  A = A + x – x 

and so  

(3.11.3)  m* (A)  m*(A + x) 

Combining (3.11.2) and (3.11.3), the required result follows. 

Theorem 26.  The outer measure of an interval is its length. 

Proof.   First assume that I is a bounded closed interval [a, b]. Since for every +ve real number  the open interval (a - 

, b + ) covers I, it follows that  

m* I    l (a - , b + ) 

                      = b – a + 2  

Since this is true for every  < 0, we must have 

m* I  b – a = l(I) 

For this special case I = [a, b], it remains to prove that m* I  b – a. Let {In} be countable collection of open intervals 

covering I. Then it is sufficient to establish 

       

n

l(In)  b – a 

Since [a, b] is compact, by Heine Borel Theorem, we can select a finite number of open intervals from {In}such that 

their union contain I = [a, b]. Let these finite intervals be J1, J2, …., Jp.Then since 
p

i 1

Ji  [a, b] it is sufficient to 

prove that 
p

i 1

l (Ji)  b – a. 

Since a  I, there exists an open interval (a1, b1) from the above mentioned finite number of intervals such that a1 < a < 

b1. If b1  b, then b1  I. Since b1 is not covered by the open interval (a1, b1), there is an open interval (a2, b2) in the 

finite collection J1, …., Jp with a2 < b1 < b2. Continuing in this fashion we obtain a sequence  

(a1, b1), (a2, b2),….(an, bn)  

in the collection J1, J2, ….,Jp satisfying 
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ai < bi-1 < bi   

for every i = 2, ..,n. 

Since the collection is finite, out process must terminate with an (an, bn) satisfying b  (an, bn) 

Then we have 

n

l(In)  

n

i 1

l (ai, bi) 

                = (bn – an) + (bn-1 – an-1) + ….+(b2 – a2) + (b1 – a1) 

         = bn – (an – bn-1) …….(a2 – b1) – a1 

Since each expression in the bracket is –ve, it follows that 

n

l(In) > bn – a1 > b – a. 

Hence the theorem is proved in this case. 

Next, let I be any bounded interval with end points a and b. For every positive real number , we have 

[a + , b  ]  I  [a, b] 

Therefore 

b – a  2   m* [a + , b  ] 

                  m* I  m* [a, b]  

                 = b – a. 

Since this holds for every  > 0, we must have 

m* I = b – a = l(I) 

Finally, let I be unbounded. Then, for every real number r, I contains a bounded interval H of length  

l (H)  r. 

Therefore by the above result 

m* I  m* H = l(H)  r. 

Since this holds for every r  R, we must have 

m* I =  = l(I) 

This completes the proof of the theorem. 

Theorem27.  Let {An} be a countable collection of sets of real numbers. Then 

  m* ( An)  m* An. 

Proof.   If one of the sets An has infinite outer measure, the inequality holds trivially. So suppose m* An is finite. 

Then, given  > 0, there exists a countable collection { In, i} of open intervals such that An  
i

In, i and 

 

i

l(In,i) < m* An + 
n2

,  

by the definition of m* An. 

Now the collection [In, i]n,i = 
n

[In, i]i is countable, being the union of a countable number of countable collections, 

and covers  An. Thus 

m* (  An)  
in,

l (In, i)  

                               = 

n

 

i

l (In, i)  

    <  

n

( m* An + n2
) 

                                                = 

n

 m* An + 

n
n2
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       =  

n

 m* An + 

n
n2

1
 

       = 

n

 m* An +  

Since  is an arbitrary positive number, it follows that 

m* ( An)  m*An 

Cor 1. If A is countable, m* A = 0. 

Proof.  We know that a countable set is the union of a countable family of singleton. Therefore 

A =  [xn ], which yields 

 m* A = m* [ (xn)]  m* [xn] (by the above theorem) 

But as already pointed out outer measure of a singleton is zero. Therefore it follows that 

m* A  0 

Since outer measure is always a non – negative real number, m* A = 0. 

Cor 2.  Every interval is not countable. 

Proof.  We know that outer measure of an interval I is equal to its length. Therefore it follows from Cor. 1 that every 

interval is not countable. 

Cor 3.  If m* A = 0, then m* (A  B) = m* B. 

Proof.   Using the above proposition 

  m*(A  B)  m* A + m* B  

       = 0 + m* B        (i) 

Also B  A  B 

Therefore       m* B  m* (A  B)       (ii) 

From (i) and (ii) it follows that 

m* B = m* (A  B) 

Note:- Because of the property m* (  An)   m* An, the function m* is said to be countably subadditive. It 

would be much better if m* were also countably additive, that is, if 

m* (  An) =  m* An. 

for every countable collection[An] of disjoint sets of real numbers. If we insist on countable additivity, we have to 

restrict the domain of the function m* to some subset m of the set 2
R
 of all subsets of R. The members of m are called 

the measurable subsets of R. That is, to do so we suitably reduce the family of sets on which m* is defined. This is 

done by using the following definition due to Carathedory. 

Definition.  A set E of real numbers is said to be m* measurable, if for every set A  R, we have 

m* A = m* (A  E) + m* (A  E
c
) 

Since  

 A = (A  E)  (A  E
c
), 

It follows from the definition that 

      m* A = m* [(A  E)  (A  E
c
)  m* (A  E) + m* (A  E

c
)   

Hence, the above definition reduces to: 

A set E  R is measurable if and only if for every set A  R, we have 

m* A  m* (A  E) + m* (A  E
c
). 

For example  is measurable. 

Theorem 28.  If m* E = 0, then E is measurable. 

Proof.   Let A be any set. Then A  E  E and so  

m* (A  E)  m* E = 0       (i) 

Also A  A  E
c
 , and so  
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m* A  m* (A  E
c
) = m* (A  E

c
) + m* (A  E) 

as   m* (A  E) = 0 by (i)         

Hence E is measurable. 

Theorem29.  If a set E is measurable, then so is its complement E
c
. 

Proof.  The definition is symmetrical with respect to E
c
 , and so if E is measurable, its complement E

c
 is also 

measurable. 

Theorem30.  Union of two measurable sets is measurable. 

Proof.  Let E1 and E2 be two measurable sets and let A be any set. Since E2 is measurable, we have 

m* (A  E1
c
) = m* (A  E1

c
 E2) + m* (A  E1

c
 E2

c
)   (i) 

and since 

A  (E1  E2) = (A  E)  [ A  E2  E1
c
]     (ii) 

Therefore by (ii) we have 

m* [A  (E1  E2)]  m* (A  E1) + m* [A  E2  E1
c
]   (iii) 

Thus  

m* [A  (E1  E2)] + m* (A  E1
c
  E2

c
)  

         m* (A  E1) + m* (A  E2  E1
c
) + m* (A  E1

c
  E2

c
)  

                    = m* (A  E1) + m* (A  E1
c
) (by (i)) 

         m* A (since E1 is measurable) 

i.e. m* (A  (E1  E2)) + m* (A  (E1  E2)
c
)  m* A 

Hence E1  E2 is measurable. 

Cor.  If  E1 and E2 are measurable, then E1  E2 is also measurable. 

In fact we note that E1, E2 are measurable  E1
c
, E2

c
 are measurable  E1

c
  E2

c
 is measurable   (E1

c
  E2

c
)

c
 = E1 

 E2 is measurable. 

Similarly, it can be shown that if E1 and E2 are measurable, then E1
c
  E2

c
 is also measurable. 

Definition.  Algebra or Boolean Algebra: -  A collection  A of subsets of a set X is called an algebra of 

sets or a Boolean Algebra if 

(i) A, B  A  A  B  A 

(ii) A  A  A
c
  A 

(iii) For any two members A and B of A, the intersection A  B is in A. 

Because of De Morgan‟s formulae (i) and (ii) are equivalent to (ii) and (iii). 

It follows from the above definition that the collection M of all measurable sets is an algebra. The 
proof is an immediate consequence of Theorems 29 and 30. 

Definition.  By a Boolean  - algebra or simply a  - algebra or Borel field of a collection of sets, we mean a 

Boolean Algebra A of the collection of the sets such that union of any countable collection of members of this 

collection is a member of A. 

From De Morgan‟s formula an algebra of sets is a  - algebra or Borel field if and only if the intersection of any 

countable collection of members of A is a member of A. 

Lemma 1.  Let A be any set, and E1, E2, …., En a finite sequence of disjoint measurable sets. Then 

m* (A  [
n

i 1

Ei]) = 

n

i 1

 m*(A  Ei). 

Proof.  We shall prove this lemma by induction on n. The lemma is trivial for n = 1. Let  n > 1  and suppose that the 

lemma holds for n – 1 measurable sets Ei. 

Since En is measurable, we have 

m* (X) = m* (X  En) + m* (X  En
c
) 

for every set X  R. In particular we may take 

        X = A  [
n

i 1

Ei]. 
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Since E1, E2, ….,En are disjoint, we have 

           X  En = A  [
n

i 1

Ei]  En = A  En  

and 

          X  En
c
 = A  [

n

i 1

Ei]  En
c
 = A  [

1

1

n

i

Ei] 

Hence we obtain 

              m* X = m*(A  En) + m*(A  [
1

1

n

i

Ei])    (i) 

But since the lemma holds for n – 1 we have 

m*(A  [
1

1

n

i

Ei]) = 

1

1

n

i

m*(A  Ei) 

Therefore (i) reduces to  

            m* X = m*(A  En) + 

1

1

n

i

m*(A  Ei)  

          = 

n

i 1

m*(A  Ei). 

Hence the lemma. 

Lemma 2. Let A be an algebra of subsets and {Ei | i  N} a sequence of sets in A. Then there exists a sequence [Di | i 

 N] of disjoint members of A such that 

Di  Ei  ( i  N) 

 
Ni

Di = 
Ni

Ei   

Proof.   For every i  N, let 

Dn = En \ (E1  E2 ……  En-1) 

     = En  (E1  E2 ……  En-1)
c
 

    = En  E1
c
  E2

c
 ……  En-1

c
     (i) 

Since the complements and intersections of sets in A are in A, we have each Dn  A. By construction, we obviously 

have 

Di  Ei  (i  N)       (ii) 

Let Dn and Dm be two such sets, and suppose m < n.  Then Dm  Em, and so 

Dm  Dn  Em  Dn 

        = Em  En  E1
c
  …..Em

c
 ….  En-1

c
  (using (i)) 

    = (Em  Em
c
)  …. 

    =   ……… 

    =          (iii) 

The relation (i) implies 


Ni

Di  
Ni

Ei 

It remains to prove that 


Ni

Di  
Ni

Ei. 

For this purpose let x be any member of 
Ni

Ei. Let n denotes the least natural number satisfying x  En. Then we 

have 
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x  En \ (E1  ….  En-1) = Dn  
Ni

Dn. 

This completes the proof. 

Theorem 31.  The collection M of measurable sets is a  - algebra. 

Proof.   We have proved already that M is an algebra of sets and so we have only to prove that M is closed with 

respect to  countable union. By the lemma proved above each set E of such countable union must be the union of a 

sequence {Dn} of pairwise disjoint measurable sets. Let A be any set, and let 

En =  
n

i 1

Di  E. Then En is measurable and En
c
  E

 c 
. Hence  

m* A = m*(A En) + m*(A  En
c
)  m*(A En) + m*(A  En

c
). 

But by lemma 1, 

m*(A  En) = m*[A (
n

i 1

Di )] =   

n

i 1

m*(A  Di)  

Therefore  

 m* A   

n

i 1

m*(A  Di) + m*(A  E
c
) 

Since the left hand side of the inequality is independent of n, we have  

m* A   

1i

m*(A  Di) + m*(A  E
c
)  

                      m*(
1i

[A  Di]) + m*(A  E
c
) (by countably subadditivity of m*)  

                    = m*( A 
1i

Di) + m*(A  E
c
) 

          = m*(A E) + m*(A  En
c
). 

which implies that E is measurable. Hence the theorem.  

Lemma 3.  The interval (a, ) is measurable 

Proof. Let A be any set and  

A1 = A  (a, ) 

A2 = A  (a, )
c
 =  A  (- , a]. 

Then we must show that  

 m* A1 + m* A2  m*. A.  

If m* A = , then there is nothing to prove. If m* A M < , then given  > 0 there is a countable collection {In} of 

open intervals which cover A and for which  

  l(In)  m* A +        (i) 

Let In  = In  (a, ) and In  = In  (- , a). Then  In  and In  are intervals (or empty) and  

l(In) = l (In ) + l(In ) = m*( In ) +m*( In )    (ii ) 

Since A1  U In , we have  

m* A1  m*(U In )  m* In ,     (iii) 

and since, A2  U In , we have 

  m* A2  m*(U In  ) m* In ,     (iv) 
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Adding (iii) and (iv) we have  

m* A1 + m* A2   m* In  +   m* In  

= (m* In  +   m* In )  

= l (In)   [by (ii)]  

 m* A +    [by (i)]. 

But  was arbitrary positive number and so we must have  

m* A1 + m* A2  m* A. 

Definition. The collection ß of Borel sets is the smallest  - algebra which contains all of the open sets. 

Theorem 32.  Every Borel set is measurable. In particular each open set and each closed set is measurable. 

Proof.  We have already proved that (a, ) is measurable.  So we have 

(a, )
c
 = (- , a] measurable. 

Since (- , b) = 
1n

(- , b - 
n

1
] and we know that countable union of measurable sets is measurable, therefore (- , 

b) is also measurable. Hence each open interval,  

(a, b) = ( - , b)  (a, ) is  measurable, being the intersection of two measurable sets. 

But each open set is the union of countable number of open intervals and so must be measurable 
(The measurability of closed set follows because complement of each measurable set is 
measurable). 

Let M denote the collection of measurable sets and C the collection of open sets.  Then C  M. Hence ß is also a 

subset of M since it is the smallest  - algebra containing C . So each element of ß is measurable. Hence each Borel 

set is measurable. 

Definition.  If E is a measurable set, then the outer measure of E is called the Lebesgue Measure of E ad is denoted by 

mE.  

Thus, m is the set function obtained by restricting the set function m* to the family M of 
measurable sets. Two important properties of Lebesgue measure are summarized by the 
following theorem. 

Theorem 33.  Let {En} be a sequence of measurable sets. Then 

 m(  Ei)   m Ei  

If the sets En are pairwise disjoint, then 

  m(  Ei) = m Ei . 

Proof.   The inequality is simply a restatement of the subadditivity of m*. 

If {Ei}is a finite sequence of disjoint measurable sets. So we apply lemma 1 replacing A by R. That is , we have 

m*(R [
n

i 1

Ei]) = 

n

i 1

m* (R Ei)  

     m* (
n

i 1

Ei) = 

n

i 1

m* Ei   

and so m is finitely additive. 

Let {Ei} be an infinite sequence of pairwise disjoint sequence of measurable sets. Then 
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1i

Ei  
n

i 1

Ei. 

And so 

m(
1i

Ei)  m(
n

i 1

Ei) = 

n

i 1

m Ei 

Since the left hand side of this inequality is independent of n, we have 

 m(
1i

Ei)  

1i

m Ei 

The reverse inequality follows from countable subadditivity and we have 

 m(
1i

Ei) = 

1i

m Ei. 

Hence the theorem is proved. 

Theorem 34.  Let {En} be an infinite sequence of measurable sets such that En+1   En for each n. Let mE1 < . Then 

m(
1i

En) = 
n

lim
mEn. 

Proof.   Let E = 
1i

Ei and  let Fi = Ei – Ei-1. Then since {En} is a decreasing sequence. We have 

 Fi = . 

Also we know that if A and B are measurable sets then their difference A – B = A  B
c
 is also measurable. Therefore 

each Fi is measurable. Thus {Fi} is a sequence of measurable pairwise disjoint sets. 

Now 


1i

Fi = 
1i

(Ei – Ei+1)  

= 
1i

(Ei  Ei+1
c
)  

= E1  ( Ei
c
)  

= E1  (
1i

Ei)
c
  

= E1  E
c
  

= E1 – E 

Hence  

m(
1i

Fi) = m(E1 – E) 

 

1i

m Fi = m(E1 – E) 

 

1i

m(Ei – Ei+1) = m(E1 – E)     (i) 
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Since E1 = (E1 – E)  E, therefore 

mE1 = m(E1 – E) + m(E) 

 m E1 – m E = m(E1 – E), (since m E  m E1 < )  (ii) 

Again 

Ei = (Ei – Ei+1)  Ei+1   

 m Ei = m(Ei – Ei+1) + m Ei+1 

 m Ei - m Ei+1= m(Ei – Ei+1) (since Ei+1  Ei)  (iii) 

Therefore (i) reduces to  

m E1 – m E = 

1i

 (m Ei - m Ei+1) (using (ii) and (iii)) 

                    =
n
lim

n

i 1

( m Ei – m Ei+1) 

                   = 
n
lim  [m E1 – m E2 + mE2 – m E3…….- m En+1] 

         = 
n
lim  [m E1 – m En+1] 

      = m E1 - 
n
lim  m En+1 

       m E = 
n
lim  m En  

          m(
1i

Ei) = 
n
lim  m En 

Theorem 35.  Let {En} be an increasing sequence of measurable sets, that is, a sequence with En  En+1 for each n. Let 

mE1 be finite, then 

  m(
1i

Ei) = 
n
lim  m En. 

Proof.   The sets E1, E2 – E1, E3 – E2, ….,En – En-1, are measurable and are pairwise disjoint. Hence 

E1 (E2 – E1) … (En – En-1) …. 

is measurable and 

m[E1 (E2 – E1) … (En – En-1) ….] 

 = m E1 + 

n

i 2

m(Ei – Ei-1) = m E1 + 
n
lim

n

i 2

m(Ei – Ei-1) 

But E1 (E2 – E1) ….  (En – En-1) ……is precisely 
1i

En  

Moreover, 
n

i 2

m(Ei – Ei-1) = 

n

i 2

( m Ei – m Ei-1) 

                             = ( m E2 – m E1) + ( m E3 – m E2) + ……+ ( m En – m En-1) 

         = m En – m E1 

Thus we have 

          m[
1i

Ei] = m E1 + 
n
lim  [m En – m E1] 

      = 
n
lim  m En. 

Definition. The symmetric difference of the sets A and B is the union of the sets A – B and B – A. It is denoted by A 

B  



 

 

102 

Theorem 36. If m (E1 E2) = 0 and E1 is measurable, then E2 is measurable. Moreover              m E2 = m E1.   

Proof.   We have 

E2 = [ E1 (E2 – E1)] – (E1 – E2)     (i) 

By hypothesis, both E2 – E1 and E1 – E2 are measurable and have measure zero. Since E1 and       E2 – E1 are disjoint, 

E1 (E2 – E1) is measurable and m[E1 (E2 – E1)] = m E1 + 0 = m E1. But, since  

E1 – E2  [E1 (E2 – E1)],  

it follows from (i) that E2 is measurable and  

m E2 = m[E1 (E2 – E1)] - m(E1 – E2) 

         = m E1 – 0 = m E1. 

This completes the proof. 

Definition.  Let x and y be real numbers in [0, 1]. Then sum modulo 1 of x and y, denoted by      x 
o

 y, is defined by 

x 
o

 y = 
.11

1

yxifyx

yxifyx
 

It can be seen that 
o

 is a commutative and associative operation which takes pair of numbers in[0, 1) into numbers in 

[0, 1). 

If we assign to each x  [0, 1) the angle 2  x then addition modulo 1 corresponds to the addition of angles. 

If E is a subset of [0, 1), we define the translation module 1 of E to be the set 

E 
o

 y = [z | z = x 
o

 y for some x  E]. 

If we consider addition modulo 1 as addition of angles, translation module 1 by y corresponds to rotation through an 

angle of 2  y. 

We shall now show that Lebesgue measure is invariant under translation modulo 1. 

Lemma. Let E  [0, 1) be a measurable set. Then for each y  [0, 1) the set E 
o

 y is measurable and m(E 
o

 y) = m 

E.  

Proof.   Let E1 = E [0, 1 – y) and E2 = E [1 – y, 1). Then E1 and E2 are disjoint measurable sets whose union is E, 

and so 

m E = m E1 + m E2. 

We observe that 

E1 
o

 y = {x 
o

 y : x  E1] 

 = 
.11

1

yxifyx

yxifyx
 x  E1 

But for x  E1, we have x + y < 1 and so 

E1 
o

y = {x + y, x  E1} = E1 + y. 

and hence E1 
o

 y is measurable.  Thus 

m(E1 
o

 y) = m(E1 + y) = m(E1), 

since m is translation invariant. Also E2 
o

y = E2 + (y – 1) and so E2 
o

 y is measurable and  m(E2 
o

 y) = m E2. But 

E 
o

 y = (E1 
o

 y)  (E2 
o

 y) 

and the sets (E1 
o

 y) and (E2 
o

 y) are disjoint measurable sets. Hence E 
o

 y  is measurable and  

m(E 
o

 y) = m[(E1 
o

 y)  (E2 
o

 y) 
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                  = m(E1 
o

 y) + m(E2 
o

 y) 

                  = m(E1) + m(E2) 

          = m(E). 

This completes the proof of the lemma. 

Construction of a non – measurable set.  If x – y is a rational number, we say that x and y are equivalent and write x 

~ y. It is clear that x ~ x; x ~ y  y ~ x and x ~ y, y ~ z  x ~ z. Thus „~‟ is an equivalence relation and hence 

partitions [0, 1) into equivalence classes, that is, classes such that any two elements of one class differ by a rational 

number, while any two elements of different classes differ by an irrational number. By the axiom of choice (Let C be 

any collection of non – empty sets. Then there is a function F defined on C which assign to each set A  C on element 

F(A) in A.) there is a set P which contains exactly one element from each equivalence class. Let <r i>
0i

be an 

enumeration of the rational numbers in [0, 1) with r0 = 0 and define 

Pi = P 
o

 ri . (translator modulo 1 of P) 

Then P0 = P. Let x  Pi  Pj. Then 

x = pi + ri = pj + rj. 

with pi and pj belonging to P. But pi - pj = rj – ri is a rational number, whence pi ~ pj. Since P has only one element 

from each equivalence class, we must have i = j. This implies that if i  j,         Pi  Pj = , that is , that <Pi> is a pair 

wise disjoint sequence of sets. On the other hand, each real number x in [0, 1) is in some equivalence class and so is 

equivalent to an element in P. But if x differs from an element in P by the rational number r i, them x  Pi. Thus  Pi = 

[0, 1). Since each Pi is a translation modulo 1 of P, each Pi will be measurable if P is and will have the same measure. 

But if this were the case, 

m[0, 1) = 

1i

m Pi = 

1i

m P, 

and the right hand side is either zero or infinite, depending on whether m P is zero or positive. But this is impossible 

since m[o, 1) = 1, and consequently P cannot be measurable. 

Definition.  An outer measure is said to be regular if for any set A contained in whole space X we can find a 

measurable set B such that 

B  A and m*A = m* B = m B. 

Theorem37.  Let m* be a regular outer measure such that m* X < . Then the necessary and sufficient condition for a 

set E to be measurable is that 

m* X = m* E + m* E
c
 . 

Proof. The condition is necessary :- Since E is measurable, for any set A we have 

m* A = m*(A  E) + m*(A  E
c
) 

Replacing A by X we have 

m* X = m*(X  E) + m*(X  E
c
) 

          = m* E + m* E
c
.  

The condition is sufficient :- Let A be any set. Since m* is regular we can find a measurable set B  A such that 

m* A = m* B = m B. 

Now B being measurable, we have 

m* E = m*(E  B) + m*(E  B
c
)      (i) 

m* E
c
 = m*(E

c
  B) + m*(E

c
  B

c
)    (ii) 

Adding (i) & (ii) we have 

m* E + m* E
c
 = m*(E  B) + m*(E  B

c
) + m*(E

c
  B) + m*(E

c
  B

c
) 

 m* X = m*(E  B) + m*(E  B
c
) + m*(E

c
  B) + m*(E

c
  B

c
) 

Now consider                                                                                           E   B 

m*(E  B) + m*(E
c
  B). 

Since 

B = (E  B)  (E
c
  B), 

Therefore 
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m* B  m*(E  B) + m*(E
c
  B)                           

Hence 

m* X  m*(E  B
c
) + m* B + m*(E

c
  B

c
) 

Again 

m* B
c
  m*(E  B

c
) + m*(E

c
  B

c
)     (iii) 

Hence 

m* X  m* B + m* B
c
 

         = m B + m B
c
 = m* X 

Thus 

m*(E  B) + m*(E  B
c
) + m*(E

c
  B) + m*(E

c
  B

c
)  

= m B + m B
c
 

That is, 

m*(E  B) + m*(E  B
c
) + m*(E

c
  B) + m*(E

c
  B

c
) - m B

c
  

= m B  

Using (iii), the last expression reduces to  

m*(E  B) + m*(E
c
  B)  m B. 

INNER MEASURE 

Definition. Let F be a closed set. Then inner measure of a set E, denoted by m* E, is defined by 

m* E = 
EF

sup
{| F |} 

where | . | denotes the length. 

Definition. A subset E of (a, b) is said to measurable if 

m* E = m* E. 

The relation between inner and outer measure is m* E = (b – a) – m* E
c
. 

Let [En] be a sequence of sets. Then  

Definition.  The set of those elements which belong to En for infinitely many values of n is called the lim sup of the 

sequence of sets {En}. We denote it by lim  En. 

Lemma.   lim  En =  
1m mn

En. 

Proof.    Let x  lim  En. Then 

  x  
mn

En for all m 

  x  
1m mn

En  lim  En   
1m mn

En 

conversely, if x   
1m mn

En, then 

x  
mn

En for all m 

 x  En for some n  m 

 x  En for  infinite values of n. 

 x  lim  En 

 
1m mn

En  lim  En 

EAB 
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Hence limEn =  
1m mn

En. 

Definition.  The set of those elements which belong to all En except a finite number of them is called lim in f of the 

sequence of sets {En}. We denote it by lim En.  

It may be proved that lim En =  
1m mn

En. For, let 

x   
1m mn

En  x  
1m

En for some m 

  x  lim En. 

Similarly, we can show that if x  lim En then x   
1m mn

En. 

Theorem 38.   If {En} is a sequence of measurable sets, then lim  En and lim  En are also measurable.  

Proof.   We have shown above that  

   lim  En =   
1m mn

En. 

Since {En} is a sequence of measurable sets, the right hand side is measurable and so lim En is measurable.  

Similarly, since   

 lim En =   
1m mn

En 

it is obvious that right hand side and so lim  En is measurable. 

Example.  The cantor set is uncountable with outer measure zero. 

Solution.  We already know that cantor ser is uncountable. Let Cn denote the union of the closed intervals left at the 

nth stage of the construction. We note that Cn consists of 2
n
 closed intervals, each of length 3

-n
Therefore 

  m* Cn  2
n
 . 3

n
   (m* Cn = m*( Fn) = m* Fn ) 

But any point of the cantor set C must be in one of the intervals comprising the union Cn, for each n  N, and as such C 

 Cn for all n  N. Hence 

m* C  m* Cn  

n

3

2
 

This being true for each n  N , letting n   gives m* C = 0. 

Example.  If E1and E2 are any measurable sets, show that 

M(E1  E2) + m(E1  E2) = m(E1) + m(E2). 

Proof.   Let A be any set. Since E1 is measurable, 

m* A = m*(A  E1) + m*(A  E1
c
). 

We set A = E1  E2 and we have 

m*( E1  E2) = m*[( E1  E2)  E1] + m*[( E1  E2)  E1
c
] 

Adding m (E1  E2) to both sides we have  

m(E1  E2) + m(E1  E2) = m E1 + m[(E1  E2)  E1
c
] + m(E1  E2) (1) 

But 

E2 = [(E1  E2)  E1
c
]   (E1  E2). 

Therefore 

m{[(E1  E2)  E1
c
]   (E1  E2)} = m E2 

Hence (1) reduces to  
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M(E1  E2) + m(E1  E2) = mE1 + m E2. 

Theorem39. Let E be any set. Then given  > 0, there is an open set O  E such that 

m* O < m* E + . 

Proof.  There exists a countable collection [In] of open intervals such that E  
n

In and 

1n

l(In) < m* E + . 

Put  O = 
1n

In. 

Then O is an open set and  

m* O = m*(
1n

In)  

 

1n

m* In  

= 

1n

l(In) < m* E + . 

Theorem 40.  Let E be a measurable set. Given  > 0, there is an open set O  E such that m*(O\E) < . 

Proof.  Suppose first that m E < . Then by the above theorem there is an open set O  E such that 

m* O < m* E +  

Since the sets O and E are measurable, we have 

m*(O\E) = m* O – m* E < . 

Consider now the case when m E = . Write the set R of real numbers as a union of disjoint finite intervals; that is, R 

= 
1n

In. Then, if En = E  In, m(En)< .  We can, thus, find open sets On  En such that 

m*(On – En) < 
n2

. 

Define O = 
1n

On. Clearly O is an open set such that O  E and satisfies 

O  E = 
1n

On - 
1n

En  
1n

(On – En) 

Hence 

m*(O  E)  

1n

m*(On\En) <  . 
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4 
MEASURABLE FUNCTIONS AND LEBESGUE 

INTEGRAL  
 

 

PART A : MEASURABLE FUNCTIONS 

4.1. Definition.   Let E be a measurable set and f a function defined on E.  Then f is said to be measurable (Lebesgue 

function) if for any real  any one of the following four conditions is satisfied.  

(a) {x | f(x) >  } is measurable  

(b) {x | f(x)  } is measurable  

(c) {x | f(x) < } is measurable 

(d) {x | f(x)  } is measurable.  

We show first that these four conditions are equivalent.  First of all we show that (a) and (b) are equivalent.  Since  

  {x | f(x) >  } = {x | f(x)   }
c
  

and also we know that complement of a measurable set is measurable, therefore (a)  (d) and conversely.  

Similarly since (b) and (c) are complement of each other, (c) is measurable if (b) is measurable and conversely.  

Therefore, it is sufficient to prove that (a)  (b) and conversely.  

Firstly we show that (b)  (a) .  

The set {x | f(x)  } is given to be measurable.   

Now  

  {x | f(x) >  } =  
1n

x{ | f(x)   + 
n

1
}  

But by (b), {x | f(x)   + 
n

1
} is measurable.  Also we know that countable union of measurable sets is measurable.  

Hence {x | f(x) >  } is measurable which implies that (b)  (a).    Conversely, let (a) holds.   We have  

  {x | f(x)  } = 
1n

x{  |f(x) >   
n

1
}  

The set {x | f(x) >   
n

1
} is measurable by (a).  Moreover, intersection of measurable sets is also measurable.   

Hence {x | f(x)  } is also measurable.  Thus (a)  (b).  

Hence the four conditions are equivalent.  

Lemma.  If  is an extended real number then these four conditions imply that {x | f(x) = } is also measurable.  

Proof.  Let  be a real number, then  

  {x | f(x) =  } = { x | f(x)  }  {x | f(x)   }.  

Since {x | f(x)   } and { x | f(x)  } are measurable by conditions (b) and (d), the set {x | f(x) =  } is measurable 

being the intersection of measurable sets.  

Suppose  = +  .  Then  

  {x | f(x) =  } = 
1n

x{ | f(x)  n}  

which is measurable by the condition (b) and the fact that intersection of measurable sets is measurable.  

Similarity when  = , then  
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  {x | f(x) = } = 
1n

x{ | f(x)  n} 

which is again measurable by condition (d).  
Hence the result follows.  

Second definition of Measurable functions  

We see that  

  {x | f(x) >  } 

is inverse image of ( , ].  Similarly the sets  

 [x | f(x)  } ,  {x | f(x) < } ,  {x | f(x)  } are inverse images of [ , ], [ , ) and [ , ] respectively.  
Hence we can also define a measurable function as follows.  

A function f defined on a measurable set E is said to be measurable if for any real  any one of the four conditions is 

satisfied :  

(a) The inverse image f
1
( , ] of the half-open interval ( , ] is measurable.  

(b) For every real , the inverse image f
1
 [ , ] of the closed interval [ , ]  is measurable.  

(c) The inverse image f
1
 [ , ) of the half open interval [ , ) is measurable.  

(d) The inverse image f
1
[ , ] of the closed interval [ , ] is measurable.  

Remark 1.  It is immediate that a necessary and sufficient condition for measurability is that {x | a  f(x)  b} should 

be measurable for all a, b [including the case a = , b =  + ], for any set of this form can be written as the 

intersection of two sets 

  {x | f(x)  a }  { x | f(x)  b },  

if f is measurable, each of these is measurable and so is {x | a  f(x)  b}.  Conversely any set of the form occurring in 

the definition can easily be expressed in terms of the sets of the form {x | a  f(x)  b}.   

Remark 2.   Since ( , ) is an open set, we may define a measurable function as “A function f defined on a 

measurable set E is said to be measurable if for every open set G in the real number system, f
1
(G) is a measurable set.  

Definition.   Characteristic function of a set E is defined by  

  E(x)  = 
Exif0

Exif1
  

This is also known as indicator function.  

Example of a Measurable function 

Let E be a set of rationals in [0, 1].  Then the characteristic function E(x) is measurable.  

Proof.  For the set of rationals in the given interval, we have  

  E(x) = 
Exif0

Exif1
 

It is sufficient to prove that the set  

  {x | E(x) >  }  
is measurable for any real .  

Let us suppose first that   1.  Then  

  {x | E(x) >  } = {x | E (x) > 1 }  

Hence the set {x | E(x) >  } is empty in this very case.  But outer measure of any empty set is zero.  Hence for   1, 

the set {x | E(x) >  } and so E(x) is measurable.   

Further let 0   < 1.  Then  

  {x | E(x) >  } =  E 

But E is countable and therefore measurable.  Hence E(x) is measurable. 

Lastly, let  <  0.  Then  

  {x | E(x) >  } = [0, 1] 
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and therefore measurable.  Hence the result.  

Example 2.  A continuous is measurable.  

Proof.  If the function f is continuous, then f
1
 ( , ) is also open.  But every open set is measurable.  Hence every 

continuous function is measurable.  

We may also argue as follows:  

If f is continuous then  

  {x |  f(x) < , x  (a, b)}  

is closed and hence  

  {x | f(x)  } = {x | f(x) < }
c
  

is open and so measurable.  

* All the ordinary functions of analysis may be obtained by limiting process from continuous function and so are 

measurable.   

Example 3.  A constant function with a measurable domain is measurable.   

Solution.  Let E be a measurable set and let f : E  R* be a constant function definition by           f(x) = K(constant).  

Then for any real , we have  

  {x : f(x) > } = 
kif

kifE
 

Since both E and  are measurable, it follows that the set {x : f(x) > } and hence f is measurable.  

Theorem 1.  For any real c and two measurable real-valued functions f, g the four functions  

f + c, cf,  f+g, fg  are measurable.  

Proof.  We are given that f is a measurable function and c is any real number.  Then for any real number  

  {x | f(x) + c > } = {x | f(x) > c }  

But {x | f(x) > c} is measurable by the condition (a) of the definition.  Hence {x | f(x) + c > } and so f(x) + c is 

measurable.  

We next consider the function cf.  In case c = 0, cf is the constant function 0 and hence is measurable since every 

constant function is continuous and so measurable.  In case c > 0 we have  

 {x | cf(x) >  } = {x | f(x) > 
c

} = f
1
 (

c
, ] ,  

and so measurable.  

In case c < 0, we have 

 {x | cf(x) > r} = {x | f(x) < 
c

r
}  

and so measurable.  

Now if f and g are two measurable real valued functions defined on the same domain, we shall show that f+g is 

measurable.  To show iit, it is sufficient to show that the set {x | f(x) + g(x) > } is measurable.  

If f(x) + g(x) > , then f(x) > g(x) and by the Cor. of the axiom of Archimedes there is a rational number r such that  

  g(x)  < r < f(x) 

Since the functions f and g are measurable, the sets 

  {x | f(x) > r} and {x | g(x) > r}  

are measurable.  Therefore, there intersection  

  Sr = {x | f(x) > r }  {x | g(x) > r}  
is also measurable. 

It can be shown that  

 {x | f(x) + g(x) >  } =  U{Sr | r is a rational} 

Since the set of rational is countable and countable union of measurable sets is measurable, the set U{Sr | r is a 

rational} and hence {x | f(x) + g(x) >  } is measurable which proves that f(x) + g(x) is measurable.  

From this part it follows that f g =  f+( g) is also measurable, since when g is measurable ( g) is also measurable.   
Next we consider fg.  
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The measurability of fg follows from the identity  

 fg = 
2

1
[(f+g)

2
  f

2
g

2
 ]  ,  

if we prove that f
2
 is measurable when f is measurable.  For this it is sufficient to prove that  

  { x  E | f
2
(x) >  } ,     is a real number,  

is measurable.  

Let  be a negative real number.  Then it is clear that the set {x |  f
2
(x) >  } =  E(domain of the measurable function f 

).    But E is measurable by the definition of f .  Hence {x | f
2
(x) >  } is measurable when  < 0.  

Now let   0 , then  

  {x | f
2
(x) >  } = {x | f(x) > }  {x | f(x) < }  

Since f is measurable, it follows from this equality that  

  {x | f
2
(x) >  }  

is measurable for   0 .  

Hence f
2
 is also measurable when f is measurable.  

Therefore, the theorem follows from the above identity, since measurability of f and g imply the measurability of f + g .  
From this we may also conclude that f/g (g  0) is also measurable.  

Theorem 2.  If f is measurable, then |f| is also measurable.  

Proof.  It suffices to prove the measurability of the set  

  {x | |f(x)| >  },   where  is any real number.  

If  < 0, then  

  {x | |f(x)| > } = E (domain of f) 

But E is assumed to be measurable.  Hence {x | |f(x)| >  } is measurable for  < 0.  

If     0  then  

  {x | |f(x)| >  } = {x | f(x) >  }  {x | f(x) <  }  

The right hand side of the equality is measurable since f is measurable.  Hence {x | f(x)| > } is also measurable.  

Hence the theorem is proved.  

Theorem 3.  Let 1nn}f{ be a sequence of measurable functions.  Then  

 sup{f1, f2,.., fn} ,    inf. {f1, f2,…, fn } ,  

n

sup  fn , 
n

inf  fn ,  lim fn and lim fn are measurable.   

Proof.  Define a function  

  M(x) = sup{f1, f2,…, fn}  
We shall show that {x | M(x) > } is measurable.  

In fact  

  {x | M(x) >  } =  
n

1i

{ x|fi(x) >  }  

Since each fi is measurable, each of the set {x | fi(x) >  } is measurable and therefore their union is also measurable.  

Hence {x | M(x) >  } and so M(x) is measurable.  

Similarly we define the function 

  m(x) =  inf{f1, f2,…, fn}  

Since m(x) <  iff fi(x) <  for some i we have  

  {x | m(x) <  } = 
n

1i

{ x|fi(x) <  }  

and since {x | fi(x) < } is measurable on account of the measurability of fi, it follows that         {x | m(x) < } and so 

m(x) is measurable.  

Define a function 
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M (x) = 
n

sup  fn(x) = sup {f1, f2,…, fn,…)  

We shall show that the set  

  {x | M (x) >  }  

is measurable for any real .  

Now  

  {x | M (x) > }  = 
1i

{ x | fn(x) >  } 

is measurable, since each fn is measurable. 

Similarly if we define  

  m (x) = 
n

inf fn(x) ,  

then  

  {x | m (x) < } = 
1i

{ x | fn(x) <  } 

and therefore measurability of fn implies that of m (x).  Now since  

  lim  fn = lim 
n

sup fn = 
k

inf
kn

nf{sup } 

and    lim  fn = 
k

sup  
kn

nf{inf } ,  

the upper and lower limits are measurable.  

* Finally if the sequence is convergent, its limit is the common value of lim fn and lim fn and hence is measurable.  

Definition.  Let f and g be measurable functions.  Then we define  

   f 
+
 = Max (f, 0) 

   f
 

 = Max ( f, 0)  

        f   g= 
2

|gf|gf
 i.e.  Max (f, g)  

and  

        f  g = 
2

|gf|gf
 i.e.  min (f, g)  

Theorem 4.  Let f be a measurable function.  Then f  and f are both measurable.  

Proof.  Let us suppose that f > 0 .  Then we have  

  f  = f and f = 0         (i) 

So in this case we have  

  f = f   f 

Now let us take f to be negative.  Then  

  f  = Max (f, 0) = 0  

           f   = Max ( f, 0) = f         (ii) 

Therefore on subtraction 

  f = f  f  

In case f  = 0 ,  then  

  f  = 0, f = 0         (iii) 

Therefore f =  f   f  

Thus for all f we have  
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  f  = f  
f           (iv) 

Also adding the components of (i) we have  

  f  = | f | = f  + f         (v) 

since f is positive.  

And from (ii) when f is negative we have  

  f  + f = 0  f = f = |f|       (vi) 

In case f is zero, then  

f + f = 0 + 0 = 0 = |f|       (vii) 

That is for all f, we have  

  |f | = f  + f         (viii) 

Adding (iv) and (viii) we have  

  f + |f| = 2 f  

       f  = 
2

1
(f + |f| )         (ix) 

Similarly on subtracting we obtain  

  f = 
2

1
( | f |  f)        (x) 

Since measurability of f implies the measurability of | f | it is obvious from (ix) and (x) that f  and f  are measurable.  

Theorem 5.   If f and g are two measurable functions, then f  g and f  g are measurable. 

Proof.  We know that  

  f g = 
2

|gf|gf
 

  f g = 
2

|gf|gf
 

Now measurability of f  measurability of |f|.  Also if f and g are measurable, then f+g, f g are measurable.  Hence 

f g and f g are measurable.  

We now introduce the terminology “almost everywhere” which will be frequently used in the sequel.  

Definition.   A statement is said to hold almost everywhere in E if and only if it holds everywhere in E except possibly 

at a subset D of measure zero.  

Examples  

(a) Two functions f and g defined on E are said to be equal almost everywhere in E iff f(x) = g(x) everywhere except 

a subset D of E of measure zero.  

(b) A function defined on E is said to be continuous almost everywhere in E if and only if there exists a subset D of 

E of measure zero such that f is continuous at every point of E D.  

Theorem 6.  (a) If f is a measurable function on the set E and E1  E is measured set, then f is a measurable function 

on E1.  

(b)  If f is a measurable function on each of the sets in a countable collection {E i} of disjoint measurable sets, then f is 

measurable.  

Proof.  (a)  For any real , we have {x  E1, f(x) > } =  { x  E; f(x) > }  E1.  The result follows as the set on the 

right-hand side is measurable.  
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(b)  Write E =  
1i

iE .  Clearly, E, being the union of measurable set is measurable.  The result now follows, since for 

each real , we have E = { x  E, f(x) > } = 
1i

iE  f(x) >  } 

Theorem 7.  Let f and g be any two functions which are equal almost everywhere in E.  If f is measurable so is g.  

Proof.  Since f is measurable, for any real  the set {x | f(x) >  } is measurable.  We shall show that the set {x | g(x) 

>  } is measurable.  To do so we put 

  E1 = {x | f(x) >  }  

and  

  E2 = {x | g(x) >  } 

Consider the sets  

  E1  E2 and E2  E1 

Since f = g almost everywhere, measures of these sets are zero.  That is, both of these sets are measurable. Now  

  E2 = [E1  (E2 E1)]  (E1 E2) 

       = [E1  (E2 E1)  (E1 E2)
c
  

Since E1, E2 E1 and (E1 E2)
c
 are measurable therefore it follows that E2 is measurable.  Hence the theorem is proved.   

Cor.  Let {fn} be a sequence of measurable functions such that 
n
lim fn = f almost everywhere.  Then f is a measurable 

function.  

Proof.  We have already proved that if {fn} is a sequence of measurable functions then 
n
lim fn  is measurable.   Also it 

is given that 
n
lim fn = f a.e.   Therefore using the above theorem it follows that f is measurable.  

Theorem 8.  Characteristic function A is measurable if and only if A is measurable.  

Proof.  Let A be measurable.  Then  

  A(x) = 
cAx.e.iAxif0

Axif1
 

Hence it is clear from the definition that domain of A is A  A
c
 which is measurable due to the measurability of A.  

Therefore, if we prove that the set {x | A(x) >  } is measurable for any real , we are through.  

Let   0 .  Then  

  {x | A(x) >  } = {x | A(x) = 1}  

      = A(by the definition of Ch. fn.) 

But A is given to be measurable.  Hence for   0 .  The set {x | A(x) >  } is measurable.  

Now let us take  < 0 .   Then 

  {x | A(x) >  } = A  A
c
  

Hence {x | A(x) > } is measurable for  < 0 also, since A  A
c
 has been proved to be measurable.  Hence if A is 

measurable, then A is also measurable.  

Conversely, let us suppose that A(x) is measurable.  That is, the set {x | A(x) > } is measurable for any real .  

Let   0 .  Then  

  {x | A(x) > } = {x | A(x) = 1} = A  

Therefore, measurability of {x | A(x) > } implies that of the set A for   0 .  

Now consider  < 0.  Then  

  {x | A(x) > } = A  A
c
  

Thus measurability of A(x) implies measurability of the set A A
c
 which imply A is measurable.  

Remark.  With the help of above result, the existence of non-measurable function can be demonstrated.  In fact, if A 

is non-measurable set then A cannot be measurable.  

Theorem 9.  If a function f is continuous almost everywhere in E, then f is measurable.  
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Proof.  Since f is continuous almost everywhere in E, there exists a subset D of E with m*D = 0 such that f is 

continuous at every point of the set C =  E D.  To prove that f is measurable, let  denote any given real number.  It 

suffices to prove that the inverse image  

  B = f 
1
( , ) = {x  E | f(x) >  } 

of the interval ( , ) is measurable.  

For this purpose, let x denote an arbitrary point in B  C.  Then f(x) >  and f is continuous at x.  Hence there exists 

an open interval Ux containing x such that f(y) >  hold for every point y of            E  Ux .  Let    

  U = 
CBx

xU  

Since x  E Ux  B holds for every x  B  C,  we have  

  B  C  E    B  

This implies  

  B = (E  U)  (B  D) 

As an open subset of R, U is measurable.  Hence E U is measurable.  On the other hand, since  

  m*(B D)  m*D = 0 ,  

B D is also measurable.  This implies that B is measurable.  This completes the proof of the theorem.  

Definition.  A function , defined on a measurable set E, is called simple if there is a finite disjoint class {E1, E2,…, 

En} of measurable sets and a finite set { 1, 2,…, n} of real numbers such that  

  f(x) = 

n21

ii

E...EExif0

n,...,2,1i,Exif
 

Thus, a function is simple if it is measurable and takes only a finite number of different values.  

The simplest example of a simple function is the characteristic function E of a measurable set E.  

Definition.   A function f is said to be a step function if  

  f(x) = Ci ,   i 1  < x < i  

for some subdivision of [a, b] and some constants Ci .  
Clearly, a step function is a simple function.  

Theorem 10.   Every simple function  on E is a linear combination of characteristic functions of measurable subsets 

of E.  

Proof.  Let  be a simple function and c1, c2,…, cn denote the non-zero real numbers in its image (E).  For each i = 

1,2,…, n, let  

  Ai = {x  E : (x) = Ci} 

Then we have  

   =  

n

1i
Ai i

C  

On the other hand, if (E) contains no non-zero real number, then  = 0 and is the characteristic function  of the 

empty subset of E.  

It follows from Theorem 10  that simple functions, being the sum of measurable functions, is measurable.  

Also, by the definition, if f and g are simple functions and c is a constant, then f +c, cf, f+g and fg are simple.  

Theorem 10 (Approximation Theorem).   For every non-negative measurable function f, there exists a non-negative 

non-decreasing sequence {fn} of simple functions such that  

  
n
lim fn(x) = f(x),  x  E  

In the general case if we do not assume non-negativeness of f , then we say  

For every measurable function f, there exists a sequence {fn}, n  N of simple function which converges (pointwise) to 

f . 

i.e. “Every measurable function can be approximated by a sequence of simple functions.” 

Proof.  Let us assume that f(x)  0  and x  E .  Construct a sequence  



 

 

115 

 

  fn(x) = 

n)x(fforn

2n,...,2,1i,
2

i
)x(f

2

1i
for

2

1i n

nnn  

for every n  N.  

If we take n = 1, then  

  f1(x) = 

1)x(ffor1

,2,1i,
2

i
)x(f

2

1i
for

2

1i

 

That is,  f1(x) =  

1)x(ffor1

1)x(f
2

1
for

2

1

2

1
)x(f0for0

 

Similarly taking n = 2, we obtain  

  f2(x) =  

2)x(ffor2

8,...,2,1i,
4

i
)x(f

4

1i
for

4

1i

 

That is,  

  f2(x) =  

2)x(ffor2

2)x(f
4

7
for

4

7
............................

............................
2

1
)x(f

4

1
for

4

1
4

1
)x(f0for0

 

Similarly we can write f3(x) and so on.  Clearly all fn are positive whenever f is positive and also it is clear that fn  

fn+1.  Moreover fn takes only a finite number of values.  Therefore {fn} is a sequence of non-negative, nondecreasing 

functions which assume only a finite number of values.  

Let us denote  

  Eni = f
1
 

nnnn 2

i
)x(f

2

1i
|Ex

2

i
,

2

1i
 

and   

  En =  f
1
 [n, ] = {x  E | f(x)  n}  

Both of them are measurable.  Let  

  fn = 
n

n

in E

2n

1i
En

n
2

1i
 

for every n  N .  
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Now  

n

in

2n

1i
En2

1i
is measurable, since 

inE  has been shown to be measurable and characteristic function of a 

measurable set is measurable.  Similarly 
nE is also measurable since En is measurable.  Hence each fn is measurable.  

Now we prove the convergence of this sequence.   

Let f(x) <  .  That is f is bounded.  Then for some n we have  

  
nn 2

i
)x(f

2

1i
 

 
nnnnn 2

1i

2

i

2

1i
)x(f

2

1i

2

1i
 ,  

 0     f(x)  
nn 2

1

2

1i
 

 0  f(x)  fn(x) < 
n2

1
  (by the def of fn(x))  

 f(x)  fn(x) <   

 
n
lim  fn(x) = f(x)  

and this convergence is uniform.  

Let us suppose now that f is not bounded.  Then since  

  fn(x) = n  for f(x)  n  

               
n
lim   fn(x) =   = f(x)  

When we do not assume non-negativenss of the function then since we know that f
 +

 and  f  are both non-negative, 

we have by what we have proved above  

  f  =  
n
lim  n(x) …    (i) 

           f   =  
n
lim n(x) …   (ii) 

where n(x) and n(x) are simple functions.  Also we have proved already that  

  f = f  f   

Now from (i) and (ii) we have  

  f   f = 
n
lim n(x)  

n
lim n(x)  

             = 
n
lim ( n(x)  n(x)) 

             = 
n
lim n(x) 

(since the difference of two simple functions is again a simple function).  Hence the theorem. 

Littlewood’s three principles of measurability 

The following three principles concerning measure are due to Littlewood.  

First Principle.  Every measurable set is a finite union of intervals.  

Second Principle.  Every measurable function is almost a continuous function.  

Third Principle.  If {fn} is a sequence of measurable function defined on a set E of finite measure and if fn(x)  f(x) 

on E, then fn(x) converges almost uniformly on E. 

First of all we consider third principle.  We shall prove Egoroff‟s theorem which is a slight modification of third 

principle of Littlewood‟s.  
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Theorem 11(Egoroff’s Theorem).  Let {fn} be a sequence of measurable functions defined on a set E of finite 

measure such that fn(x)  f(x) almost everywhere.  Then to each  > 0 there corresponds a measurable subset E0 of E 

such that m 
c
0E  <    and fn(x) converges to f(x) uniformly on E0. 

Proof.  Since fn(x)  f(x) almost everywhere and {fn} is a sequence of measurable functions, therefore f(x) is also a 

measurable function.  Let  

  H = { x | 
n
lim  fn(x) = f(x) } 

Clearly measure of E H is zero.  

For each pair (k, n) of positive integers, let us define the set  

  Ekn = 
nm

x{ | |fm(x)  f(x)| < 
k

1
} 

(Since each fm f is a measure function, the sets Ekn are measurable). 

Then for each k, if we put       

  E  =  
1n

knE  

Then it is clear that  

  E  = 
1n

knE   H  

In fact, if x  H then x  E    H  E  . 

We have also  

  Ek(n+1)  = 
1nm

x{ | |fm(x)  f(x)| < }
k

1
 

Clearly 

  Ekn = Ek(n+1)  {x | |fn(x)  f(x)| < 
k

1
} 

Hence Ek(n+1) cannot be a proper subset of Ekn.   That is,  

  Ekn  Ek(n+1)  

Thus for each k the sequence [Ekn] is an expanding sequence of measurable sets.  Therefore 

  
n
lim m (Ekn) = m(

1n
knE )  

                       m(H) = m(E) , 

whence  

  
n
lim m(

c
knE ) = 0 .        (i) 

Thus, given  > 0, we have that for each k there is a positive integer nk such that  

  |m 
c
knE   0 | <  

k2
,  n   nk  

i.e.    | m 
c
knE | <  

k2
 ,    n  nk        (ii) 

Let  

   E0 = 
1k

kE nk ,  

then E0  is measurable and  

  m 
c
0E = m (

1k

c
kn )E

k
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           =  m (
1k

c
knk

E ) 

            

1k

c
knk

Em  

           = 

1k
k2

  (using (ii)) 

           =  

1k
k2

1
 =  .  

It follows from the definition of Ekn that for all m  nk ,   

  | fm(x)  f(x) |  <  
k

1
        (iii) 

for every x  
kknE .   Since E0  

kknE for every k, the condition m  nk yields (iii) for every x  E0.  Hence fn(x)  

f(x) uniformly on E0.   This completes the proof of the theorem.  

Now we pass to the second principle of Littlewood.  This is nothing but approximation of measurable functions by continuous 
functions.  In this connection we shall prove the following theorem known as Lusin Theorem after the name of a Russian 

Mathematician Lusin, N.N.  
Theorem 12 (Lusin’s Theorem).   Let f be a measurable function defined on [a, b].  Then to each  > 0, there corresponds a 

measurable subset E0 of [a, b] such that m 
c
0E <  and f is continuous on E0.  

Proof.  Let f be a measurable function defined on [a, b].  We know that every measurable function is the limit of a sequence 
{ n(x)} of simple functions whose points of discontinuity form a set of measure zero.  Thus we have  

  
n
lim n(x) = f,  x  [a, b] 

By Egoroff’s theorem, to each  > 0  there exists a subset E0 of [a, b] such that m 
c
0E <  and n(x) converges to f(x) uniformly on 

E0.  But we know that if { n(x)} is a sequence of continuous function converging uniformly to a function f(x), then f(x) is continuous.  
Therefore f(x) is continuous on E0.  This completes the proof of the theorem.  

Theorem 13.   Let f be a measurable function defined on [a, b] and assume that f takes values        on a set of measure zero.  
Then given  > 0 we can find a continuous function g and a step function h such that  

  |f g| <  ,   (f h) <  ,  
except on a set of measure less than  .  

Proof.  Let H be a subset of [a, b] where f(x) is not   .  Then by the hypothesis of the theorem mH =  m( [a, b]).   We know that 
every measurable function can be expressed as a almost everywhere limit of a sequence of step functions which are continuous 

on a set of measure zero.   

That is, we can find a sequence of step functions such that  

  
n
lim  n(x) = f(x)  a.e.  on H.  

Let F  H such that n(x)  f(x) and is continuous everywhere on F.  

By Egoroff’s theorem for a given  > 0 we can find a subset F   H such that n(x)  f(x) uniformly on F  and  
  M(F  F ) <   

But we know that if {fn}  is a sequence of continuous function converging uniformly to a function f(x), then f(x) is continuous.  
Therefore f(x) is continuous on F .   

Define a continuous function g(x) on [a, b] such that  

  g(x) = 
'Fxif)x(f

'Fxif0
 

Therefore on F  we have  
  |f g| <   
We have already shown that  

  m( [a, b]  F  ) <  .  
Also we have shown that n(x)  f(x) where n(x) is a sequence of step function, so f(x) is also a step function.   Hence the 

theorem. 
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In order to prove the first principle of Littlewood we prove two theorems on approximations of measurable sets.   

Theorem 14.  A set E in R is measurable if and only if to each  > 0,  there corresponds a pair of sets F, G such that F  E  G, F 
is closed, G is open and m(G F) <  .  

Proof.   Sufficiency :-   Taking  = 
n

1
, let the corresponding pair of sets be Fn, Gn with  

  m(Gn  Fn) < 
n

1
 

Let  

                X = 
n
U Fn,  Y =  

n
nG  

It follows that Y X  Gn Fn and  

  m(Y X)  m(Gn Fn) < 
n

1
 

so that  
  m(Y X) = 0 .  

Since  
  E X  Y X ,  

so  
  m(E X) = 0 . 
Therefore,  E  X is measurable.  

But E = (E X)  X .  Therefore E is measurable, since X is measurable and E X is measurable.   
Necessity.  We now assume that E is measurable.  We first prove this part under the assumption that E is bounded.  Since E is 

measurable and bounded, we can choose an open set G  E such that  

  m(G) < m(E) + 
2

        (i) 

Choose a compact (closed and bounded) set S  E , and then choose an open set V such that      S E  V and 

  m(V) < m (S E) + 
2

         (ii) 

Let F = S V.  Then F is closed (since S V = S  Vc which is closed being the intersection of closed sets) and F  E .  We have  
  m(F) = m(S)  m(S  V)  

            m(S)  m(V) 

           > m(S)  m(S E)  
2

     (Using (ii)) 

           =  m(E)  
2

        (iii) 

Then  
        m(G F) = m(G)  m(F)  

           = m(G)  m(E) + m(E) m(F) 

           < 
2

 + 
2

 =            (using (i) and (iii)) 

This finishes the proof for the case in which E is bounded.  

Now, let E be the measurable but unbounded.  Let  
   Sn = {x | |x|  n }  n  Z  

   E1 = E  S1 
   En = E  (Sn Sn 1),  n  2 .  

Then  

   E = 
n

nE ,  

where each En is bounded and measurable.  

Using what has already been established, let Fn, Gn be a pair of sets such that Fn  En  Gn, Fn is closed, Gn is open, and m(Gn Fn) 

< 
n2

.  Let F = 
n

nF , G = 
n

n .   Then G F  
n

(Gn Fn) and so 
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  m(G F)  m{
n

nG(  Fn)}  

 

n

m (Gn Fn) 

  =  

n
n2

 

  =    

n
n2

1
 =  .  

We see that G is open and that F  E  G, so all that remains to prove is that F is closed. Suppose {xi} is a convergent sequence 
(say xi  x) with xi  F for each i.   Then {xi} is bounded and so is contained in SN for certain N .  Now Fn  Sn SN if n > N .  

Therefore, xi  
N

1n
nF  for each i.   But then the limit x is in 

N

1n
nF , for this last set is closed.  Therefore F is closed.  This finishes 

the proof.  

Definition.    If A and B are two sets, then  
  A  B =  (A B)  (B A) .  

Theorem 15. If E is a measurable set of finite measure in R and if  > 0 , there is a set G of the form G = 
N

1n
nI  where I1, I2 ,…, 

IN are open intervals, such that m(E  G) <  .  
Proof.  Let us assume at first that E is bounded. Let X be an open interval such that E  X.  There exist Lebesgue covering {In} and 

{Jn} of E and X E respectively such that  

  

n
n |I|  < m( ) + 

3
 ,  

  

n
n |J|  < m(X E) + 

3
 ,  

and such that each In and Jn is contained in X.  Choose N so that 
3

|I|
Nn

n  and define sets G, H, K as follows  

  G = 
N

1n
nI ,  H = 

Nn
nI , K = G   

n
nJ  

Observe that E G  H and G E  K so that E  G  H  K and therefore  
  m(E G)  m(H  K)  m(H) + m(K)  

We know that m(H)  

Nn
n )I(m  

           = 

Nn
n |I|  

           <  
3

  (by our choice) 

Hence it suffices to prove that m(K) < 
3

2
 .   Since  

  K = G  
n

nJ  

      =  G  Jn  

therefore m(K) = 

n

m (G  Jn).  So we seek an estimate of 

n

m (G  Jn).  Now we can see that  
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  X = [
n

nI ]  [
n

n )]GJ(  , 

whence  

       m(X) = m[
n

nI ] + m [
n

n )]GJ(  

      

n
n

n
n )GJ(m|I|   

We also have  

 
3

2
)EX(m)E(m|J||I|

n
n

n
n  

      = m(X) + 
3

2
, 

whence 

 
3

2
)GJ(m|I||J||I|

n n
nn

n
n

n
n   

and therefore, since   Jn = (Jn G)  (Jn  G),  

m(K)   

n
n )JG(m  = 

n n
nn )GJ(m)J(m  

    < 
3

2
 

Hence when E is bounded 

  m(E G) < 
3

2

3
 

For the general case, let  
  Sn = {x | |x|  n} ,  

  T1 = S1 
  T1 = Sn Sn 1,  n  2  

Let En = E  Sn .   Then  

  E = 
1i

i )TE(  

  E En = 
1ni

i )TE(  

Because m(E) < + , we have  

  m(E En) =  

1ni
i )TE(m  0 as n   .  

But E En = E En(since E En = (E En)  (En E) and En E is empty) and so m(E En)  0.  Using what has already been proved we can 

find a sequence Gn which is finite union of open intervals such that m(En Gn) < 
n

1
.  Now the following inequality is true.  

  m(E Gn)  m(E En) + m(En Gn),  
since E Gn = (E En)  (En Gn) .  We see therefore that m(E Gn)  0.  If  > 0 , we shall have m(E Gn) <  for a suitable value of 

n, and then Gn will serve our purpose.  This completes the proof of the theorem.  

Theorem 16.  Let  be a set with m* E <  .  Then E is measurable iff given  > 0 , there is a finite union B of open intervals such 
that  

  m*(E  B) <   

Proof.  Suppose E is measurable and let  > 0 be given.  The (as already shown) there exists an open set O  E such that m* (O  

E) < 
2

.  As m*E is finite, so is m*O.  Since the open set O can be written as the union of countable (disjoint) open intervals {Ii}, 

there exists an n   N such that  
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1ni
i

2
)I(l    (In fact m* O = 

1ni
i )I(l   

1ni
i

2
)I(l   because m* O <  ) 

Set  B = 
n

1i
iI .  Then  

  E B =  (E  B)  (B \ E)  (O \ B)  (O \ E)  
Hence  

  m*(E  B)  m* (
ni

iI ) + m*(O \ E) < 
2

+ 
2

 =  .  

Conversely, assume that for a given  > 0 , there exists a finite union B = 
n

ni
iI if open intervals with m* (E  B) <  .  Then 

using “Let  be any set.  The given  > 0 there exists an open set  O  E such that m* O < m* E +  there is an open set O  E 
such that  

  m* O < m* E +          (i)  
If we can show that m* (O   E) is arbitrary small, then the result will follow from “Let E be set.  Then the following are equivalent 

(i) E is measurable and (ii) given  > 0  there is an open set O  E such that m * (O  E) < ”.  
Write 

  S = 
n

1i
i )OI(  

Then S  B and so  
  S  E = (E \ S)  (S \ E)  (E  S)  (B  E) . 

However,  
  E \ S = (E  Oc)  (E  Bc) = E  B, because E  O .  

Therefore 
  S  E   (E  B)  (B  E)  =  E  B ,  

and as such   m* (S  E) <  .   However,  
  E  S  (S  E)  

and so 
  m* E < m* S + m* (S  E)  

           < m* S +         (ii) 

Also  

  O  E  = (O  S)  (S  E)  

Therefore  

  m* (O \ E) < m* O  m* S +   

         < m* E +   m* S +      (using (i))  

        < m* S +  +   m*S +     (using (ii) 

        < m*S +  +   m* S +   

      =  3  .   

Hence E is measurable.  

“Convergence in Measure” 

Definition.  A sequence < fn > of measurable functions is said to converge to f in measure if, given > 0, there is an N 

such that for all n  N we have  

  m{x |f(x)  fn(x)|   } <  . 

F. Riesz Theorem 

Theorem 17 (F. Riesz).   “Let < fn > be a sequence of measurable functions which converges in measure to f.  Then 

there is a subsequence < fnk > which converges to f almost everywhere.” 

Proof. Since < fn > is a sequence of measurable functions which converges in measure to f, for any positive integer k 

there is an integer nk such that for n  nk we have  

  m{x | fn(x)  f(x) |   
k2

1
} < 

k2

1
 

Let  
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 Ek = {x | |
knf (x)  f(x)|  

k2

1
} 

Then if x  
ik

kE , we have  

  |
knf (x)  f(x) | < 

k2

1
   for k  i  

and so 
knf (x)  f(x)  

Hence  
knf (x)  f(x)  for any x  A = 

1i ik
kE  

But  

  mA  m  
ik

kE  

         = 

ik
kEm  = 

1k2

1
 

Hence measure of A is zero.  

Example.   An example of a sequence < fn > which converges to zero in measure on [0, 1] but such that < fn(x) > does 

not converge for any x in [0, 1] can be constructed as follows :  

 Let n = k + 2
v
 , 0  k < 2

v
, and set fn(x) = 1 if x  [

v2k , (k+1)2
v
]  and fn(x) = 0 otherwise.  Then  

  m{x | |fn(x)| >  }   
n

2
 , 

and so fn  0 in measure, although for any x  [0, 1], the sequence < fn(x) > has the value 1 for arbitrarily large values 

of n and so does not converge.  

Definition. A sequence {fn} of a.e. finite valued measurable functions is said to be fundamental in measure, if for every   > 0,  
  m({x : |fn(x)  fm(x)|  })  0  as n and m .  

Definition. A sequence {fn} of real valued functions is said to be fundamental a.e. if there exists a set E0 of measure 

zero such that, if x  E0 and  > 0, then an integer n0 = n0 = (x, ) can be found with the property that  

  |fn(x)  fm(x)| <  ,  whenever n  n0 and m  n0 .  

Definition. A sequence {fn} of a.e. finite valued measurable functions will be said to converge to the measurable 

function f almost uniformly if, for every  > 0 , there exists a measurable set F such that m(F) <  and such that the 

sequence {fn} converges to f uniformly on F
c
.  

In this Language, Egoroff‟s Theorem asserts that on a set of finite measure convergence a.e. implies almost 

uniform convergence.  

The following result goes in the converse direction.  

Theorem 18. If {fn} is a sequence of measurable functions which converges to f almost uniformly, then {fn} 

converges to f a.e.  

Proof.  Let Fn be a measurable set such that m(Fn) < 
n

1
and such that the sequence {fn} converges to f uniformly on 

c
nF , n = 1,2,…   If F = 

1n
nF , then  

  m(F)  (Fn) < 
n

1
 ,  

so that m(F) = 0 , and it is clear that, for x  F
c
, {fn(x)} converges to f(x).  

Theorem 19.  Almost uniform convergence implies convergence in measure.  
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Proof.  If {fn} converges to f almost uniformly, then for any two positive numbers  and  there exists a measurable 

set F such that m(F) <  and such that |fn(x)  f(x)| < , whenever x belongs to F
c
 and n is sufficiently large.  

Theorem.  If {fn} converges in measure to f, then {fn} is fundamental in measure.  If also {fn} converges in measure 

to g, then f = g .a.e.   

Proof.  The first assertion of the theorem follows from the relation  

{x : |fn(x)  fm(x)|  }  {x : |fn(x)  f(x)|  
2

}  {x : |fm(x)  f(x)|  
2

} 

To prove the second assertion, we have  

{x : |f(x)  g(x)|  }  {x : fn(x)  f(x) |  
2

}  {x : |fn(x) g(x)|  
2

} 

Since by proper choice of n, the measure of both sets on the right can be made arbitrarily small, we have  

  m({x : |f(x)  g(x)|  } ) = 0  
for every  > 0 which implies that f = g a.e.  

Theorem 20.  If {fn} is a sequence of measurable functions which is fundamental in measure, then some 

subsequence }f{
kn is almost uniformly fundamental.  

Proof.  For any positive integer k we may find an integer n(k) such that if n  n(k) and m  n(k), then  

  m({x : |fn(x)  fm(x)|  
k2

1
}) < 

k2

1
. 

We write  

n1 = n(1), n2 = (n1+1)  n(2),  n3 = (n2+1)  n(3),…; then n1 < n2 < n3 < …., 

So that the sequence }f{
kn is indeed on subsequence of {kn}.  If  

  Ek = {x : |
knf (x) 1nk

f  (x)|  
k2

1
}  

and k  i  j ,  then, for every x which does not belong to Ek  Ek+1  Ek+2 …., we have  

  |

im im
1im1mnmnjnin

2

1

2

1
|)x(f)x(f||)x(f)x(f ,   

so that, in other words, the sequence }f{
in is uniformly fundamental on  

  E \ (Ek  Ek+1  ….).   Since  

  m(Ek  Ek+1  ….)   

km
1km

2

1
)E(m  

This completes the proof of the theorem.  

Theorem 21.  If {fn} is a sequence of measurable functions which is fundamental in measure, then there exists a 

measurable function f such that {fn} converges in measure to f.   

Proof.  By the above theorem we can find a subsequence {
knf } which is almost uniformly fundamental and therefore 

fundamental a.e.  We write f(x) = 
k
lim

knf (x) for every x for which the limit exists.  We observe that, for every  > 

0 ,  

{x : |fn(x) f(x)|  ]  {x : |fn(x)  
knf (x)|  

2
}  {x : |

knf (x) f(x)|  
2

} . 

The measure of the first term on the right is by hypothesis arbitrarily small if n and nk are sufficiently large, and the 

measure of the second term also approaches 0 (as k ), since almost uniform convergence implies convergence in 

measure.  Hence the theorem follows. 

Remark. Convergence in measure does not necessarily imply convergence pointwise at any point.  Let  
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  Er,k = 
kk 2

r
,

2

1r
[ ]   (r = 1,2,…, 2

k
 ,  k =  1,2,…} ,  

 

 

 

and arrange these intervals as a single sequence of sets {Fn} by taking first those for which k =1, then those with k = 2, 

etc.  If m denotes Lebesgue measure on [0,1], and fn(x) is the indicator function of Fn, then for 0 <  < 1,  

  {x : |fn(x)|  } = Fn  

so that, for any  > 0, m {x : |fn(x) |  }   m(Fn)  0.  This means that fn  0 in measure in [0, 1].  However, at no 

point x  [0, 1] does fn(x)  0; in fact, since every x is in infinitely many of the sets Fn and infinitely many of the sets 

( Fn) we have 

 lim inf fn(x) = 0 ,  lim sup fn(x) = 1   for all x  [0, 1]. 
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PART B :  “THE LEBESGUE INTEGRAL” 

4.2.   The shortcomings of the Riemann integral suggested the further investigations in the theory of integration.  We 

give a resume of the Riemann Integral first.  

Let f be a bounded real-valued function defined on the interval [a,b] and let  

  a = 0 < 1 < … < n = b  

be a partition of [a,b].  Then for each partition we define the sums  

  S = 

n

1i
1ii )( Mi  

and  

  s = 

n

1i
1ii )( mi ,  

where  

          Mi = 

ix1i

sup f(x) ,    mi = 
ix1i

inf f(x) 

We then define the upper Riemann integral of f by  

  R   

b

a

f (x)dx =  inf S  

With the infimum taken over all possible subdivisions of [a,b].    

Similarly, we define the lower integral  

  R

b

a

f (x)dx = sup s .  

The upper integral is always at least as large as the lower integral, and if the two are equal we say that f is Riemann 

integrable and call this common value the Riemann integral of f.  We shall denote it by  

  R 

b

a

f (x) dx  

To distinguish it from the Lebesgue integral, which we shall consider later.  

By a step function we mean a function  which has the form  

  (x) = ci,  i 1 < x < i  

for some subdivision of [a, b] and some set of constants ci .   

The integral of (x) is defined by  

   

b

a

(x)dx  = 

n

1i
ic ( i i 1) . 

With this in mind we see that  

  R 

b

a

)x(f dx = inf

b

a

(x)dx  

for all step function (x)  f(x).  

Similarly,  

  R 

b

a

f (x) dx = sup 

b

a

(x)dx  

for all step functions (x)  f(x). 

Example.  If  
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  f(x) = 
irrationalisxif0

rationalisxif1
,  

then 

  R 

b

a

)x(f dx = b a and R 

b

a

f (x) dx = 0 .  

Thus we see that f(x) is not integrable in the Riemann sense.  

4.3. The Lebesgue Integral of a bounded function over a set of finite measure 

The example we have cited just now shows some of the shortcomings of the Riemann integral.  In particular, we 

would like a function which is 1 on a measurable set and zero elsewhere to be integrable and have its integral the 

measure of the set.  

The function E defined by  

  E(x) = 
Ex0

Ex1
 

is called the characteristic function on E.  A linear combination  

  (x) = 
iE

n

1i
ia (x) 

is called a simple function if the sets Ei are measurable.   This representation for  is not unique.  However, we note 

that a function  is simple if and only if it is measurable and assumes only a finite number of values.  If  is a simple 

function and [a1,…, an] the set of non-zero values of , then  

   = 
iAia ,  

where Ai = {x | (x) = ai} .  This representation for  is called the canonical representation and it is characterised 

by the fact that the Ai are disjoint and the ai distinct and nonzero.  

If  vanishes outside a set of finite measure, we define the integral of  by  

   (x)dx =  i

n

1i
imAa  

when  has the canonical representation  = 
iA

n

1i
ia .  We sometimes abbreviate the expression for this integral to  

.  If E is any measurable set, we define  

  

E

 = . E .  

It is often convenient to use representations which are not canonical, and the following lemma is useful.  

Lemma.  If E1, E2,…, En are disjoint measurable subset of E then every linear combination  

   = 
iE

n

1i
ic  

with real coefficients c1, c2,…,cn is a simple function and  

   = i

n

1i
imEc . 

Proof.  It is clear that  is a simple function.  Let a1, a2,…, an denote the non-zero real number in (E).  For each j =  

1,2,…, n let  

  Aj = 
ji ac

iE  

Then we have  
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  Aj = 
1
(aj) = {x | (x) = aj} 

and the canonical representation 

   = 
jA

n

1j
ja  

Consequently, we obtain  

   = j

n

1j
jmAa  

      = ma
n

1j
j  [ 

ji ac
iE ] 

      = 

n

1j
ja

n

ac
i

ji

mE  (Since Ei are disjoint, additivity of measures applies)   

      = i

n

1j
jmEc  

This completes the proof of the theorem.  

Theorem 22.   Let  and  be simple functions which vanish outside a set of finite measure.   Then  

   (a  + b ) = a  + b  ,  

and, if    a.e, then  
       . 

Proof.  Let {Ai} and {Bi} be the sets which occur in the canonical representations of  and .  Let A0 and B0 be the 

sets where  and  are zero.  Then the sets Ek obtained by taking all the intersections Ai  Bj form a finite disjoint 

collection of measurable sets, and we may write  

   = 
kE

N

1k
ka  

   = 
kE

N

1k
kb , 

and so  

 a  + b  = a 
kE

N

1k
ka + b 

kE

N

1k
kb  

    = 
kE

N

1k
kaa + 

kE

N

1k
kbb  

    = 
kEk

N

1k
k )bbaa(  

Therefore 

 (a +b ) = kk

N

1k
k mE)bbaa(  

     = 
kE

N

1k
k m)aa( + k

N

1k
k mE)bb(  

     = a k

N

1k
k mEa + k

N

1k
k mEbb  

     = a   + b   . 

To prove the second statement, we note that  

     = ( )  0 ,  
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since the integral of a simple function which is greater than or equal to zero almost everywhere is non-negative 

by the definition of the integral. 

Remark.  We know that for any simple function  we have  

   = 
iE

N

1k
ia  

Suppose that this representation is neither canonical nor the sets Ei‟s are disjoint.  Then using the fact that 

characteristic functions are always simple functions we observe that  

   = a1 1E +  a2 2E + … +  an nE  

      = a1  
1E + a2  

2E + a3 3E + … + an  
nE  

      = a1mE1 + a2mE2 +…+…+ anm En  

      = i

N

1k
i Ema  

Hence for any representation of , we have  

   = i

N

1k
i Ema  

Let f be a bounded real-valued function and E a measurable set of finite measure.  By analogy with the Riemann integral we 
consider for simple functions  and  the numbers   

  

E
f

inf  

and  

  

Ef

sup ,  

and ask when these two numbers are equal.  The answer is given by the following proposition : 

Theorem 23.   Let f be defined and bounded on a measurable set E with mE finite.  In order that  

  

E
f
inf (x)dx = 

Ef

sup (x)dx  

for all simple functions  and , it is necessary and sufficient that f be measurable. 

Proof.  Let f be bounded by M and suppose that f is measurable.  Then the sets  

  Ek = 
n

M)1K(
)x(f

n

KM
|x ,  n  K  n ,  

are measurable, disjoint and have union E.  Thus  

  

n

nk
kmE = mE  

The simple function defined by  

  n(x) = 

n

nk
kEk

n

M
(x)  

and  

  n(x) = 

n

nk
kE)1k(

n

M
(x)  

satisfy  
  n(x)  f(x)  n(x)  

Thus  

 inf 

E

dx)x(   

E

n dx)x( = 

n

nk
kEkm

n

M
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and  

 sup 

E

dx)x(   

E

n dx)x(  = 

n

nk
kEm)1k(

n

M
,  

whence  

 0  inf 

E

dx)x(  

E

sup (x)dx  mE
n

M
Em

n

M n

nk
k . 

Since n is arbitrary we have 

   inf 

E

dx)x(  sup 

E

dx)x( = 0  ,  

and the condition is sufficient.  
Suppose now that  

 

E
f

inf (x)dx =  

Ef

sup (x)dx .  

Then given n there are simple functions n and n such that  
  n(x)  f(x)   n(x)  

and  

(4.3.1)  n(x) dx   n(x)dx <  
n

1
 

Then the functions  
  * =  inf n  
and   * = sup n  

are measurable and  
  *(x)  f(x)  *(x) .  

Now the set  
   = {x | *(x) < *(x)}  

is the union of the sets  

  v {x | *(x) < *(x)  
1

}.  

But each v is contained in the set {x | n(x) < n(x) 
1

 }, and this latter set by (4.3.1) has measure less than 
n

.  Since n is 

arbitrary, m v = 0  and so m  = 0 .  Thus * = * except on a set of measure zero, and * = f except on a set of measure zero.  
Thus f is measurable and the condition is also necessary.  

Definition.    If f is a bounded measurable function defined on a measurable set E with mE finite, we define the Lebesgue integral 
of f over E by  

  

E E

dx)x(infdx)x(f  

for all simple functions   f .  
By the previous theorem, this may also be defined as  

  

E E

dx)x(supdx)x(f  

for all simple functions   f .   

We sometimes write the integral as 

E

f .  If E = [a, b] we write 

b

a

f instead of 

]b,a[

f  

Definition and existence of the Lebesgue integral for bounded functions.  

Definition.   Let F be a bounded function on E and let Ek be a subset of E.  Then we define           M[f, Ek] and m[f, Ek] as 

  M[f; Ek] = 
kEx
b.u.l f(x) 
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  m[f, Ek] = 

kEx

b.l.g f(x) 

Definition.    By a measurable partition of E we mean a finite collection P = {E1, E2,…, En}of measurable subsets of E such that  

  
n

1k
kE = E  

and such that m(Ej  Ek) = 0  (j, k = 1, …, n ,  j  k).  
The sets E1, E2,.., En are called the components of P.   

If P and Q are measurable partitions, then Q is called a refinement of P if every component of Q is wholly contained in some 
component of P. 

Thus a measurable partition P is a finite collection of subsets whose union is all of E and whose intersections with one another 
have measure zero.  

Definition.  Let f be a bounded function on E and let P = {E1,…, En} be any measurable partition E.  We define the upper sum U[f, 
P] as  

 U[f; P] = 

n

1k
kk Em].E;f[M  

Similarly, we define the lower sum L[f; P]  as  

  L[f; P] = 

n

1k
kk Em].E;f[m  

As in the case of Riemann integral, we can see that every upper sum for f is greater than or equal to every lower sum for f.  
We then define the Lebesgue upper and lower integrals of a bounded function f on E by  

  
P

inf U [f; P)   and sup L[f; P]   

respectively taken over all measurable position of E.  We denote them respectively by  

  

E

f   and  

E

f   

Definition.  We say that a bounded function f on E is Lebesgue integrable on E if  

  

E

f = 

E

f  

Also we know that if  is a simple function, then  

  

E

n

1k
kk mEa  

Keeping this in mind, we see that  

  

E

f = inf 

E

(x) dx  

for all simple functions (x)  f(x).  Similarly  

  

EE

dx)x(supf  

for all simple functions (x)  f(x).  
Now we use the theorem :  

“Let f be defined and bounded on a measurable set E with mE finite.  In order that  

  

E
f

dx)x(inf  = 

Ef

dx)x(sup  

for all simple functions  and , it is necessary and sufficient that f is measurable.”   
And our definition of Lebesgue integration takes the form :  

“If f is a bounded measurable function defined on a measurable set E with mE finite, we define the (Lebesgue) integral of f over E 
by  
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EE

dx)x(infdx)x(f  

for all simple functions   f.” 
The following theorem shows that the Lebesgue integral is in fact a generalization of the Riemann integral.  

Theorem 24.  Let f be a bounded function defined on [a, b].  If f is Riemann integrable on [a, b], then it is measurable and  

  R 

b

a

b

a

dx)x(fdx)x(f  

Proof.   Since f is a bounded function defined on [a, b] and is Riemann integrable, therefore,  

  R

b

a

b

a
f

dx)x(infdx)x(f  

and  

  R 

b

a

b

a
f

dx)x(sufdx)x(f  

for all step functions  and  and then  

  R

b

a

b

a f

b

a
f

b

a

dx)x(supdx)x(infdx)x(fRdx)x(f      (i) 

Since every step function is a simple function, we have  

R 

b

a

b

a
f

dx)x(sufdx)x(f    

b

a

b

a
f

dx)x(fRdx)x(inf  

Then (i) implies that 

   

b

a

b

a
ff

dx)x(infdx)x(sup  

and this implies that f is measurable also.  

Comparison of Lebesgue and Riemann integration 

(1) The most obvious difference is that in Lebesgue’s definition we divide up the interval into subsets while in the case of 
Rimann we divide it into subintervals.  

(2) In both Riemann’s  and Lebesgue’s definitions we have upper and lower sums which tend to limits.  In the Riemann case 
the two integrals are not necessarily the same and the function is integrable only if they are the same.  In the Lebesgue 
case the two integrals are necessarily the same, their equality being consequence of the assumption that the function is 
measurable.  

(3) Lebesgues’s definition is more general than Riemann.  We know that if function is the R-integrable then it is Lebesgue 
integrable also, but the converse need not be true.  For example the characteristic function of the set of irrational points 
have Lebesgue integral but is not R-integrable.  

Let  be the characteristic function of the irrational numbers in [0,1].  Let E1 be the set of irrational numbers in [0,1], and let E2 be 
the set of rational numbers in [0,1].  Then P = [E1, E2] is a measurable partition of (0, 1].  Moreover,  is identically 1 on E1 and  

is identically 0 on E2.  Hence M[ , E1] = m[ , E1] = 1, while M[ , E2] = m[ , E2] = 0.  Hence U[ , P] = 1.mE1 + 0.m E2 = 1.  
Similarly L( , P] = 1.m E1 + 0. M E2 = 1.  Therefore, U [ , P] = L[ , P].  

Therefore, it is Lebesgue integrable. 

For Riemann integration  
  M[ , J] = 1,  m[ , J] = 0 

for any interval J  [0, 1] 
 U[ , J] = 1,  L[ , J] = 0 .  

  The function is not Riemann-integrable.  

Theorem 25.  If f and g are bounded measurable functions defined on a set E of finite measure, then  

(i) 

E E

faaf  
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(ii) 

E EE

gf)gf(  

(iii) If f  g  a.e.,  then  

E E

gf  

(iv) If f = g  a.e., then  

E E

gf  

(v) If A  f(x)   B, then  

AmE   

E

BmEf .  

(vi) If A and B are disjoint measurable sets of finite measure, then  

  

BA BA

fgf  

Proof.  We know that if  is a simple function then so is a .  Hence  

  

E EE
ff

E

fainfaainfaf  

which proves (i).  

To prove (ii) let  denote any positive real number.  There are simple functions   f,   f,   g and   g satisfying  

 

E EEE

fdx)x(,fdx)x(  ,   

 

E EEE

gdx)x(,gdx)x(  ,   

Since  +   f + g  +  , we have  

 2gf)()gf(
E E EEE

 

 2gf)()gf(
E E E EEE

 

Since these hold for every  > 0 , we have  

  

E E E

gf)gf(  

To prove (iii) it suffices to establish  

  0)fg(
E

 

For every simple function   g f, we have   0  almost everywhere in E.  This means that  

  0
E

 

Hence we obtain  

  

E
)fg(

E

0dx)x(inf)fg(      (1) 

which establishes (iii).  
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Similarly we can show that  

  

E)fg(E

0dx)x(sup)fg(      (2) 

Therefore, from (1) and (2) the result (iv) follows.  

To prove (v) we are given that  
  A  f(x)  B  

Applying (iv) we get  

  

EEE

dxBBdxdx)x(f  

        = BmE  
That is,  

  

E

f  BmE  

Similarly we can prove that 

E

f  AmE .  

Now we prove (vi).  

We know that  
  A B = A + B  

Therefore,  

  

BA

f  = 

BA

A B f = 

BA

f( A+ B)  

          = 

BA

f A + 

BA

f B  

          =  

A

f +

B

f  

which proves the theorem.  

Theorem 26 (Lebesgue Bounded Convergence Theorem).    Let < fn > be a sequence of measurable functions defined on a set E 
of finite measure and suppose that <fn > is uniformly bounded, that is, there exists a real number M such that |fn(x)|  M for all n 

 N and all x  E.   If 
n
lim fn(x) = f(x) for each x in E, then  

  

E

f  = 
n
lim

E

nf . 

Proof.  We shall apply Egoroff’s theorem to prove this theorem.  Accordingly for a given  > 0 , there is an N and a measurable 

set E0  E such that mE0
c < 

M4
 and for n  N and x  E0 we have  

  |fn(x)  f(x) | < 
)E(m2

 

Then we have  

 | 

E E

n

E

n

E

n |ff||)ff(||ff  

        = |ff||ff| n

0E c
0

E

n  
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        <  M2.
M4

)E(m.
)E(m2

0  

        <  
22

. 

Hence 

  

EE

n ff . 

The integral of a non-negative function 

Definition.   If f is a non-negative measurable function defined on a measurable set E, we define  

  

E

f =  

Efh

hsup ,  

where h is a bounded measurable function such that m{x|h(x)  0} is finite.  

Theorem 27.  If f and g are non-negative measurable functions, then  

(i)  ,fccf
EE

   c > 0  

(ii) 

EEE

gf)gf(  

and  
(iii) If f   g a.e., then  

EE

gf  . 

Proof.  The proof of (i) and (iii) follow directly from the theorem concerning properties of the integrals of bdd functions.   

We prove (ii) in detail.  
If h(x)  f(x) and k(x)  g(x), we have h(x) + k(x)  f(x) +  g(x), and so 

  

E E

)gf()kh(  

i.e.   

E E E

)gf(kh  

Taking suprema, we have  

(iv)  

E E E

)gf(gf  

On the other hand, let l be a bounded measurable function which vanishes outside a set of finite measure and which is not 
greater than (f+g).  Then we define the functions h and k by setting 

  h(x) = min(f(x), l(x))  
and  

  k(x) = l(x)  h(x) 
We have  

  h(x)  f(x) ,  
  k(x)  g(x) ,  

while h and k are bounded by the bound l and vanish where l vanishes.  Hence  

  

E E EEE

gfkhl  

 and so taking  supremum, we have 
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E Egfl

gfsup  

that is, 

(v)  

EEE

)gf(gf   

From (iv) and (v), we have  

  

E EE

gf)g(f . 

Fatou’s Lemma.  If < fn > is a sequence of non-negative measurable functions and fn(x)  f(x) almost everywhere on  a set E, 
then  

  

E

n

E

fimlf  

Proof.  Let h be a bounded measurable function which is not greater than f and which vanishes outside a set E  of finite measure.  
Define a function hn by setting  

 hn(x) = min{h(x), fn(x)} 
Then hn is bounded by the bounds for h and vanishes outside E .  Now hn(x)  h(x) for each x in E .  

Therefore by “Bounded Convergence Theorem”  we have  

  

E

n

'E

n

'EE

flimhlimhh  

Taking the supremum over h, we get  

  

E

n

E

fimlf  

Theorem 28 (Lebesgue Monotone Convergence Theorem).  Let < fn > be an increasing sequence of non-negative measurable 
functions and let f = lim fn. Then  
  f = lim  fn   

Proof.  By Fatou’s Lemma we have  

  f   iml  fn  

But for each n we have fn  f, and so  fn  f .  But this implies  

  lim  fn  f  
Hence  

   f =  lim  fn   

Definition.  A non-negative measurable function f is called integrable over the measurable set E if  

  

E

f  

Theorem 29.  Let f and g be two non-negative measurable functions.  If f is integrable over E and g(x) < f(x) on E, then g is also 
integrable on E, and  

  

E E E

gf)gf(  

Proof.  Since  

   

E E E

g)gf(f  

and the left handside is finite, the term on the right must also be finite and so g is integrable.  

Theorem 30.  Let f be a non-negative function which is integrable over a set E.  Then given  > 0  there is a  > 0  such that for 
every set A  E with mA <  we have  

  

A

f <  .  
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Proof.  If |f|  K, then  

  

A

f  

A

K = KmA  

Set   <  
K

 .  Then  

  

A

f  < K. 
K

  =  .  

Set fn(x) = f(x) if f(x)  n and fn(x) = n otherwise.  Then each fn is bounded and fn converges to f at each point.  By the monotone 

convergence theorem there is an N such that  

E E

N
2

ff  , and  

E

N
2

)ff( .  Choose  < 
N2

 .  If m A < , we 

have  

 

A

f  = 

A

f(  fN) + 

A

Nf  

       < NmA)ff(
E

N  (since 

A

Nf  

A

N  = NmA) 

      < 
22

. 

 

 
 

The General Lebesgue Integral 
 

We have already defined the positive part f + and negative part f  of a function as  
    f + = max (f, 0)  
  f  =  max( f, 0)  

Also it was shown that  
   f  = f +  f  

  |f| = f + + f  
With these notions in mind, we make the following definition.  

Definition.   A measurable function f is said to be integrable over E if f + and f  are both integrable over E.  In this case we define  

  

E EE

fff   

Theorem 31.  Let f and g be integrable over E.  Then  
(i) The function f+g is integrable over E and  

E EE

gf)gf(  

(ii) If f  g a.e.,  then   

EE

gf  

(iii) If A and B are disjoint measurable sets contained in E, then  

  

A BBA

fff  

Proof.  By definition, the functions f + , f, g+ , g are all integrable.  If h =  f+g, then h = (f + f) + (g+  g) and hence h = (f + + 
g+)  ( f + g).  Since f + + g+ and f + g are integrable therefore their difference is also integrable.  Thus h is integrable.  
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We then have  

  

EE

)]gf()gf([h  

        = 

E E

)gf()gf(  

        =

E EEE

gfgf  

        = 

E E EE

)gg()ff(  

That is,  

  

E E E

gf)gf(  

Proof of (ii) follows from part (i) and the fact that the integral of a non-negative integrable function is non-negative.  
 

For (iii) we have  

  BA

BA

ff  

          =  f A +  f B  

          = 

BA

ff  

* It should be noted that f+g is not defined at points where f =  and g =  and where f =  and g = .  However, the set of 
such points must have measure zero, since f and g are integrable.  Hence the integrability and the value of (f+g) is independent 

of the choice of values in these ambiguous cases.  

Theorem 32.  Let f be a measurable function over E.  Then f in integrable over E iff |f| is integrable over E.  Moreover, if f is 
integrable, then  

  | 

E

f |  

E

|f|  

Proof.  If f is integrable then both f + and f  are integrable.  But |f| = f + + f  .  Hence integrability of f +  and f  implies the 
integrability of |f|.   

Moreover, if f is integrable, then since f(x)  |f(x)| = |f|(x), the property which states that if f  g a.e. , then f  g implies that  
  f  |f|      (i) 

On ther other hand since f(x)  |f(x)| ,  we have  
  f  |f|      (ii)  

From (i) and (ii) we have  
  | f|  |f| .  

Conversely, suppose f is measurable and suppose |f| is integrable.  Since  
  0  f +(x)  |f(x)|  

it follows that f + is integrable.  Similarly f  is also integrable and hence f is integrable.    

Lemma.  Let f be integrable.   Then given  > 0  there exists  > 0  such that |

A

f | <  whenever A is a measurable subset of E 

with mA <  .  

Proof.  When f is non-negative, the lemma has been proved already.  Now for arbitrary measurable function f we have f = f +  f  
.  So by that we have proved already, given  > 0 , there exists 1 > 0  such that  

  

A 2
f  , 

when mA < 1.   Similarly there exists 2 > 0 such that  
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A 2
f  , 

when mA < 2 .  Thus if mA <  =  min ( 1, 2) , we have  

  | 

A A A A 22
ff|f|f  

This completes the proof.  
Theorem 33 (Lebesgue Dominated Convergence Theorem).   Let a sequence < fn >, n  N of measurable functions be dominated 

by an integrable function g, that is,  
  |fn(x)|   g(x)  

holds for every n  N and every x  E and let < fn > converges pointwise to a function f, that is, f(x) = 
n
lim fn(x) for almost all x in 

E.  Then  

  

E

n
n

E

flimf  

Proof.  Since |fn|  g  for every n  N and f(x) =  lim fnx), we have |f|  g .  Hence fn and f are integrable.  The function g fn is 
non-negative, therefore by Fatou’s Lemma we have  

   

E

n

EEE

)fg(iml)fg(fg  

    = 

E

n

E

flimg  

whence 

 

E

n

E

flimf  

Similarly considering g + fn we get 

  

E

n

E

flimf  

Consequently,  we have 

  

E

n

E

flimf .  
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5 
 

 
PART A : “DIFFERENTIATION AND INTEGRATION 

 
The “fundamental theorem of the integral calculus” is that differentiation and integration are inverse processes.   This general 

principle may be interpreted in two different ways.  

If f(x) is integrable, the function  

  F(x) =  

x

a

dt)t(f        (i) 

is called the indefinite integral of f(x); and the principle asserts that  

  F (x) = f(x)         (ii) 

On the other hand, if F(x) is a given function, and f(x) is defined by (ii), the principle asserts that  

  

x

a

dt)t(f = F(x)  F(a)        (iii) 

The main object of this chapter is to consider in what sense these theorems are true.   

From the theory of Riemann integration (ii) follows from (i) if x is a point of continuity of f.  For we can choose h0 so 

small that |f(t)  f(x)| <   for |t x|  h0; and then  

  |
h

)x(Fhx(F
 f(x)| = |

hx

xh

1
{f(t)  f(x)} dt |        ( |h| < h0) ,  

by the mean-value theorem.  This proves (ii).  

We shall show that more generally this relation holds almost everywhere.  Thus differentiation is the inverse of 

Lebesgue integration.  

The problem of deducing (iii) from (ii) is more difficult and even using Lebesgue integral it is true only for a certain class of 
functions.  We require in the first place that F (x) should exist at any rate almost everywhere and as we shall see this is not 

necessarily so.  Secondly, if F (x) exists we require that it should be integrable.  

5.1. Differentiation of Monotone Functions  

Definition.   Let C be a collection of intervals.   Then we say that C covers a set E in the sense of Vitali, if for each  

> 0  and x in E there is an interval I  C such that x  I and l(I) < . 

Now we prove the following lemma which will be utilized in proving a result concerning the differentiation of 

monotone functions.   

Lemma 1 (Vitali).  Let E be a set of finite outer measure and C a collection of intervals which cover E in the sense of 

Vitali.  Then given  > 0 there is a finite disjoint collection {I1,…, In} of intervals in C such that  

  m*[E  
N

1n
n ]I <  . 

Proof.  It suffices to prove the lemma in the case that each interval in C is closed, for otherwise we replace each 

interval by its closure and observe that the set of endpoints of I1, I2,…, IN has measure zero.   

Let O be an open set of finite measure containing E.  Since C is a Vitali covering of E, we may suppose without loss 

of generality that each I of C is contained in O.  We choose a sequence < In> of disjoint intervals of C by induction as 

follows :  
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Let I1 be any interval in C and suppose I1,…, In have already been chosen.  Let kn be the supremum of the lengths of 

the intervals of C which do not meet any of the intervals I1,…,In .  Since each I is contained in O, we have kn  m O < 

 .  Unless E  
n

1i
iI , we can find In+1 in C with l(In+1) > 

2

1
 kn and In+1 disjoint from I1, I2,…, In .   

Thus we have a sequence < In > of disjoint intervals of C, and since U In  O, we have  l(In)  m O <  .  Hence 

we can find an integer N such that  

   

1N
n

5
)I(l  

Let  

  R = E 
N

1i
nI   

It remains to prove that m*R <  .   

Let x be an arbitrary point of R.  Since 
N

1i
nI is a closed set not containing x, we can find an interval I in C which 

contains x and whose length is so small that I does not meet any of the intervals I1, I2,…, IN .  If now I  Ii =   for i  

N ,  we must have l(I)  kN < 2l (IN+1).  Since lim l(In) = 0 ,  the interval I must meet at least one of the intervals In.  Let 

n be the smallest integer such that I meets In.  We have n > N, and l(I)  kn 1  2l(In).  Since x is in I, and I has a point 

in common with In, it follows that the distance from x to the midpoint of In is at most l(I) + 
2

1
l(In)    

2

5
l(In).   

Let Jm denote the interval which has the same midpoint as Im and five times the length of               Im.  Then we have x 

 Jm.  This proves  

  R   
1N

nJ  

Hence  

  m*R  

1N
n )J(l = 5 

1N
n )J(l <  . 

The Four Derivatives of a Function   
Whether the differential coefficients  

  f (x) = 
h

)x(f)hx(f
lim

0h
 

exists or not, the four expressions  

  D
+
f(x) = 

h

)x(f)hx(f
lim

0h
 

             D  f(x) = 
h

)hx(f)x(f
lim

0h
 

  D+f(x) = 
h

)x(f)hx(f
lim

0h

 

  D f(x) =  
h

)hx(f)x(f
lim

0h

 

always exist.   These derivatives are known as Dini Derivatives of the function f.     

D
+
 f(x) and D+ f(x) are called upper and lower derivatives on the right and D  f(x) and D  f(x) are called upper and 

lower derivatives on the left.  Clearly we have D
+
 f(x)  D+ f(x) and       D  f(x)  D  f(x). If D

+
 f(x) = D+ f(x), the 

function f is said to have a right hand derivative and if D  f(x) =  D  f(x), the function is said to have a left hand 

derivative.  
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 If  

 D
+
 f(x) = D+ f(x) = D  f(x) = D  f(x)   , we say that f is differentiable at x and define f (x) to be the 

common value of the derivatives at x.   

Theorem 1.  Every non-decreasing function f defined on the interval [a, b] is differentiable almost everywhere in [a, 

b].  The derivative f  is measurable and  

  

b

a

dx)x('f   f(b)  f(a).  

Proof.  We shall show first that the points x of the open interval (a, b) at which not all of the four Dini-derivatives of f 

are equal form a subset of measure zero.  It suffices to show that the following four subsets of (a, b) are of measure 

zero : 

 A = {x  (a, b) | D  f(x)  <  D
+
 f(x) },  

 B = {x  (a, b) | D+ f(x) < D  f(x) } ,  

 C = {x  (a, b) | D  f(x) < D  f(x) }  

 D = {x  (a, b) | D+ f(x) < D
+
 f(x) } .  

To prove m* A  = 0 ,  consider the subsets  

 Au,v = {x  (a, b) | D  f(x) < u < v < D
+
 f(x) }  

of A for all rational numbers u and v satisfying u < v.  Since A is the union of this countable family {Au,v}, it is 

sufficient to prove m* (Au,v) = 0 for all pairs u, v with u < v .  

For this purpose, denote  = m* (Au,v) and let  be any positive real number.  Choose an open set U  Au,v with m* U 

<  +  .  Set x be any point of Au,v .  Since D  f(x) < u, there are arbitrary small closed intervals of the form [x h, x] 

contained in U such that  

  f(x)  f(x h) < uh.  

Do this for all x  Au, v and obtain a Vitali cover C of Au,v.  Then by Vitali covering theorem there is a finite 

subcollection {J1, J2,…, Jn}of disjoint intervals in C such that  

  m*(Au,v  
n

1i
i )J  <   

Summing over these n intervals, we obtain  

  

n

1i
iii )]hx(f)x(f[  < u 

n

1i
ih  

        < u m* U  

        < u( + ) 

Suppose that the interiors of the intervals J1, J2,…, Jn cover a subset F of Au,v.  Now since D
+
 f(y) > v, there are 

arbitrarily small closed intervals of the form [y, y+k] contained in some of the intervals J i (i = 1, 2,…, n) such that  

  f(y+k)  f(y) > vk  

Do this for all y  F and obtain a Vitali cover D of F.  Then again by Vitali covering lemma we can select a finite 

subcollection [K1, K2, …, Km] of disjoint intervals in D such that  

  m* [F  
m

1i
iK ] <   

Since m*F >  , it follows that the measure of the subset H of F which is covered by the intervals is greater than  

 2 .  Summing over these intervals and keeping in mind that each Ki is contained in a Jn, we have  

  

n

1i

m

1i
iiiiii )]y(f)ky(f[)}hx(f)x(f{  

      > v 

m

1i
ik  

      > v ( 2 )  

so that  

                    v( 2 ) < u(  + )  
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Since this is true for every  > 0 , we must have v   u .  Since u < v, this implies that  = 0 .  Hence m*A = 0 .  

Similarly, we can prove that m*B = 0, m*C = 0 and m*D = 0.  

This shows that  

  g(x) =  
h

)x(f)hx(f
lim

0h
 

is defined almost everywhere and that f is differentiable whenever g is finite.  If we put  

  gn(x) = n[f )
n

1
x(  f(x)]   for x  [a,b] , 

where we re-define f(x) = f(b) for x  b.  Then gn(x)  g(x) for almost all x and so g is measurable since every gn is 

measurable.  Since f is non-decreasing, we have gn  0 .  Hence, by Fatou‟s lemma 

  

b

a

b

a

n

b

a

dx)]x(f)
n

1
x(f[nlimglimg  

             = 

n

1
b

n

1
a

b

a

dx)x(fdx)x(fnlim  

             = 

b

a

n

1
a

a

b

a

n

1
b

b

dx)x(fdx)x(fdx)x(fdx)x(fnlim  

             = 

n

1
b

b

n

1
a

a

dx)x(fdx)x(fnlim  

  f(b)  f(a) 

(Use of f(x) = f(b)  for x  b for first interval and f  non-decreasing in the 2
nd

 integral).  

This shows that g is integrable and hence finite almost everywhere.  Thus f is differentiable almost everywhere and 

g(x) = f (x) almost everywhere.  This proves the theorem.   

 
Functions of Bounded Variation 

Let f be a real-valued function defined on the interval [a,b] and let a = x0 < x1 < x2 < … < xn = b be any partition of 

[a,b].  

By the variation of f over the partition P = {x0, x1,…, xn} of [a,b], we mean the real number  

  V(f, P)  = 

n

1i
1ii )x(f)x(f|  

 

and then  

   Va
b
(f)  = sup {V(f,P) for all possible partitions P of [a,b] ) 

   = 

n

1iP

sup |f(xi)  f(xi 1) |  

is called the total variation of f over the interval [a,b].   If Va
b
(f) < , then we say that f is a function of bounded 

variation and we write f  BV.  

Lemma 2.  Every non-decreasing function f defined on the interval [a,b] is of bounded variation with total variation 

  Va
b
(f) = f(b)  f(a). 

Prof.  For every partition P = [x0, x1, …, xn} of [a,b] we have  
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  V(f,P) = 

n

1i
1ii )x(f)x(f| | 

    = 

n

1i
1ii )x(f)x(f[  

    = f(b)  f(a)  

This implies the lemma.  

Theorem 2 (Jordan Decomposition Theorem).   A function f: [a,b]  R is of bounded variation if and only if it is the 

difference of two non-decreasing functions.  

Proof.  Let f = g h on [a,b] with g and h increasing.  Then for any, subdivision we have  

  

n

1i
1ii |)x(f)x(f|   

n

1i

n

1i
1ii1ii )]x(h)x(h[)]x(g)x(g[  

             = g(b)  g(a) + h(b)  h(a)  

Hence  

                        Va
b
(f)   g(b) + h(b)  g(a)  h(a) ,  

which proves that f is of bounded variations. 

On the other hand, let f be of bounded variation.  Define two functions g, h : [a, b]  R by taking  

  g(x) = Va
x
(f),  h(x) = Va

x
(f)  f(x)  

for every x  [a, b].  Then f(x) = g(x)  h(x).  

The function g is clearly non-decreasing.  On the other hand, for any two real numbers x and y in [a, b] with x  y, we 

have  

h(y)  h(x) =  [Va
y
(f)  f(y)]  [Va

x
(f)  f(x)]  

       = Vx
y
(f)  [f(y)  f(x)]  

        Vx
y
(f)  Vx

y
(f) = 0   

Hence h is also non-decreasing.  This completes the proof of the theorem. 

Examples.  (1)  If f is monotonic on [a,b], then f is of bounded variation on [a, b] and V(f) = |f(b)  f(a)| ,  where V(f) 

is the total variation.  

(2) If f  exists and is bounded on [a, b], then f is of bounded variation.  For if |f (x)|  M we have  

 

n

1i
1ii |)x(f)x(f|    

n

1i
1ii )xx(M = M(b a)  

no matter which partition we choose.  

(3) f may be continuous without being of bounded variation.  Consider  

  f(x) = 

)0x(0

)2x0(
x

sinx
 

Let us choose the partition which consists of the points  

 0, 2,
3

2
,

5

2
,...,

2

2
,

2

2
3n1n

 

Then the sum in the total variation is  

 
3

2
2 + 

5

2

3

2
+ … + 

1n1n3n 2

2

2

2

2

2
 

       > 
n

1
...

3

1

2

1
 , 

and this can be made arbitrarily large by taking n large enough, since  
n

1
diverges.  

(4) Since |f(x)  f(a)|  V(f) for every x on [a,b] it is clear that every function of bounded variation is bounded.  
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The Differentiation of an Integral  

Let f be integrable over [a,b] and let  

  F(x) = 

x

a

dt)t(f  

If f is positive, h > 0 , then we see that  

  F(x+h)  F(x) =  

hx

x

dt)t(f   0  

Hence, integral of a positive function is non-decreasing.  

We shall show first that F is a function of bounded variation.  Then, being function of bounded variation, it will have a 

finite differential coefficient F  almost everywhere.   Our object is to prove that F (x) = f(x) almost everywhere in 

[a,b].  We prove the following lemma :  

Lemma 3.  If f is integrable on [a,b], then the function F defined by  

  F(x) = 

x

a

dt)t(f  

is a continuous function of bounded variation on [a,b].    

Proof.  We first prove continuity of F.  Let x0 be an arbitrary point of  [a,b].  Then  

  |F(x)  F(x0)| = | 

x

0x

f (t)dt |  

             

x

0x

f| (t)|dt  

Now the integrability of f implies integrability of |f| over [a,b].  Therefore, given  > 0 there is a  > 0  such that for 

every measurable set A  [a, b] with measure less than , we have 

A

|f|  <  . 

Hence  

  |F(x)  F(x0)| <    whenever  |x x0| < 1 

and so f is continuous.  

To show that F is of bounded variation, let a = x0 < x1 < … < xn = b be any partition of [a,b].  Then  

  

n

1i
1ii |)x(F)x(F|  = 

n

1i

ix

a

1ix

a

|dt)t(fdt)t(f|  

 

     = 

n

1i

ix

1ix

|dt)t(f|  

      

n

1i

ix

1ix

dt|)t(f|  

     =  

b

a

dt|)t(f|  

Thus  
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      Va
b
 F   

b

a

dt|)t(f| <   

Hence F is of bounded variation.  

Lemma 9.   If f is integrable on [a, b] and  

  

x

a

)t(f dt = 0  

for all x  [a,b], then f = 0 almost everywhere in [a,b].   

Proof.  Suppose f > 0  on a set E of positive measure.  Then there is a closed set F  E with              m F > 0 .  Let O 

be the open set such that  

  O = (a, b)  F 

Then  either 

b

a

f   0   or else  

  0 = 

b

a

f = 

F

f + 

O

f  

             = 

F

f + 

1n

nb

na

)t(f dt,        (1) 

because O is the union of a countable collection {(an, bn)} of open intervals.  

But, for each n,  

  

nb

na

f (t)dt = 

nb

a

f (t) dt 

na

a

f (t) dt  

     = F(bn)  F(an) = 0  (by hypothesis)  

Therfore, from (1), we have 

 

F

f = 0  

But since f > 0 on F and mF > 0 , we have 

F

f > 0 .   

We thus arrive at a contradiction.  Hence f = 0  almost everywhere.  

Lemma 5.  If f is bounded and measurable on [a, b] and  

  F(x) = 

x

F

f (t)dt + F(a),  

then F (x) = f(x) for almost all x in [a,b].  

Proof.  We know that an integral is of bounded variation over [a,b] and so F (x) exists for almost all x in [a,b].  Let |f| 

 K.  We set  

  fn(x) = 
h

)x(F)hx(F
 

with h =  
n

1
.  Then we have  

  fn(x) = 

hx

a

x

a

dt)t(fdt)t(f
h

1
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          = 

hx

x

dt)t(f
h

1
 

       |fn(x)| = | 

hx

x

dt)t(f
h

1
| 

                      

hx

x

dt|)t(f|
h

1
 

hx

x

K
h

1
dt 

              = Kh.
h

K
 

Moreover,  

  fn(x)  F (x) a.e. 

Hence by the theorem of bounded convergence, we have  

  

c

a

n

c

a

dx)x(flimdx)x('F = 

c

a
0h

dx)]x(F)hx(F[
h

1
lim  

             =  

hc

ha

c

a
0h

dx)x(F
h

1
dx)x(F

h

1
lim  

          = 

hc

c

ha

a

dx)x(F
h

1
dx)x(F

h

1
lim  

          = F(c)  F(a)    (since F is continuous) 

          =  

c

a

dx)x(f  

Hence  

  dx])x(f)x('F[
c

a

= 0  

for all c  [a,b], and so  

  F (x) = f(x) a.e.  

by using the previous lemma. 

Now we extend the above lemma to unbounded functions.  

Theorem 3.  Let f be an integrable function on [a,b] and suppose that  

  F(x) = F(a) + 

x

a

dt)x(f  

Then F (x) = f(x) for almost all x in [a, b]. 

Proof.  Without loss of generality we may assume that f  0  (or we may write “From the definition of integral it is 

sufficient to prove the theorem when f  0).  

Let fn be defined by fn(x) =  f(x) if f(x)  n  and fn(x) = n if f(x) > n.  Then f fn  0 and so  

  Gn(x) =  

x

a

n )ff(  

is an increasing function of x, which must have a derivative almost everywhere and this derivative will be non-

negative.  Also by the above lemma, since fn is bounded (by n), we have  
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x

a

n )f(
dx

d
 = fn(x)  a.e.        (i) 

Therefore,  

  F (x) = 

x

a

nn

x

a

)fG(
dx

d
)f(

dx

d
 

           =

x

a

nn f
dx

d
G

dx

d
 

            fn(x) a.e.      (using (i))  

Since n is arbitrary, making n  we see that  

  F (x)  f(x) a.e.  

Consequently,   

  

b

a

b

a

dx)x(fdx)x('F  

       = F(b)  F(a)    (using the hypothesis of the theorem)  

Also since F(x) is an increasing real valued function on the interval [a,b], we have  

  

b

a

b

a

dx)x(f)a(F)b(Fdx)x('F  

Hence  

  

b

a

b

a

dx)x(f)a(F)b(Fdx)x('F  

 

b

a

dx)x(f)x('F[  = 0  

Since F (x)  f(x)  0 , this implies that F (x)  f(x) = 0 a.e. and so F (x) = f(x) a.e.  

 

Absolute Continuity  

Definition.  A real-valued function f defined on [a,b] is said to be absolutely continuous on [a,b] if, given  > 0  

there is a  > 0 such that  

  

n

1i
ii |)x(f)'x(f|    

for every finite collection {(xi, xi )} of non-overlapping intervals with  

  

n

1i

| xi   xi| <   

An absolutely continuous function is continuous, since we can take the above sum to consist of one term only.  

Moreover, if  

 

  F(x) =  

x

a

dt)t(f  ,  

then  

     

n

1i

| F(xi )  F(xi)| = 

n

1i

'ix

a

ix

a

|dt)t(fdt)t(f|  
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                        =  

n

1i

'ix

ix

|dt)t(f|  

 
n

1i

'ix

ix E

dt|)t(f| |f(t)|dt,  where E is the set of intervals (x, xi ) 

   0 as    

n

1i
ii |x'x|  0 .  

The last step being the consequence of the result.  

“Let  > 0 .  Then there is a  > 0 such that for every measurable set E  [a, b] with m E < , we have  

      

A

|f| < ”. 

Hence every indefinite integral is absolutely continuous. 

Lemma 6.  If f is absolutely continuous on [a,b], then it is of bounded variation on [a,b].   

Proof.  Let  be a positive real number which satisfies the condition in the definition for  = 1.  Select a natural 

number  

  n > 
ab

 

Consider the partition  = {x0, x1,…, xn} of [a,b] defined by  

  xi = x0 + 
n

)ab(i
 

for every i = 0, 1,…, n.  Since |xi  xi 1| <  , it follows that  

  ix

1ix
V (f) < 1  

This implies  

  )f(V)f(V
n

1i

ix

1ix

b
a  < n  

Hence f is of bounded variation.  

Cor.  If f is absolutely continuous, then f has a derivative almost everywhere.  

Lemma 7.  If f is absolutely continuous on [a,b] and f (x) = 0 a.e., then f is constant. 

Proof.  We wish to show that f(a) = f(c) for any c  [a,b].    

Let E  (a,c) be the set of measure c a in which f (x) = 0 , and let  and  be arbitrary positive numbers.  To each x 

in E there is an arbitrarily small interval [x, x+h] contained in [a,c] such that  

  |f(x+h)  f(x) | < h 

By Vitali Lemma we can find a finite collection {[xk, yk]} of non-overlapping intervals of this sort which cover all of 

E except for a set of measure less than , where  is the positive number corresponding to  in the definition of the 

absolute continuity of f .  If we label the xk so that xk  xk+1, we have (or if we order these intervals so that)  

 a = y0  x1 < y1  x2 < …. < yn  xn+1 = c  

and  

  

n

0k
k1k |yx|  <   

Now  

  

n

1k
kk

n

0k
kk )xy(|)x(f)y(f|  

           <  (c a)  

by the way to intervals {[xk, yk]} were constructed, and  
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n

0k
k1k |)y(f)x(f|     

by the absolute continuity of f .  Thus  

 |f(c)  f(a)| = | 

n

0k

n

1k
kkk1k |)]x(f)y(f[)]y(f)x(f[   

         +  (c a) 

Since  and  are arbitrary positive numbers, f(c)  f(a) = 0  and so f(c) = f(a).  Hence f is constant. 

Theorem 4.   A function F is an indefinite integral if and only if it is absolutely continuous.  

Proof.  We know that if F is an indefinite integral then F is absolutely continuous.  Suppose on the other hand that F is 

absolutely continuous on [a,b].  Then F is of bounded variation and we may write  

  F(x) = F1(x)  F2(x),  

where the functions Fi are monotone increasing.   Hence F (x) exists almost everywhere and  

  |F (x)|  F1 (x) + F2 (x)  

Thus  

   |F (x)| dx  F1(b) + F2(b)  F1(a)  F2(a) 

and F (x) is integrable.  Let  

  G(x) = 

x

a

)t('F dt  

Then G is absolutely continuous and so is the function f = F G.  But by the above lemma since          f (x) =  F (x)  

G (x) = 0  a.e.,  we have f to be a constant function.  That is,  

  F(x)  G(x) = A (constant) 

or  

F(x) =  

x

a

)t('F dt = A 

or  

  F(x) = 

x

a

)t('F dt + A 

Taking x = a, we have A = F(a) and so  

  F(x) = 

x

a

)t('F dt + F(a) 

 Thus F(x) is indefinite integral of F (x).  

Cor.   Every absolutely continuous function is the indefinite integral of its derivative.  

 

Convex Functions  

Definition.   A function  defined an open interval (a, b) is said to be convex if for each x, y   (a, b) and ,  such 

that ,   0  and  +  =  1, we have  

  ( x + y)  (x) + (y)  

The end points a, b can take the values ,  respectively.  

If we take  = 1 ,   0 , then  +  = 1 and so  will be convex if  

(5.1.1) ( x + (1 )y)  (x) + (1 ) (y)  

If we take a < s < t < u < b  and  

   = 
su

st
 ,   =  

su

tu
 ,  u = x,  s = y  ,   

then    
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 +  = 1
su

su

su

tust
 

and so (5.1.1) reduces to  

  )s(
su

tu
)u(

su

st
s

su

tu
u

su

st
 

or  

(5.1.2)   (t)   )u(
su

tu
)u(

su

st
 

Thus the segment joining (s, (s)) and (u, (n)) is never below the graph of  .  

A function  is sometimes said to be convex on (a,b) it for all x, y  (a, b),   

  f )y(f
2

1
)x(f

2

1

2

yx
 

(Clearly this definition is consequence of major definition taking  =   = 
2

1
).  

If for all positive numbers ,  satisfying  +  = 1, we have  

  ( x + y) < (x) + (y),  

then  is said to be Strictly Convex.   

Theorem 5.  Let  be convex on (a,b) and a < s < t < u < b, then  

  
tu

)t(u(

su

)s()u(

st

)s()t(
 

If  is strictly convex, equality will not occur.  

Proof.  Let a < s < t < u < b and suppose  is convex on (a,b).  Since  

  1
su

su

su

tust

su

tu

su

st
 ,  

therefore, convexity of  yields  

   s
su

tu
u

su

st
  )s(

su

tu
)u(

su

st
 

or  

(5.1.3)   (t)    )s(
su

tu
)u(

su

st
 

or  

  (u s) (t)  (t s) (u) + (u t) (s)  

or  

  (u s) ( (t)  (s))  (t s) (u) + u (s)  t (s)  u (s) + s (s) 

or  

  (u s)( (t)  (s))  (t s) ( (u) (s)) 

or  

(5.1.4)   
su

)s()u(

st

)s()t(
 

This proves the first inequality.  The second inequality can be proved similarly.   

If  is strictly converse, equality shall not be there in (5.1.3) and so it cannot be in (5.1.4).   This completes the proof 

of the theorem.  

Theorem 6.  A differentiable function  is convex on (a,b) if and only if  is a monotonically increasing function.  If 

 exists on (a,b), then  is convex if and only if   0 on (a, b) and strictly convex if  > 0  on (a,b).  
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Proof.  Suppose first that  is differentiable and convex and let a < s < t < u < v < b.  Then applying Theorem 5 to a < 

s < t < u, we get  

  
tu

)t()u(

su

)s()u(

st

)s()t(
 

and applying Theorem 5 to a < t < u < v, we get  

  
uv

)v()v(

tv

)t()v(

tu

)t()u(
 

Hence  

  
uv

)u()v(

st

)s()t(
 

If t  s,  
st

)s()t(
 decreases to (s) and if u  v, 

uv

)u()v(
 increases to (v).  Hence (v)  (s) for all s < 

v and so  is monotonically increasing function.  

Further, if  exists, it can never be negative due to monotonicity of .  

Conversely, let   0 .  Our aim is to show that  is convex.  Suppose, on the contrary, that  is not convex on (a, b).   

Therefore, there are points a < s < t < u < b such that  

  
tu

)t()u(

st

)s()t(
 

that is, slope of chord over (s,t) is larger than the slope of the chord over (t,u).  But slope of the chord over (s,t) is 

equal to ( ), for some   (s, t) and slope of the chord over (t,u) is ( ),   (t,u).  But ( ) > ( ) implies  is not 

monotone increasing and so  cannot be greater than zero.  We thus arrive at a contradiction.  Hence  is convex.  

If  > 0 , then  is strictly convex, for otherwise there would exist collinear points of the graph of  and we would 

have ( ) =  ( ) for appropriate  and  with  <  .  But then  = 0 at some point between  and  which is a 

contradiction to  > 0 .  This completes the proof.  

Theorem 7.   If   is convex on (a,b), then  is absolutely continuous on each closed subinterval of (a,b).  

Proof.  Let [c,d]  (a,b).  If x, y  [c, d], then we have a < c  x  y  d < b and so by Theorem 5, we have  

  
db

)d()b(

xy

)x()y(

ac

)a()c(
 

Thus  

  | (y)  (x)|  M|x y|  ,  x, y  [c, d]  
and so  is absolutely continuous there.  

Theorem 8.  Every convex function on an open interval is continuous. 

Proof.    If a < x1 < x < x2 < b, the convexity of a function  implies 

(5.1.5)     (x)   

12

1
1

12

2

xx

xx
)x(

xx

xx
(x2)  

If we make x  x1 in (5.1.5), we obtain (x1+ 0)  (x1); and if we take x2  x we obtain              (x)  (x + 0).  

Hence (x) =  (x+0) for all values of x in (a,b).  Similarly (x 0) = (x) for all values of x.  Hence  

 (x 0) = (x+0) = (x)  
and so  is continuous.  

Definition.   Let  be a convex function on (a,b) and x0  (a,b).  The line  

(5.1.6)            y = m(x x0) + (x0)  

through (x0, (x0)) is called a Supporting Line at x0 if it always lie below the graph of , that is, if  

(5.1.7) (x)  m(x x0) + (x0) 

The line (5.1.6) is a supporting line if and only if its slope m lies between the left and right hand derivatives at x0.  

Thus, in particular, there is at least one supporting line at each point.  

Theorem 9 (Jensen Inequality).  Let  be a convex function on ( , ) and let f be an integrable function on [0,1].  

Then  
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  (f(t))dt  [ f(t)dt] 

Proof.  Put  

   = 

1

0

dt)t(f  

Let y = m(x ) + ( ) be the equation of supporting line at .  Then (by (….) above),  

  (f(t))   m(f(t) ) + ( ) 

Integrating both sides with respect to t over [0, 1], we have  

  

1

0

1

0

dt)(]dt)t(fdt)t(f[mdt))t(f(  

        = 0 + ( ) 

1

0

dt  

        = ( ) = [

1

0

dt)t(f ] . 

L
p
  space 

Let p be a positive real number.  A measurable function f defined on [0,1] is said to belong to the space L
p
 if  |f|

p
 <  .    

Thus L
1
 consists  precisely of Lebesgue integrable functions on [0,1].  Since  

  |f+g|
p
   2

p
 (|f|

p
 + |g|

p
) , 

we have 

   |f+g|
p
  2

p
 |f|

p
 + 2

p
 |f|

p
  

and so if f, g  L
p
, it follows that f+g  L

p
 .  Further, if  is a scalar and f  L

p
, then clearly f belongs to L

p
.  Hence f 

+ g  L
p
 whenever f, g  L

p
 and ,  are scalars.  

We shall study these spaces in detail in Course On Functional Analysis.  

 

 

 

 

 

 

 

 

PART B : MEASURE SPACE 

5.2.    We recall that a algebra  is a family of subsets of a given 

set X which contains  and is closed with respect to complements and 

with respect to countable unions.  By a set function  we mean a 
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function which assigns an extended real number to certain sets.  With 

this in mind we make the following definitions :  

Definition.   By a measurable space we mean a couple (X, ) 

consisting of a set X and a         - algebra  of subsets of X.  

A subset A of X is called measurable (or measurable with respect to 

B) if A  .  

Definition.   By a measure  on a measurable space (X, ) we mean a 

non- negative set function defined for all sets of  and satisfying ( ) 

= 0 and  

   
1i

i
1i

i EE          (*) 

for any sequence Ei of disjoint measurable sets.  

By a measure space (X, , ) we mean a measurable space (X, ) 

together with a measure  defined on .   

The property (*) of  is referred to by saying that  is countably 

additive.  

An example of the measure space  is (R, m, m) where R is the set of 

real numbers, m the Lebesgue measurable sets of real numbers and m 

the Lebesgue measure.  

Theorem 10.  If A  , B  , and A  B, then  

   A   B  

Proof.   Since  

  B = A  [B \ A] 

is a disjoint union, we have  

  B = [A  (B \ A) ]  

        = (A) + (B \ A) 

         A . 

Theorem 11.  If Ei  ,  E1 <  and Ei  Ei+1, then  

   n
n

1i
i ElimE  
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Proof.  Let  

  E = 
1i

iE  

Then  

  E1 = E  
1i

1ii )EE( , 

and this is a disjoint union.   Hence  

  (E1) = (E) + 
1i

(Ei Ei+1) 

Since  

  Ei = Ei+1  (Ei Ei+1)  

is a disjoint union, we have  

          mEi = mEi+1 + m(Ei \ Ei+1)  

i.e.      (Ei Ei+1) = (Ei)  Ei+1  

Hence  

 (E1) = (E) + 
1i

( Ei  Ei+1)  

           = (E) + 
1n

1i
1ii

n
)EE(lim    

            = (E) + E1  
n
lim En ,  

whence  E1 <  implies  

   (E) = 
n
lim  En . 

Theorem 12.  If Ei  , then  

  
1i

i
1i

i EE   .  

Proof.  Let  

  Gn = En  
1n

1i
iE  

Then Gn  En and the sets Gn are disjoint. Hence  

  (Gn)   En,  

while  

  (  Ei) = 
1i

Gn  
1i

En  
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Theorem 13.  If Ei   and Ei  Ei+1, then  

  
1i

iE  = 
n
lim  En  

Proof.  Let  

  E = 
1i

iE  

Then  

  E = E1  (E2 E1)  (E3 E2)  …  

      =  E1  
1i

i1i )EE(  

and this is a disjoint union.  Hence  

             (E) = E1 + )E\E(
1i

i1i  

      = E1 + 
1in

lim (Ei+1  Ei)  

      = E1 + 
n
lim [ En  E1]  

      = E1  E1 + 
n
lim En  

      = 
n
lim En . 

Definition.  A measure  is called finite if (X) <  .   It is called -

finite if there exists a sequence (Xn) of sets in  such that 

  X = 
1n

nX   

and  Xn <  . 

By virtue of a lemma proved earlier in Chapter 3, we may always 

take {Xn} to be a disjoint sequence of sets.  Lebesgue measure on 

[0,1] is an example of a finite measure while Lebesgue measure on 

( , ) is an example of a -finite measure.  

Definition.  A set E is said to be of finite measure if E   and  E < 

 .  

A set E is said to be of -finite measure if E is the union of a 

countable collection of measurable sets of finite measure.  
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Any measurable set contained in a set of -finite measure is itself of 

-finite measure, and the union of a countable collection of sets of -

finite measure is again of  -finite measure.  

Definition.  A measure space (X, , ) is said to be complete if  

contains all subsets of sets of measure zero, that is, if B  , B = 0 

and A  B imply A  .  

For example Lebesgue measure is complete, while Lebesgue measure 

restricted to the -algebra of Borel sets is not complete.  

Definition.   If (X, , ) is a measure space, we say that a subset E of 

X is locally measurable if E  B    for each B   with B <  .  

The collection C of all locally measurable sets is a -algebra 

containing .  

The measure  is called saturated if every locally measurable set is 

measurable, i.e., is in .  

For example every -finite measure is saturated.  

Example.  Show that (E1 E2) = 0  implies E1 = E2 provided that 

E1 and E2  .  

Solution.   Since E1, E2  , we have E1\ E2 and E2 \ E1 in  and so E1 

 E2   .  Moreover,  

 (E1  E2) =  [(E1 \ E2)  (E2 \ E1)]  

        =  (E1 \ E2) + (E2 \ E1)  

But, by hypothesis,  (E1  E2) = 0.  Therefore,  

  (E1 \ E2) = 0  and (E2 \ E1) = 0 .  

Also, we can write  

  E2  = [E1  (E2 E1)]  (E1 E2)  

Then  

           E2  = E1 + 0  0 = E1 .  

     
5.3. Measure and Outer Measure 
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In case of Lebesgue measure we defined measure for open sets and 

used this to define outer measure, from which we obtain the notion of 

measurable set and Lebesgue measure.  

Definition.   By an outer measure * we mean an extended real 

valued set function defined on all subsets of a space X and having the 

following properties : 

(i) *  = 0  

(ii) A  B  *A  *B    (monotonicity)  

(iii) E   
1i

iE  * E   
1i

*Ei  (subadditivity)  

Because of (ii), property (iii) can be replaced by  

(iii)   E = 
1i

iE  ,  Ei disjoint   * E   
1i

iE*  

The outer measure * is called finite if * X <  .  

By analogy with the case of Lebesgue measure we define a set E to 

be measurable with respect to * if for every set A we have  

  *A = *(A  E) + * (A  Ec)  

Since * is subadditive, it is only necessary to show that  

  * A  *(A  E) + * (A  Ec)  

for every A in order to show that E is measurable.  

This inequality is trivially true when * A =  and so we need only 

establish it for sets A with *A finite.  

Theorem 14.  The class  of *-measurable sets is a -algebra.  If  

is restricted to , then  is a complete measure on .  

Proof.  It is obvious that the empty set is measurable.  The symmetry 

of the definition of measurability in E and Ec shows that Ec is 

measurable whenever E is measurable.  

Let E1 and E2 be measurable sets.   From the measurability of E2 ,  

  *A = * (A  E2) + *(A  E2
c)  

and  
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  *A = * (A  E2) + *(A  E2
c  E1) +  *(A  E1

c  

E2
c)  

by the measurability of E1.  Since  

  A  [E1  E2] = [A  E2]  [A  E1  E2
c] 

we have  

  *(A  [E1  E2] )  *(A  E2) + * (A  E2
c  E1)  

by subadditivity, and so 

  *A  * (A  [E1  E2] ) + * (A  E1
c  E2

c)  

This means that E1  E1 is measurable.  Thus the union of two 

measurable sets is measurable, and by induction the union of any 

finite number of measurable sets is measurable, showing that  is an 

algebra of sets.  

Assume that E =  Ei, where < Ei > is a disjoint sequence of 

measurable set, and set  

  Gn =  
n

1i
iE  

Then (by what we have proved above) Gn is measurable, and  

  * A = * (A  Gn) + * (A  Gn
c)  * (A  Gn) +  

*(A  Ec) 

because  Ec  Gn
c  

Now Gn  En = En and Gn  En
c = Gn 1 ,  and by the measurability of 

En, we have  

  * (A  Gn) =  * (A  En) + * (A  Gn 1)  

By induction (as above, * (A  Gn 1) = *(A  En+1) + * (A  En 2 

and so on)  

  * (A  Gn) = 
n

1i

* (A  Ei)  

and so  

  * A  * (A  Ec) + 
1i

* (A  Ei)  

            *(A  Ec) + * (A  E) , 

since           A  E    
1i

A(  Ei)  
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Thus E is measurable.  Since the union of any sequence of sets in an 

algebra can be replaced by a disjoint union of sets in an algebra, it 

follows that B is a -algebra.  

We now show that  is finitely additive.  Let E1 and E2 be disjoint 

measurable sets.  Then the measurability of E2 implies that  

   (E1   E2)  = * (E1  E2)  

    = * ( [ E1  E2]  E2) + * ( [ E1  E2 ]  E2
c) 

    = * E2 + * E1  

Finite additivity now follows by induction.  

If E is the disjoint union of the measurable sets {Ei}, then  

  i E   i

n

1i

n

1i
i EE  

and so  

   E   
1i

Ei  

But    E   
1i

 Ei, by the subadditivity of *.  Hence  is 

countably additive and hence a measure since it is non-negative and 

  = *  = 0 .  

Measure on an Algebra 

By a measure on an algebra we mean a non-negative extended real 

valued set function  defined on an algebra A of sets such that  

(i)   = 0  

(ii) If < Ai >  is a disjoint sequence of  sets in A whose union 

is also in A, then  

 
1i

i
1i

i AA  

Thus a measure on an algebra A is a measure  A is a -algebra.  

We construct an outer measure * and show that the measure  

induced by * is an extension of  (measure defined on an algebra).  

We define  
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  * E =  inf 
1i

iA  , 

where < Ai > ranges over all sequence from A such that  

  E  
1i

iA .  

Lemma 8.  If A  A and if < Ai > is any sequence of sets in A such 

that A  
1i

iA ,                         then  A  
1i

iA .  

Proof.  Set  

  Bn = A  An  Ac
n 1   ….  Ai

c  

Then Bn  A and Bn  An.  But A is the disjoint union of the sequence 

< Bn > and so by  countable additivity 

  A =  
1n

n
1n

n AB  

Corollary.  If A  A, * A =   A.  

In fact, we have, from above  

  A   
1n

nA  < *A +  , 

that is,  

   A  * A +   

Since  is arbitrary, we have 

  A  * A  

Also, by definition,  

  * A   A  

Hence 

  * A = A . 

Lemma 9.   The set function * is an outer measure.  

Proof.  *, by definition, is a monotone non-negative set function 

defined for all sets and              *  = O.  We have only to show that 

it is countably subadditive.  Let E  
1i

iE .  If * Ei =  for any i, we 
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have * E    * Ei =  .  If not, given  > 0 , there is for each i a 

sequence 1jijA of sets in A such that Ei   
1j

ijA  and  

  
1j

ijA  < * Ei + 
i2
 

Then  

  * E   
j,i 1i

iij E*A   

Since  was an arbitrary positive number,  

  * E   
1i

iE*  

which proves that * is subadditive.  

Lemma 10.  If A  A, then A is measurable with respect to *.  

Proof.  Let E be an arbitrary set of finite outer measure and  a 

positive number.   Then there is a sequence < Ai > from A such that E 

  Ai and  

   Ai < * E +  

By the additivity of  on A, we have  

  (Ai) =  (Ai  A) + (Ai  Ac)  

Hence  

  * E +   >  
1i

(Ai  A)  + 
1i

(Ai  Ac)  

       > * (E  A) + * (E  Ac)  

because 

  E  A   (Ai  A)  

and  

  E  Ac   (Ai  Ac)  

Since  was an arbitrary positive number,  

  * E  * (   A) + * (E  Ac) 

and thus A is * - measurable.  
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Remark.  The outer measure * which we have defined above is 

called the outer measure induced by .  

Notation.   For a given algebra A of sets we use A  to denote those 

sets which are countable unions of sets of A and use A  to denote 

these sets which are countable intersection of sets in  A .  

Theorem 15.  Let  be a measure on an algebra A, * the outer 

measure induced by , and E any set.  Then for  > 0 , there is a set A 

 A  with E  A and  

  * A  * E +   

There is also a set B  A  with E  B and * E = * B .  

Proof.  By the definition of * there is a sequence < Ai > from A 

such that E   Ai and  

  
1i

iA   * E +            (1)  

Set  

  A =   Ai  

Then * A    * Ai =  Ai        (2) 

because * and  agree on members of A by the corollary.  

Hence (1) and (2) imply  

  * A  *  E +   

which proves the first part.  

To prove the second statement, we note that for each positive integer 

n there is a set An in A  such that E  An and  

  * An < * E +  
n

1   (from first part proved above) 

Let B =  An.  Then B  A  and E  B. Since B  An ,  

  * B < * An  * E +   
n

1  

Since n is arbitrary, * B  * E.  But E  B implies * B   * E by 

monotonicity.  Hence  *B = * E . 
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Theorem 16 (Cartheodory Extension Theorem).   Let  be a 

measure on an algebra A and let * be the outer measure induced by 

.  Then the following properties hold :  

(a) * is an outer measure 

(b) A  A implies (A) = * A 

(c) A  A implies A is * - measurable.  

(d) The restriction   of * to the *-measurable sets is an 

extension of  to a -algebra containing A. 

(e)  is finite (or -finite) implies that  is finite (or -finite).  

(f) If  is -finite, then  is the only measure on  the smallest -

algebra containing A which is an extension of .  

Proof.  We have already proved (a), (b) and (c).  The fact that  is 

an extension of  from A to be a measure on a -algebra containing 

A follows from (b), (c) and the result.  “The  class  of *-measure 

sets is a -algebra.  If  is * restricted to , then  is a measure 

on .”  Also  is finite or -finite whenever  is finite or -finite. 

We establish (f) now.  

Let  be the smallest -algebra containing A and 1 be another 

measure on  such that 1(E) = (E) for E  A.  We need to show the 

following :  

  1(A) = (A)   for A         (1) 

Since  is -finite, we can write X = 
1i

iE , Ei  A, Ei  Ej =  (i  j) 

and (Ei) <  , 1  i <  .  For A  , then A =   (A  Ei) and we 

have  

   (A) =   
1i

 (A  Ei)  

and  

  1(A)  =  
1i

1  (A  Ei)  

So, to prove (1) it is sufficient to show the following :  

  1 A = (A) for A   whenever  (A) <   



 

 

165 

 

Let A   with  A <  .  Given  > 0 , there are Ei  A, 1  i <  , 

A  
1i

iE  and  

   
1i

iE    
1i

i )E(  <  (A) +   

Since  

  1(A)  1 
1i

iE  
1i

i1 )E(  = 
1i

i )E(  

Thus, (2) implies  

  1(A)  (A) +         (2) 

Since this is true for all  > 0 , it follows that  

  1(A)   A         (3) 

Now considering the sets Ei from inequality (2), F = 
1i

iE    and so F 

is *-measurable.  Since A  F ,  

  (F) = (A) + (F A)  

or  

   (F \ A) =  (F) (A) <    (from (2))  

Since 1(E) = (E) for each E  A,  we have 1(F) =  (F).  Then  

   (A)  (F) = 1(F) = 1(A) + 1 (F \ A)  

       (A) +  (F \ A)  

(by inequality (3) because (3) is true if A is replaced by any set in  

with finite -measure).   The relation (4) then yields 

  (A)  1(A) +    

Since this true for all  > 0, we have 

   (A)  1(A)        (5) 

The relations (3) and (5) then yield  

  A = 1(A) 

which completes the proof of the theorem. 

Definition.  Let f be a non-negative extended real valued measurable 

function on the measure space (X, , ).  Then f d  is the supremum 
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of the integrals   d  as  ranges over all simple functions with  0  

  f .  

Lemma 1 (Fatou‟s Lemma).  Let < fn > be a sequence of non-

negative measurable functions which converge almost everywhere on 

a set E to a function f.  Then 

  
E

n

E

flimf  

Proof.  Without loss of generality we may assume that fn(x)  f(x) 

for each x  E.  From the definition of f it is sufficient to show that , 

if  is any non-negative simple function with   f, then n

E

flim  

If  
E

 = , then there is a measurable set A  E with A =  such 

that  > a 0 on A.  Set  

  An = {x  E :  fk(x) > a  for all k  n } 

Then An  An+1.   Thus < An > is an increasing sequence of 

measurable sets whose union contains A, since    lim fn .  Thus lim 

 An =  .  Since 
E

nf   a  An, we have  

  lim 
E

nf =  = 
E

 

If 
E

 < , then there is a measurable set A  E with A <  such that 

 vanishes identically on E \ A .  Let M be the maximum of , let  

be a given positive number, and set 

An = [x  E   if fh(x) > (1 ) (x)  for all k  n] 

 

Then < An > is an increasing sequence of sets whose union contains 

A, and so (A \ An) is a decreasing sequence of sets whose intersection 

is empty.  Therefore, (by a proposition proved already) lim  (A  

An) = 0 and so we can find an n such that (A   Ak) <  for all k  

n.  Thus for k  n  
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kAkA

k

E

k )1(ff  

          (1 ) 
A kAA

 

          (1 )    
kAA

  

         M 

Since c is arbitrary. 

   kflim     .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


