1. A particle is initially at $(1,0,0)$ and moves finally to the point $(0,1,0)$. The displacement vector of the particle is :
(1) $\hat{j}-\hat{i}$
(2) $\hat{i}-\hat{j}$
(3) \hat{i}
(4) $-\hat{j}$
2. If a particle completes three round, the displacement is :
(1) Non Zero
(2) Zero
(3) Negative
(4) None of these
3. If x denotes displacement in time t and $x=a \cos t$, then acceleration is :
(1).$a \cos t$
(2) $-a \sin t$
(3) $-a \cos t$
(4) None of these
4. Angular acceleration is measured in :
(1) radian $/ \mathrm{sec}$
(2) radian $/ \sec ^{2}$
(3) radian per second per second
(4) Both (2) and (3)
5. A particle moving along x-direction has, at any instant, its x co-ordinate is given by $x=a-b t-c t^{2}$, then acceleration :
(1) depends on t
(2) is constant
(3) independent of ' t '
(4) both (2) \& (3)
6. Two objects A and B are moving along the directions as shown in figure. Find the magnitude of relative velocity of B with respect to A :

A

(1) $-10 \mathrm{~m} / \mathrm{s}$
(2) $10 \mathrm{~m} / \mathrm{s}$
(3) $-30 \mathrm{~m} / \mathrm{s}$
(4) $-20 \mathrm{~m} / \mathrm{s}$
7. What is the angle made by vector $\hat{a}=\hat{i}+\hat{j}$ with x-axis ?
(1) 0°
(2) 30°
(3) 45°
(4) 90°
8. When a horse pulls a cart, the force that helps the horse to move forward is the force exerted by :
(1) The cart on the horse
(2) The ground on the horse
(3) The ground on the cart
(4) The horse on the ground
9. For a particle moving along a straight line, the curvature of straight line is :
(1) Finite
(2) Infinite
(3) Zero
(4) None of these
10. Law of Inertia is also called the :
(1) Newton's First law of motion
(2) Newton's Second law of motion
(3) Newton's Third law of motion
(4) None of these
11. The law which gives measure of force is:
(1) Newton's First law
(2) Newton's Second law
(3) Newton's Third law
(4) None of these
12. The combined effect of mass and velocity is taken into account by a physical quantity called :
(1) Torque
(2) Moment of a force
(3) Momentum
(4) All of these
13. In case of negative work, the angle between force and displacement is :
(1) 45°
(2) 0°
(3) 90°
(4) 180°
14. Weight of 10 kg of mangoes is :
(1) 98 N
(2) 9.8 N
(3) 10 kg
(4) None of these
15. Mass of 10 N of mangoes is :
(1) 100 kg
(2) Approximately 1 kg
(3) 10 kg
(4) None of these
16. During the parabolic path of a football, the point at which the acceleration is perpendicular to the velocity :
(1) At the highest point
(2) At the point where football is thrown
(3) At the point where football returns to the point of projection
(4) None of these
17. The velocity of a projectile is $10 \mathrm{~m} / \mathrm{s}$. At what angle to the horizontal should be projected so that it covers maximum horizontal distance?
(1) 60°
(2) 45°
(3) 90°
(4) None of these
18. The equation of trajectory of a projectile motion is $y=\frac{x}{\sqrt{3}}-\frac{g x^{2}}{2}$; the angle of projection of the projectile is :
(1) 60°
(2) 30°
(3) 45°
(4) None of these
19. The angle between force and displacement for maximum work is :
(1) 90°
(2) 180°
(3) 120°
(4) 0°
20. The factor which converts $\mathrm{km} /$ hour into meter/sec is :
(1) $\frac{5}{18}$
(2) $\frac{18}{5}$
(3) $\frac{22}{15}$
(4) None of these
21. Absolute unit of force in C.G.S. system is :
(1) Newton
(2) Dyne
(3) Poundal
(4) None of these
22. Velocity in terms of its tangential and normal components (through vector approach) is :
(1) $\frac{d s}{d t} \hat{t}+0 \hat{x}$
(2) $\frac{d v}{d t} \hat{t}+\frac{v^{2}}{\rho} \hat{x}$
(3) $\frac{d^{2} s}{d t^{2}} \hat{t}+\frac{v^{2}}{\rho} \hat{x}$
(4) None of these
23. A football is picked into air vertically upwards. What is its velocity and acceleration at the highest point ?
(1) Zero, g
(2) Zero, - g
(3) Given information is insufficient
(4) None of these
24. Focus of the trajectory of a projectile motion is :
(1) $\left(\frac{u^{2} \sin 2 \alpha}{2 g}, \frac{u^{2} \sin ^{2} \alpha}{2 g}\right)$
(2) $\left(\frac{u^{2} \sin 2 \alpha}{2 g}, \frac{u^{2} \cos ^{2} \alpha}{2 g}\right)$
(3) $\left(\frac{u^{2} \sin 2 \alpha}{2 g}, \frac{-u^{2} \cos 2 \alpha}{2 g}\right)$
(4) None of these
25. Least velocity of projection for a particle to hit a given point (h, k) is given by :
(1) $u^{2}=g\left[k+\sqrt{h^{2}+k^{2}}\right]$
(2) $u^{2}>g\left[k+\sqrt{h^{2}+k^{2}}\right]$
(3) $u^{2}<g\left[k+\sqrt{h^{2}+k^{2}}\right]$
(4) None of these
26. The differential eq. of central orbit in polar form is $\frac{d^{2} u}{d \theta^{2}}+u=\frac{F}{h^{2} u^{2}}$; where $u=\frac{1}{r}$; using given differential eq., the law of force (F) for the differential equation $\frac{d^{2} u}{d \theta^{2}}+u=5 a^{8} u^{9}$ is :
(1) $F \propto \frac{1}{r^{11}}$
(2) $F \alpha r^{11}$
(3) $F=\frac{1}{r^{21}}$
(4) None of these
27. The law of force for the differential equation $\frac{d^{2} u}{d \theta^{2}}+u=8 a^{2} u^{3}$, is :
(1) Force varies inversely as the 5th power of the distance from the pole.
(2) Force varies directly as the 5th power of the distance from the pole.
(3) Force is 9th power of the distance from the pole
(4) None of these
28. Gravitational force which acts on 1 kg is :
(1) 980 N
(2) $\frac{1}{9.8} \mathrm{~N}$
(3) 9.8 N
(4) None of these
29. Using Kepler's third law of periods (i.e. $T^{2} \alpha r^{3}$), the ratio of time period, where the distance of two planets from the sun are $10^{14} \mathrm{~m}$ and $10^{12} \mathrm{~m}$, is :
(1) $3: 1$
(2) $1: 3$
(3) $1000: 1$
(4) None of these
30. 1 hp is equal to :
(1) 7.46 kw
(2) 74.6 kw
(3) 0.746 kw
(4) 746 kw
31. In tug of war (To pull a rope by two opponent teams), work done by winning team is :
(1) Zero
(2) Positive
(3) Negative
(4) None of these
32. Two bodies A and B of mass M and 2 M respectively, having same momentum, Then the ratio of velocity $\left(V_{A}: V_{B}\right)$ is :
(1) $1: 2$
(2) $2: 1$
(3) $1: 1$
(4) $3: 2$
33. The combined effect of mass and velocity is taken into account by a physical quantity called :
(1) Torque
(2) Moment of force
(3) Momentum
(4) All of these
34. The horizontal range of a particle is two times of its greatest height. The angle of projection (α) is :
(1) $\alpha=\tan ^{-1}(1)$
(2) $\alpha=\tan ^{-1}(2)$
(3) $\alpha=\tan ^{-1}$ (3)
(4) None of these
35. A stone is rotated in a circle with a string. The string suddenly breaks. In which direction will the stone move?
(1) The stone will move along the radius towards the centre
(2) The stone will move along the radius away from the centre
(3) The stone will move along the tangent to the circular path
(4) The stone will move continuously on circular path
36. A force acting on an object :
(1) Can change direction and magnitude of its velocity
(2) Must change magnitude of its velocity
(3) Must change direction of its velocity
(4) None of these

60580/(A)

37.

Figure

Find the horizontal and vertical component of force respectively in given figure :
(1) $5 \sqrt{3} \hat{i},-5 \hat{j}$
(2) $-5 \sqrt{3} \hat{i}, 5 \hat{j}$
(3) $5 \sqrt{3} \hat{i}, 5 \hat{j}$
(4) $-5 \sqrt{3} \hat{i},-5 \hat{j}$
38. Javelin is thrown at an angle θ with the horizontal and the range is maximum. The value of $\tan \theta$ is :
(1) $\sqrt{3}$
(2) $\frac{1}{\sqrt{3}}$
(3) 1
(4) 45
39. When a body is stationary :
(1) There is no force acting on it
(2) The forces acting on it are not in contact with it
(3) The combination of forces acting on it balance each other
(4) The body is in vacuum
40. Radial component of acceleration of a particle moving along a Plane curve $r=f(0)$ is :
(1) $\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2}$
(2) $\ddot{r}-r \theta^{2}$
(3) Both (1) \& (2)
(4) None of these
41. When a particle is moving with uniform speed u, then resultant acceleration of the particle is :
(1) Tangential acceleration only
(2) Normal acceleration only
(3) Zero
(4) None of these
42. Every planet revolves around the sum in an elliptical orbit. The sun is situated at one foci of the ellipse. This is the statement of :
(1) Kepler's First law
(2) Kepler's Second law
(3) Kepler's Third law
(4) Newton's law of motion
43. It is given that $T^{2} \alpha(2 a)^{3}$; where T is the time of one revolution along the orbit and (a) be the length of semi major axis of ellipse, given expression verifies :
(1) Kepler's First law
(2) Kepler's Second law
(3) Kepler's Third law
(4) None of these
44. A particle moves in a plane under a central force which varies inversely as square of the distance from the fixed point. The orbit is :
(1) $\frac{h}{p}=\frac{2 \mu}{r}+c$
(2) $\frac{h^{2}}{p^{3}}=\frac{2 \mu}{r}+c$
(3) $\frac{h^{2}}{p^{2}}=\frac{2 \mu}{r}+c$
(4) None of these
45. Differential equation of central orbit in polar form is :
(1) $\frac{d^{2} u}{d \theta^{2}}-u=\frac{F}{h^{2} u^{2}}$
(2) $\frac{d u}{d \theta}-u=\frac{F}{h^{2} u^{2}}$
(3) $\frac{d u}{d \theta}+u=\frac{F}{h^{2} u^{2}}$
(4) $\frac{d^{2} u}{d \theta^{2}}+u=\frac{F}{h^{2} u^{2}}$
46. The momentum of a body is numerically equal to the Kinetic energy of the body. Velocity of the body is :
(1) 1 unit
(2) 2 unit
(3) 3 unit
(4) None of these
47. Power of electrical appliances such as electric bulbs, electric heaters, fans, electric motors is expressed in :
(1) Watt
(2) One Joule/sec
(3) Foot poundal/sec
(4) All of these
48. The value of ' g ' on moon $\frac{1}{6}$ th of the value of ' g ' on the earth. A man can jump 1.5 m high on the earth. On moon he can jump up to a height of :
(1) 9 m
(2) 7.5 m
(3) 6 m
(4) 4.5 m
49. Car A has twice the mass of car B , but both have the same kinetic energy $\left(K . E .=\frac{1}{2} m v^{2}\right)$. How do their speeds compare ?
(1) $2 v_{1}=v_{2}$
(2) $\sqrt{2} v_{1}=v_{2}$
(3) $2 \sqrt{2} \quad v_{1}=v_{2}$
(4) $v_{1}=v_{2}$
50. A stone released with zero velocity from the top of a tower reaches the ground in 4 seconds. The height of the tower is about: [Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$]
(1) 80 m
(2) 80 mm
(3) 80 cm
(4) None of these

1. The law which gives measure of force is :
(1) Newton's First law
(2) Newton's Second law
(3) Newton's Third law
(4) None of these
2. The combined effect of mass and velocity is taken into account by a physical quantity called :
(1) Torque
(2) Moment of a force
(3) Momentum
(4) All of these
3. In case of negative work, the angle between force and displacement is :
(1) 45°
(2) 0°
(3) 90°
(4) 180°
4. Weight of 10 kg of mangoes is :
(1) 98 N
(2) 9.8 N
(3) 10 kg
(4) None of these
5. Mass of 10 N of mangoes is :
(1) 100 kg
(2) Approximately 1 kg
(3) 10 kg
(4) None of these
6. During the parabolic path of a football, the point at which the acceleration is perpendicular to the velocity :
(1) At the highest point
(2) At the point where football is thrown
(3) At the point where football returns to the point of projection
(4) None of these
7. The velocity of a projectile is $10 \mathrm{~m} / \mathrm{s}$. At what angle to the horizontal should be projected so that it covers maximum horizontal distance ?
(1) 60°
(2) 45°
(3) 90°
(4) None of these
8. The equation of trajectory of a projectile motion is $y=\frac{x}{\sqrt{3}}-\frac{g x^{2}}{2}$; the angle of projection of the projectile is :
(1) 60°
(2) 30°
(3) 45°
(4) None of these
9. The angle between force and displacement for maximum work is :
(1) 90°
(2) 180°
(3) 120°
(4) 0°
10. The factor which converts $\mathrm{km} /$ hour into meter/ sec is :
(1) $\frac{5}{18}$
(2) $\frac{18}{5}$
(3) $\frac{22}{15}$
(4) None of these
11. Absolute unit of force in C.G.S. system is :
(1) Newton
(2) Dyne
(3) Poundal
(4) None of these
12. Velocity in terms of its tangential and normal components (through vector approach) is :
(1) $\frac{d s}{d t} \hat{t}+0 \hat{x}$
(2) $\frac{d v}{d t} \hat{t}+\frac{v^{2}}{\rho} \hat{x}$
(3) $\frac{d^{2} s}{d t^{2}} \hat{t}+\frac{v^{2}}{\rho} \hat{x}$
(4) None of these
13. A football is picked into air vertically upwards. What is its velocity and acceleration at the highest point?
(1) Zero, g
(2) Zero, - g
(3) Given information is insufficient
(4) None of these
14. Focus of the trajectory of a projectile motion is :
(1) $\left(\frac{u^{2} \sin 2 \alpha}{2 g}, \frac{u^{2} \sin ^{2} \alpha}{2 g}\right)$
(2) $\left(\frac{u^{2} \sin 2 \alpha}{2 g}, \frac{u^{2} \cos ^{2} \alpha}{2 g}\right)$
(3) $\left(\frac{u^{2} \sin 2 \alpha}{2 g}, \frac{-u^{2} \cos 2 \alpha}{2 g}\right)$
(4) None of these
15. Least velocity of projection for a particle to hit a given point (h, k) is given by :
(1) $u^{2}=g\left[k+\sqrt{h^{2}+k^{2}}\right]$
(2) $u^{2}>g\left[k+\sqrt{h^{2}+k^{2}}\right]$
(3) $u^{2}<g\left[k+\sqrt{h^{2}+k^{2}}\right]$
(4) None of these
16. The differential eq. of central orbit in polar form is $\frac{d^{2} u}{d \theta^{2}}+u=\frac{F}{h^{2} u^{2}}$; where $u=\frac{1}{r}$; using given differential eq., the law of force (F) for the differential equation $\frac{d^{2} u}{d \theta^{2}}+u=5 a^{8} u^{9}$ is :
(1) $F \propto \frac{1}{r^{11}}$
(2) $F \alpha r^{11}$
(3) $F=\frac{1}{r^{21}}$
(4) None of these
17. The law of force for the differential equation $\frac{d^{2} u}{d \theta^{2}}+u=8 a^{2} u^{3}$, is :
(1) Force varies inversely as the 5 th power of the distance from the pole.
(2) Force varies directly as the 5 th power of the distance from the pole.
(3) Force is 9 th power of the distance from the pole
(4) None of these
18. Gravitational force which acts on 1 kg is :
(1) 980 N
(2) $\frac{1}{9.8} \mathrm{~N}$
(3) 9.8 N
(4) None of these
19. Using Kepler's third law of periods (i.e. $T^{2} \alpha r^{3}$), the ratio of time period, where the distance of two planets from the sun are $10^{14} \mathrm{~m}$ and $10^{12} \mathrm{~m}$, is :
(1) $3: 1$
(2) $1: 3$
(3) $1000: 1$
(4) None of these
20. 1 hp is equal to :
(1) 7.46 kw
(2) 74.6 kw
(3) 0.746 kw
(4) 746 kw
21. In tug of war (To pull a rope by two opponent teams), work done by winning team is :
(1) Zero
(2) Positive
(3) Negative
(4) None of these
22. Two bodies A and B of mass M and 2 M respectively, having same momentum, Then the ratio of velocity $\left(V_{A}: V_{B}\right)$ is :
(1) $1: 2$
(2) $2: 1$
(3) $1: 1$
(4) $3: 2$
23. The combined effect of mass and velocity is taken into account by a physical quantity called :
(1) Torque
(2) Moment of force
(3) Momentum
(4) All of these
24. The horizontal range of a particle is two times of its greatest height. The angle of projection (α) is :
(1) $\alpha=\tan ^{-1}(1)$
(2) $\alpha=\tan ^{-1}(2)$
(3) $\alpha=\tan ^{-1}(3)$
(4) None of these
25. A stone is rotated in a circle with a string. The string suddenly breaks. In which direction will the stone move?
(1) The stone will move along the radius towards the centre
(2) The stone will move along the radius away from the centre
(3) The stone will move along the tangent to the circular path
(4) The stone will move continuously on circular path
26. A force acting on an object :
(1) Can change direction and magnitude of its velocity
(2) Must change magnitude of its velocity
(3) Must change direction of its velocity
(4) None of these
27.

Figure

Find the horizontal and vertical component of force respectively in given figure :
(1) $5 \sqrt{3} \hat{i},-5 \hat{j}$
(2) $-5 \sqrt{3} \hat{i}, 5 \hat{j}$
(3) $5 \sqrt{3} \hat{i}, 5 \hat{j}$
(4) $-5 \sqrt{3} \hat{i},-5 \hat{j}$
28. Javelin is thrown at an angle θ with the horizontal and the range is maximum. The value of $\tan \theta$ is :
(1) $\sqrt{3}$
(2) $\frac{1}{\sqrt{3}}$
(3) 1
(4) 45
29. When a body is stationary :
(1) There is no force acting on it
(2) The forces acting on it are not in contact with it
(3) The combination of forces acting on it balance each other
(4) The body is in vacuum
30. Radial component of acceleration of a particle moving along a Plane curve $r=f(0)$ is :
(1) $\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2}$
(2) $\ddot{r}-r \theta^{2}$
(3) Both (1) \& (2)
(4) None of these
31. When a particle is moving with uniform speed u, then resultant acceleration of the particle is :
(1) Tangential acceleration only
(2) Normal acceleration only
(3) Zero
(4) None of these
32. Every planet revolves around the sum in an elliptical orbit. The sun is situated at one foci of the ellipse. This is the statement of :
(1) Kepler's First law
(2) Kepler's Second law
(3) Kepler's Third law
(4) Newton's law of motion
33. It is given that $T^{2} \alpha(2 a)^{3}$; where T is the time of one revolution along the orbit and (a) be the length of semi major axis of ellipse, given expression verifies :
(1) Kepler's First law
(2) Kepler's Second law
(3) Kepler's Third law
(4) None of these

60580/(B)

34. A particle moves in a plane under a central force which varies inversely as square of the distance from the fixed point. The orbit is :
(1) $\frac{h}{p}=\frac{2 \mu}{r}+c$
(2) $\frac{h^{2}}{p^{3}}=\frac{2 \mu}{r}+c$
(3) $\frac{h^{2}}{p^{2}}=\frac{2 \mu}{r}+c$
(4) None of these
35. Differential equation of central orbit in polar form is :
(1) $\frac{d^{2} u}{d \theta^{2}}-u=\frac{F}{h^{2} u^{2}}$
(2) $\frac{d u}{d \theta}-u=\frac{F}{h^{2} u^{2}}$
(3) $\frac{d u}{d \theta}+u=\frac{F}{h^{2} u^{2}}$
(4) $\frac{d^{2} u}{d \theta^{2}}+u=\frac{F}{h^{2} u^{2}}$
36. The momentum of a body is numerically equal to the Kinetic energy of the body. Velocity of the body is :
(1) 1 unit
(2) 2 unit
(3) 3 unit
(4) None of these
37. Power of electrical appliances such as electric bulbs, electric heaters, fans, electric motors is expressed in :
(1) Watt
(2) One Joule/sec
(3) Foot poundal/sec
(4) All of these
38. The value of ' g ' on moon $\frac{1}{6}$ th of the value of ' g ' on the earth. A man can jump 1.5 m high on the earth. On moon he can jump up to a height of :
(1) 9 m
(2) 7.5 m
(3) 6 m
(4) 4.5 m
39. Car A has twice the mass of car B, but both have the same kinetic energy $\left(K . E .=\frac{1}{2} m v^{2}\right)$. How do their speeds compare ?
(1) $2 v_{1}=v_{2}$
(2) $\sqrt{2} v_{1}=v_{2}$
(3) $2 \sqrt{2} \quad v_{1}=v_{2}$
(4) $v_{1}=v_{2}$
40. A stone released with zero velocity from the top of a tower reaches the ground in 4 seconds. The height of the tower is about : [Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$]
(1) 80 m
(2) 80 mm
(3) 80 cm
(4) None of these
41. A particle is initially at $(1,0,0)$ and moves finally to the point $(0,1,0)$. The displacement vector of the particle is :
(1) $\hat{j}-\hat{i}$
(2) $\hat{i}-\hat{j}$
(3) \hat{i}
(4) $-\hat{j}$
42. If a particle completes three round, the displacement is :
(1) Non Zero
(2) Zero
(3) Negative
(4) None of these
43. If x denotes displacement in time t and $x=a \cos t$, then acceleration is :
(1).$a \cos t$
(2) $-a \sin t$
(3) $-a \cos t$
(4) None of these
44. Angular acceleration is measured in :
(1) radian/sec
(2) radian $/ \sec ^{2}$
(3) radian per second per second
(4) Both (2) and (3)
45. A particle moving along x-direction has, at any instant, its x co-ordinate is given by $x=a-b t-c t^{2}$, then acceleration :
(1) depends on t
(2) is constant
(3) independent of ' t '
(4) both (2) \& (3)
46. Two objects A and B are moving along the directions as shown in figure. Find the magnitude of relative velocity of B with respect to A :

A

B
(1) $-10 \mathrm{~m} / \mathrm{s}$
(2) $10 \mathrm{~m} / \mathrm{s}$
(3) $-30 \mathrm{~m} / \mathrm{s}$
(4) $-20 \mathrm{~m} / \mathrm{s}$
47. What is the angle made by vector $\hat{a}=\hat{i}+\hat{j}$ with x-axis ?
(1) 0°
(2) 30°
(3) 45°
(4) 90°
48. When a horse pulls a cart, the force that helps the horse to move forward is the force exerted by :
(1) The cart on the horse
(2) The ground on the horse
(3) The ground on the cart
(4) The horse on the ground
49. For a particle moving along a straight line, the curvature of straight line is :
(1) Finite
(2) Infinite
(3) Zero
(4) None of these
50. Law of Inertia is also called the :
(1) Newton's First law of motion
(2) Newton's Second law of motion
(3) Newton's Third law of motion
(4) None of these
51. Absolute unit of force in C.G.S. system is :
(1) Newton
(2) Dyne
(3) Poundal
(4) None of these
52. Velocity in terms of its tangential and normal components (through vector approach) is :
(1) $\frac{d s}{d t} \hat{t}+0 \hat{x}$
(2) $\frac{d v}{d t} \hat{t}+\frac{v^{2}}{\rho} \hat{x}$
(3) $\frac{d^{2} s}{d t^{2}} \hat{t}+\frac{v^{2}}{\rho} \hat{x}$
(4) None of these
53. A football is picked into air vertically upwards. What is its velocity and acceleration at the highest point?
(1) Zero, g
(2) Zero, - g
(3) Given information is insufficient
(4) None of these
54. Focus of the trajectory of a projectile motion is :
(1) $\left(\frac{u^{2} \sin 2 \alpha}{2 g}, \frac{u^{2} \sin ^{2} \alpha}{2 g}\right)$
(2) $\left(\frac{u^{2} \sin 2 \alpha}{2 g}, \frac{u^{2} \cos ^{2} \alpha}{2 g}\right)$
(3) $\left(\frac{u^{2} \sin 2 \alpha}{2 g}, \frac{-u^{2} \cos 2 \alpha}{2 g}\right)$
(4) None of these
55. Least velocity of projection for a particle to hit a given point (h, k) is given by :
(1) $u^{2}=g\left[k+\sqrt{h^{2}+k^{2}}\right]$
(2) $u^{2}>g\left[k+\sqrt{h^{2}+k^{2}}\right]$
(3) $u^{2}<g\left[k+\sqrt{h^{2}+k^{2}}\right]$
(4) None of these
56. The differential eq. of central orbit in polar form is $\frac{d^{2} u}{d \theta^{2}}+u=\frac{F}{h^{2} u^{2}}$; where $u=\frac{1}{r}$; using given differential eq., the law of force (F) for the differential equation $\frac{d^{2} u}{d \theta^{2}}+u=5 a^{8} u^{9}$ is :
(1) $F \propto \frac{1}{r^{11}}$
(2) $F \alpha r^{11}$
(3) $F=\frac{1}{r^{21}}$
(4) None of these
57. The law of force for the differential equation $\frac{d^{2} u}{d \theta^{2}}+u=8 a^{2} u^{3}$, is :
(1) Force varies inversely as the 5 th power of the distance from the pole.
(2) Force varies directly as the 5th power of the distance from the pole.
(3) Force is 9th power of the distance from the pole
(4) None of these

C
8. Gravitational force which acts on 1 kg is :
(1) 980 N
(2) $\frac{1}{9.8} \mathrm{~N}$
(3) 9.8 N
(4) None of these
9. Using Kepler's third law of periods (i.e. $T^{2} \alpha r^{3}$), the ratio of time period, where the distance of two planets from the sun are $10^{14} \mathrm{~m}$ and $10^{12} \mathrm{~m}$, is :
(1) $3: 1$
(2) $1: 3$
(3) $1000: 1$
(4) None of these
10. 1 hp is equal to :
(1) 7.46 kw
(2) 74.6 kw
(3) 0.746 kw
(4) 746 kw
11. In tug of war (To pull a rope by two opponent teams), work done by winning team is :
(1) Zero
(2) Positive
(3) Negative
(4) None of these
12. Two bodies A and B of mass M and $2 M$ respectively, having same momentum, Then the ratio of velocity $\left(V_{A}: V_{B}\right)$ is :
(1) $1: 2$
(2) $2: 1$
(3) $1: 1$
(4) $3: 2$
13. The combined effect of mass and velocity is taken into account by a physical quantity called :
(1) Torque
(2) Moment of force
(3) Momentum
(4) All of these
14. The horizontal range of a particle is two times of its greatest height. The angle of projection (α) is :
(1) $\alpha=\tan ^{-1}(1)$
(2) $\alpha=\tan ^{-1}(2)$
(3) $\alpha=\tan ^{-1}$ (3)
(4) None of these
15. A stone is rotated in a circle with a string. The string suddenly breaks. In which direction will the stone move?
(1) The stone will move along the radius towards the centre
(2) The stone will move along the radius away from the centre
(3) The stone will move along the tangent to the circular path
(4) The stone will move continuously on circular path
16. A force acting on an object :
(1) Can change direction and magnitude of its velocity
(2) Must change magnitude of its velocity
(3) Must change direction of its velocity
(4) None of these
17.

Figure

Find the horizontal and vertical component of force respectively in given figure :
(1) $5 \sqrt{3} \hat{i},-5 \hat{j}$
(2) $-5 \sqrt{3} \hat{i}, 5 \hat{j}$
(3) $5 \sqrt{3} \hat{i}, 5 \hat{j}$
(4) $-5 \sqrt{3} \hat{i},-5 \hat{j}$

60580/(C)

18. Javelin is thrown at an angle θ with the horizontal and the range is maximum. The value of $\tan \theta$ is :
(1) $\sqrt{3}$
(2) $\frac{1}{\sqrt{3}}$
(3) 1
(4) 45
19. When a body is stationary :
(1) There is no force acting on it
(2) The forces acting on it are not in contact with it
(3) The combination of forces acting on it balance each other
(4) The body is in vacuum
20. Radial component of acceleration of a particle moving along a Plane curve $r=f(0)$ is :
(1) $\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2}$
(2) $\ddot{r}-r \theta^{2}$
(3) Both (1) \& (2)
(4) None of these
21. When a particle is moving with uniform speed u, then resultant acceleration of the particle is :
(1) Tangential acceleration only
(2) Normal acceleration only
(3) Zero
(4) None of these
22. Every planet revolves around the sum in an elliptical orbit. The sun is situated at one foci of the ellipse. This is the statement of :
(1) Kepler's First law
(2) Kepler's Second law
(3) Kepler's Third law
(4) Newton's law of motion
23. It is given that $T^{2} \alpha(2 a)^{3}$; where T is the time of one revolution along the orbit and (a) be the length of semi major axis of ellipse, given expression verifies :
(1) Kepler's First law
(2) Kepler's Second law
(3) Kepler's Third law
(4) None of these
24. A particle moves in a plane under a central force which varies inversely as square of the distance from the fixed point. The orbit is :
(1) $\frac{h}{p}=\frac{2 \mu}{r}+c$
(2) $\frac{h^{2}}{p^{3}}=\frac{2 \mu}{r}+c$
(3) $\frac{h^{2}}{p^{2}}=\frac{2 \mu}{r}+c$
(4) None of these
25. Differential equation of central orbit in polar form is :
(1) $\frac{d^{2} u}{d \theta^{2}}-u=\frac{F}{h^{2} u^{2}}$
(2) $\frac{d u}{d \theta}-u=\frac{F}{h^{2} u^{2}}$
(3) $\frac{d u}{d \theta}+u=\frac{F}{h^{2} u^{2}}$
(4) $\frac{d^{2} u}{d \theta^{2}}+u=\frac{F}{h^{2} u^{2}}$
26. The momentum of a body is numerically equal to the Kinetic energy of the body. Velocity of the body is :
(1) 1 unit
(2) 2 unit
(3) 3 unit
(4) None of these
27. Power of electrical appliances such as electric bulbs, electric heaters, fans, electric motors is expressed in :
(1) Watt
(2) One Joule/sec
(3) Foot poundal/sec
(4) All of these
28. The value of ' g ' on moon $\frac{1}{6}$ th of the value of ' g ' on the earth. A man can jump 1.5 m high on the earth. On moon he can jump up to a height of :
(1) 9 m
(2) 7.5 m
(3) 6 m
(4) 4.5 m
29. Car A has twice the mass of car B, but both have the same kinetic energy $\left(K . E .=\frac{1}{2} m v^{2}\right)$. How do their speeds compare ?
(1) $2 v_{1}=v_{2}$
(2) $\sqrt{2} v_{1}=v_{2}$
(3) $2 \sqrt{2} \quad v_{1}=v_{2}$
(4) $v_{1}=v_{2}$
30. A stone released with zero velocity from the top of a tower reaches the ground in 4 seconds. The height of the tower is about : [Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$]
(1) 80 m
(2) 80 mm
(3) 80 cm
(4) None of these
31. A particle is initially at $(1,0,0)$ and moves finally to the point $(0,1,0)$. The displacement vector of the particle is :
(1) $\hat{j}-\hat{i}$
(2) $\hat{i}-\hat{j}$
(3) \hat{i}
(4) $-\hat{j}$
32. If a particle completes three round, the displacement is :
(1) Non Zero
(2) Zero
(3) Negative
(4) None of these
33. If x denotes displacement in time t and $x=a \cos t$, then acceleration is :
(1).$a \cos t$
(2) $-a \sin t$
(3) $-a \cos t$
(4) None of these
34. Angular acceleration is measured in :
(1) radian $/ \mathrm{sec}$
(2) radian $/ \sec ^{2}$
(3) radian per second per second
(4) Both (2) and (3)
35. A particle moving along x-direction has, at any instant, its x co-ordinate is given by $x=a-b t-c t^{2}$, then acceleration :
(1) depends on t
(2) is constant
(3) independent of ' t '
(4) both (2) \& (3)
36. Two objects A and B are moving along the directions as shown in figure. Find the magnitude of relative velocity of B with respect to A :

A

(1) $-10 \mathrm{~m} / \mathrm{s}$
(2) $10 \mathrm{~m} / \mathrm{s}$
(3) $-30 \mathrm{~m} / \mathrm{s}$
(4) $-20 \mathrm{~m} / \mathrm{s}$
37. What is the angle made by vector $\hat{a}=\hat{i}+\hat{j}$ with x-axis ?
(1) 0°
(2) 30°
(3) 45°
(4) 90°
38. When a horse pulls a cart, the force that helps the horse to move forward is the force exerted by :
(1) The cart on the horse
(2) The ground on the horse
(3) The ground on the cart
(4) The horse on the ground
39. For a particle moving along a straight line, the curvature of straight line is :
(1) Finite
(2) Infinite
(3) Zero
(4) None of these
40. Law of Inertia is also called the :
(1) Newton's First law of motion
(2) Newton's Second law of motion
(3) Newton's Third law of motion
(4) None of these
41. The law which gives measure of force is :
(1) Newton's First law
(2) Newton's Second law
(3) Newton's Third law
(4) None of these
42. The combined effect of mass and velocity is taken into account by a physical quantity called :
(1) Torque
(2) Moment of a force
(3) Momentum
(4) All of these
43. In case of negative work, the angle between force and displacement is :
(1) 45°
(2) 0°
(3) 90°
(4) 180°
44. Weight of 10 kg of mangoes is :
(1) 98 N
(2) 9.8 N
(3) 10 kg
(4) None of these

C
45. Mass of 10 N of mangoes is :
(1) 100 kg
(2) Approximately 1 kg
(3) 10 kg
(4) None of these
46. During the parabolic path of a football, the point at which the acceleration is perpendicular to the velocity :
(1) At the highest point
(2) At the point where football is thrown
(3) At the point where football returns to the point of projection
(4) None of these
47. The velocity of a projectile is $10 \mathrm{~m} / \mathrm{s}$. At what angle to the horizontal should be projected so that it covers maximum horizontal distance?
(1) 60°
(2) 45°
(3) 90°
(4) None of these
48. The equation of trajectory of a projectile motion is $y=\frac{x}{\sqrt{3}}-\frac{g x^{2}}{2}$; the angle of
projection of the projectile is: projection of the projectile is :
(1) 60°
(2) 30°
(3) 45°
(4) None of these
49. The angle between force and displacement for maximum work is :
(1) 90°
(2) 180°
(3) 120°
(4) 0°
50. The factor which converts $\mathrm{km} /$ hour into meter/sec is :
(1) $\frac{5}{18}$
(2) $\frac{18}{5}$
(3) $\frac{22}{15}$
(4) None of these

1. In tug of war (To pull a rope by two opponent teams), work done by winning team is :
(1) Zero
(2) Positive
(3) Negative
(4) None of these
2. Two bodies A and B of mass M and 2 M respectively, having same momentum, Then the ratio of velocity $\left(V_{A}: V_{B}\right)$ is :
(1) $1: 2$
(2) $2: 1$
(3) $1: 1$
(4) $3: 2$
3. The combined effect of mass and velocity is taken into account by a physical quantity called :
(1) Torque
(2) Moment of force
(3) Momentum
(4) All of these
4. The horizontal range of a particle is two times of its greatest height. The angle of projection (α) is :
(1) $\alpha=\tan ^{-1}(1)$
(2) $\alpha=\tan ^{-1}(2)$
(3) $\alpha=\tan ^{-1}$ (3)
(4) None of these
5. A stone is rotated in a circle with a string. The string suddenly breaks. In which direction will the stone move?
(1) The stone will move along the radius towards the centre
(2) The stone will move along the radius away from the centre
(3) The stone will move along the tangent to the circular path
(4) The stone will move continuously on circular path
6. A force acting on an object :
(1) Can change direction and magnitude of its velocity
(2) Must change magnitude of its velocity
(3) Must change direction of its velocity
(4) None of these
7.

Figure
Find the horizontal and vertical component of force respectively in given figure :
(1) $5 \sqrt{3} \hat{i},-5 \hat{j}$
(2) $-5 \sqrt{3} \hat{i}, 5 \hat{j}$
(3) $5 \sqrt{3} \hat{i}, 5 \hat{j}$
(4) $-5 \sqrt{3} \hat{i},-5 \hat{j}$
8. Javelin is thrown at an angle θ with the horizontal and the range is maximum. The value of $\tan \theta$ is :
(1) $\sqrt{3}$
(2) $\frac{1}{\sqrt{3}}$
(3) 1
(4) 45
9. When a body is stationary :
(1) There is no force acting on it
(2) The forces acting on it are not in contact with it
(3) The combination of forces acting on it balance each other
(4) The body is in vacuum
10. Radial component of acceleration of a particle moving along a Plane curve $r=f(0)$ is :
(1) $\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2}$
(2) $\ddot{r}-r \theta^{2}$
(3) Both (1) \& (2)
(4) None of these
11. When a particle is moving with uniform speed u, then resultant acceleration of the particle is :
(1) Tangential acceleration only
(2) Normal acceleration only
(3) Zero
(4) None of these
12. Every planet revolves around the sum in an elliptical orbit. The sun is situated at one foci of the ellipse. This is the statement of :
(1) Kepler's First law
(2) Kepler's Second law
(3) Kepler's Third law
(4) Newton's law of motion
13. It is given that $T^{2} \alpha(2 a)^{3}$; where T is the time of one revolution along the orbit and (a) be the length of semi major axis of ellipse, given expression verifies :
(1) Kepler's First law
(2) Kepler's Second law
(3) Kepler's Third law
(4) None of these
14. A particle moves in a plane under a central force which varies inversely as square of the distance from the fixed point. The orbit is :
(1) $\frac{h}{p}=\frac{2 \mu}{r}+c$
(2) $\frac{h^{2}}{p^{3}}=\frac{2 \mu}{r}+c$
(3) $\frac{h^{2}}{p^{2}}=\frac{2 \mu}{r}+c$
(4) None of these
15. Differential equation of central orbit in polar form is :
(1) $\frac{d^{2} u}{d \theta^{2}}-u=\frac{F}{h^{2} u^{2}}$
(2) $\frac{d u}{d \theta}-u=\frac{F}{h^{2} u^{2}}$
(3) $\frac{d u}{d \theta}+u=\frac{F}{h^{2} u^{2}}$
(4) $\frac{d^{2} u}{d \theta^{2}}+u=\frac{F}{h^{2} u^{2}}$
16. The momentum of a body is numerically equal to the Kinetic energy of the body. Velocity of the body is :
(1) 1 unit
(2) 2 unit
(3) 3 unit
(4) None of these
17. Power of electrical appliances such as electric bulbs, electric heaters, fans, electric motors is expressed in :
(1) Watt
(2) One Joule/sec
(3) Foot poundal/sec
(4) All of these
18. The value of ' g ' on moon $\frac{1}{6}$ th of the value of ' g ' on the earth. A man can jump 1.5 m high on the earth. On moon he can jump up to a height of :
(1) 9 m
(2) 7.5 m
(3) 6 m
(4) 4.5 m
19. Car A has twice the mass of car B, but both have the same kinetic energy $\left(K . E .=\frac{1}{2} m v^{2}\right)$. How do their speeds compare ?
(1) $2 v_{1}=v_{2}$
(2) $\sqrt{2} v_{1}=v_{2}$
(3) $2 \sqrt{2} \quad v_{1}=v_{2}$
(4) $v_{1}=v_{2}$
20. A stone released with zero velocity from the top of a tower reaches the ground in 4 seconds. The height of the tower is about: [Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$]
(1) 80 m
(2) 80 mm
(3) 80 cm
(4) None of these
21. A particle is initially at $(1,0,0)$ and moves finally to the point $(0,1,0)$. The displacement vector of the particle is :
(1) $\hat{j}-\hat{i}$
(2) $\hat{i}-\hat{j}$
(3) \hat{i}
(4) $-\hat{j}$
22. If a particle completes three round, the displacement is :
(1) Non Zero
(2) Zero
(3) Negative
(4) None of these
23. If x denotes displacement in time t and $x=a \cos t$, then acceleration is :
(1).$a \cos t$
(2) $-a \sin t$
(3) $-a \cos t$
(4) None of these
24. Angular acceleration is measured in :
(1) radian/sec
(2) radian $/ \mathrm{sec}^{2}$
(3) radian per second per second
(4) Both (2) and (3)
25. A particle moving along x-direction has, at any instant, its x co-ordinate is given by $x=a-b t-c t^{2}$, then acceleration:
(1) depends on t
(2) is constant
(3) independent of ' t '
(4) both (2) \& (3)
26. Two objects A and B are moving along the directions as shown in figure. Find the magnitude of relative velocity of B with respect to A :

A

B
(1) $-10 \mathrm{~m} / \mathrm{s}$
(2) $10 \mathrm{~m} / \mathrm{s}$
(3) $-30 \mathrm{~m} / \mathrm{s}$
(4) $-20 \mathrm{~m} / \mathrm{s}$

D
27. What is the angle made by vector $\hat{a}=\hat{i}+\hat{j}$ with x-axis ?
(1) 0°
(2) 30°
(3) 45°
(4) 90°
28. When a horse pulls a cart, the force that helps the horse to move forward is the force exerted by :
(1) The cart on the horse
(2) The ground on the horse
(3) The ground on the cart
(4) The horse on the ground
29. For a particle moving along a straight line, the curvature of straight line is :
(1) Finite
(2) Infinite
(3) Zero
(4) None of these
30. Law of Inertia is also called the :
(1) Newton's First law of motion
(2) Newton's Second law of motion
(3) Newton's Third law of motion
(4) None of these
31. The law which gives measure of force is:
(1) Newton's First law
(2) Newton's Second law
(3) Newton's Third law
(4) None of these
32. The combined effect of mass and velocity is taken into account by a physical quantity called :
(1) Torque
(2) Moment of a force
(3) Momentum
(4) All of these
33. In case of negative work, the angle between force and displacement is :
(1) 45°
(2) 0°
(3) 90°
(4) 180°
34. Weight of 10 kg of mangoes is :
(1) 98 N
(2) 9.8 N
(3) 10 kg
(4) None of these
35. Mass of 10 N of mangoes is :
(1) 100 kg
(2) Approximately 1 kg
(3) 10 kg
(4) None of these
36. During the parabolic path of a football, the point at which the acceleration is perpendicular to the velocity :
(1) At the highest point
(2) At the point where football is thrown
(3) At the point where football returns to the point of projection
(4) None of these
37. The velocity of a projectile is $10 \mathrm{~m} / \mathrm{s}$. At what angle to the horizontal should be projected so that it covers maximum horizontal distance ?
(1) 60°
(2) 45°
(3) 90°
(4) None of these
38. The equation of trajectory of a projectile motion is $y=\frac{x}{\sqrt{3}}-\frac{g x^{2}}{2}$; the angle of
projection of the projectile is: projection of the projectile is :
(1) 60°
(2) 30°
(3) 45°
(4) None of these
39. The angle between force and displacement for maximum work is :
(1) 90°
(2) 180°
(3) 120°
(4) 0°
40. The factor which converts $\mathrm{km} /$ hour into meter/sec is :
(1) $\frac{5}{18}$
(2) $\frac{18}{5}$
(3) $\frac{22}{15}$
(4) None of these
41. Absolute unit of force in C.G.S. system is :
(1) Newton
(2) Dyne
(3) Poundal
(4) None of these
42. Velocity in terms of its tangential and normal components (through vector approach) is :
(1) $\frac{d s}{d t} \hat{t}+0 \hat{x}$
(2) $\frac{d v}{d t} \hat{t}+\frac{v^{2}}{\rho} \hat{x}$
(3) $\frac{d^{2} s}{d t^{2}} \hat{t}+\frac{v^{2}}{\rho} \hat{x}$
(4) None of these
43. A football is picked into air vertically upwards. What is its velocity and acceleration at the highest point?
(1) Zero, g
(2) Zero, -g
(3) Given information is insufficient
(4) None of these
44. Focus of the trajectory of a projectile motion is :
(1) $\left(\frac{u^{2} \sin 2 \alpha}{2 g}, \frac{u^{2} \sin ^{2} \alpha}{2 g}\right)$
(2) $\left(\frac{u^{2} \sin 2 \alpha}{2 g}, \frac{u^{2} \cos ^{2} \alpha}{2 g}\right)$
(3) $\left(\frac{u^{2} \sin 2 \alpha}{2 g}, \frac{-u^{2} \cos 2 \alpha}{2 g}\right)$
(4) None of these
45. Least velocity of projection for a particle to hit a given point (h, k) is given by :
(1) $u^{2}=g\left[k+\sqrt{h^{2}+k^{2}}\right]$
(2) $u^{2}>g\left[k+\sqrt{h^{2}+k^{2}}\right]$
(3) $u^{2}<g\left[k+\sqrt{h^{2}+k^{2}}\right]$
(4) None of these
46. The differential eq. of central orbit in polar form is $\frac{d^{2} u}{d \theta^{2}}+u=\frac{F}{h^{2} u^{2}}$; where $u=\frac{1}{r}$; using given differential eq., the law of force (F) for the differential equation $\frac{d^{2} u}{d \theta^{2}}+u=5 a^{8} u^{9}$ is :
(1) $F \propto \frac{1}{r^{11}}$
(2) $F \alpha r^{11}$
(3) $F=\frac{1}{r^{21}}$
(4) None of these
47. The law of force for the differential equation $\frac{d^{2} u}{d \theta^{2}}+u=8 a^{2} u^{3}$, is :
(1) Force varies inversely as the 5th power of the distance from the pole.
(2) Force varies directly as the 5th power of the distance from the pole.
(3) Force is 9 th power of the distance from the pole
(4) None of these
48. Gravitational force which acts on 1 kg is :
(1) 980 N
(2) $\frac{1}{9.8} \mathrm{~N}$
(3) 9.8 N
(4) None of these
49. Using Kepler's third law of periods (i.e. $T^{2} \alpha r^{3}$), the ratio of time period, where the distance of two planets from the sun are $10^{14} \mathrm{~m}$ and $10^{12} \mathrm{~m}$, is :
(1) $3: 1$
(2) $1: 3$
(3) $1000: 1$
(4) None of these
50. 1 hp is equal to :
(1) 7.46 kw
(2) 74.6 kw
(3) 0.746 kw
(4) 746 kw

Requed
60580:Code-A
Subject Dyhan-ics

ANSWER-KEY

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|l|}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline 1 & 2 & 3 & 4 & 4 & 2 & 3 & 2 & 3 \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|}
11 & 12 & 13 & 14 & 15 & 10 & 17 & 18 & 19 & 20 \\
\hline 2 & 3 & 4 & 4 & 2 & 1 & 2 & 2 & 4 & \square \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 27 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
\hline 2 & 1 & 2 & 3 & 1 & 1 & 1 & 3 & 3 & 3 \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 \\
\hline 2 & 2 & 3 & 2 & 3 & 1 & 1 & 3 & 3 & 3 \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 47 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50 \\
\hline 2 & 1 & 3 & 3 & 4 & 2 & 4 & 4 & \square & 1 \\
\hline
\end{array}
\end{aligned}
$$

Prepeancl on the boin of Pispatyre of she Papersonter) prefand by the Eaciner

Reinned
60580 Code-B
Subject Dynaning
ANSWER-KEY

 \begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 27 \& 22 \& 23 \& 24 \& 25 \& 26 \& 27 \& 28 \& 29

\hline 2 \& 2 \& 3 \& 2 \& 3 \& 3 \& \square \& 3 \& 3

\hline \& 3 \& 3

\hline

31 \& 32 \& 33 \& 34 \& 35 \& 30 \& 37 \& 38 \& 39 \& 40

2 \& 1 \& 3 \& 3 \& 4 \& 2 \& 4 \& 1 \& 2 \& 1

\hline

\hline 47 \& 42 \& 43 \& 44 \& 45 \& 46 \& 47 \& 48 \& 49 \& 50

\hline 1 \& 2 \& 3 \& 4 \& 4 \& 2 \& 3 \& 2 \& 3 \& 4

\hline
\end{tabular}

60580 Code - C
Subject \qquad Dy_hanics

ANSWER -KEY

1	2	3	4	5	6	7	8	9	10
2	1	2	3	1	1	1	3	3	3
11	12	13	14	15	16	17	18	19	20
2	2	3	2	3	1	1	3	3	3
24	22	23	24	25	26	27	28	29	30
2	1	3	3	4	2	4	1	2	\square
31	32	33	34	35	36	37	38	39	40
1	2	3	4	4	2	3	2	3	1
4	42	43	44	45	46	47	48	49	50
2	3	4	1	2	1	2	2	4	1

(Signature of thea Paper salter)

$$
+751 w_{20}
$$

$$
\min 2 \sin \mid 12^{\circ}
$$

60580 Cade-D
Subject \qquad Dynamics

ANSWER-KEY

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 11 & 12 & 13 & 14 & 15 & 18 & 17 & 18 & 19 \\
\hline 2 & 1 & 3 & 3 & 4 & 20 & 4 & 1 & 2 \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|}
22 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 \\
\hline 1 & 2 & 3 & 4 & 4 & 4 & 2 & 3 & 2 \\
\hline & 3 & 1 . \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 31 & 32 & 33 & 34 & 35 & 38 & 37 & 38 & 39 & 40 \\
\hline 2 & 3 & 4 & 1 & 2 & 1 & 2 & 2 & 4 & 1 \\
\hline & 1 & & \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l:l|l|l|l|l|}
\hline 44 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50 \\
2 & 1 & 2 & 3 & 1 & 1 & 1 & 3 & 3 & 3 \\
\hline
\end{array}
\end{aligned}
$$

(Slangture of the Pazersonter)

$$
p_{i}=\pi s=0
$$

