Total No. of Printed Pages: 13

(Signature of the Invigilator)

(NOT TO BE OPENED BEFORE TIME OR TILL ASKED TO DO SO)

PHDURS-EE-2013

SUBJECT: Botany

C		10043 Sr. No.
Time: 11/4 Hours	Max. Marks: 100	Total Questions: 100
Candidate's Name	Date	e of Birth
Father's Name	Mother's Name _	
Roll No. (in figures)	(in words)	
Date of Examination		

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory and carry equal marks.
- 2. All the candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means/misbehaviour will be registered against him/her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. In case there is any discrepancy in any question(s) in the Question Booklet, the same may be brought to the notice of the Controller of Examinations in writing within two hours after the test is over. No such complaint(s) will be entertained thereafter.
- 4. The candidate *must not* do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers **Should Not** be ticked in the question booklet.
- 5. Use black or blue ball point pen only in the OMR Answer-Sheet.
- 6. For each correct answer, the candidate will get full credit. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer. There will be No Negative marking.
- 7. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

PHDURS-EE-2013/Botany/(C)

(Signature of the Candidate)

· c

		*		787
	1.	The closing and opening of the leaves of	Mir	nosa pudica is due to :
		(1) Seismonastic movement	(2)	Chemonastic movement
		(3) Thermonastic movement	(4)	Hydrotropic movement
	2.	Plant deficient in element Zinc shows i	ts e	effect on the biosynthesis of which plant
		growth hormone:		, ·
		(1) Auxin (2) Cytokinin	(3)	Ethylene (4) Abscissic acid
	3.	Nitrifying bacteria :		2 88
		(1) reduces nitrates to free nitrogen		
		(2) oxidizes ammonia to nitrates		
		(3) convert free nitrogen to nitrogen com	npo	unds
		(4) convert protein into ammonia		. II
	4.	First stable product of nitrogen fixation is	s:	
		(1) NO_3^- (2) NH_3	(3)	NO ₂ (4) Glutamic acid
	5.	During stomatal opening (photoactive) w	vhic	ch does not occur?
				Hydrolysis of starch in guard cells
				Dissociation of malic acid in guard cells
	6.	Which conditions favours 'Guttation'?		
	0.	220 DE 12 1	(2)	High transpiration
			(4)	Both (1) and (3)
	7.			
	/.	Chlorosis is caused due to deficiency of: (1) Mg (2) Ca	(3)	B (4) Mn
	_		(3)	D (4) WIII
	8.	Allele is the:		
		(1) alternate trait of gene pair		
		(2) total number of genes for a trait	4	_ # ⁸
		(3) total number of chromosomes of a ha	-	
		(4) total number of genes present on a cl		
	9.	Genes for cytoplasmic male sterility in pl	lant	80.5
		179	(2)	
יים	ייכו		(4)	Mitochondrial genome
rH	טע	JRS-EE-2013/Botany/(C)		P. T. O.

PHDURS-EE-2013/Botany/(C)

	21 21	1997 - 19
10.	In <i>Drosophila</i> a set of homeiotic genes will differentiation is known as:	hich controls body plan at the time of organ
	(1) TATA box (2) Homeobox	(3) Pribnow box (4) All of the above
11.	a. are steroid growth promoters	
	b. synthesized by short day plants onlyc. similar in function to ABA	
	d. chemically similar to ecdysone hormo	one
	regarding to their constraints. The regarding of the regarding to the constraints.	(3) (a) and (b) (4) (a) and (c)
12.	What is common between leaf abscission	and fruit ripening?
	(1) both involve cell swelling	200
	(2) both are induced by ethylene	
	(3) both involve dissolution of cell wall b	by cellulases
	(4) both are inhibited by auxins	
13.	The movement of auxin is largely:	
	(1) Centripetal	(2) Basipetal
	(3) Acropetal	(4) Both (1) and (3)
14.	NADH ₂ generated in glycolysis produce the absence of oxygen, this NADH ₂ funct	es ATP in ETS in the presence of oxygen. In ions as :
	(1) Oxidising agent	(2) Phosphorylating agent
	(3) Reducing agent	(4) Carboxylating agent
15.	During which stage of complete oxidat molecules are formed from ADP?	ion of glucose, the greatest number of ATP
	(1) Glycolysis	
	(2) Krebs cycle	
	(3) Conversion of pyruvic acid to acetyle	e CoA
	(4) Electron transport chain	
16.	A competitive inhibitor of succinic dehyc	drogenase is:
	(1) α-ketoglutarate	(2) Malate
	(3) Malonate	(4) Oxaloacetate
	8	*

			_ v
	17.	. DCMU, a herbicide kills the plant by :	
		(1) inhibiting photolysis of water as it is a stro	ong inhibitor of photo system II
		(2) inhibiting CO ₂ function as it is strong inhi	bitor of photo system II
		(3) checking respiration	
		(4) destroying chloroplast	- J. J. +
	18.	Nitrogen fixation in the roots nodules of Alnus	s is brought about by
			Bradyrhizobium (4) Clostridium
	19.		90 900 V - 1
	13.	(1) Fibre crops (2) Oil seed crops (3) P	
	20.		
		SECRET CONTROL	Stratification
			All of the above
	21.		nnect:
		(1) nuclear lamina to cytoplasmic kinases	
		(2) extracellular matrix to cytoskeleton(3) focal adhesion to hemidesmosomes	*
		(4) microtubule to actin filaments	
	22.	. Apospory is the development of gametophytic	c plant body from :
	emanna E		Synergids
			Microspores
	23.	Which of the following specialized tissue is kr	nown as integumentary tapetum?
		<u> </u>	Endothecium
		(3) Middle layer (4) E	Epidermis
	24.	Which one of the following is <i>correct</i> match:	
			Heterostyly – Primula
		(3) Exothecium – Hibiscus (4) A	Anemophily – Adansonia
	25.	An ovule which becomes curved as a result not to the funicle is:	ucellus and embryo sac lie at right angle
		(1) Hemitropous (2) C	Campylotropous
		1	Orthotropous
P	HDU	URS-EE-2013/Botany/(C)	P. T. O.

26.	the developing microspore in the anthe	
	(1) Glandular tapetum	(2) Secretory tapetum
	(3) Amoeboid tapetum	(4) All of the above
27.	Which one of the following protein is <i>n</i> electron transport chain?	ot a transmembrane protein in photosyntheti
	(1) LHC (2) PS II	(3) Ferrodoxin (4) ATP synthase
28.	The experimental material that Van Nie was:	el used to show that oxygen comes from wate
	(1) Chlorella pyrenoidosa	(2) Scendesmus
	(3) Blue green algae	(4) Chromatium Vinosum
29.	Discovery of Emerson effect showed the	e existence of :
	(1) Photorespiration	
	(2) Light and dark reaction in photosyn	nthesis
	(3) Photophosphorylation	n * 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	(4) Two distinct pigment system	
30.	In CAM plants, CO ₂ acceptor in the nig	ht is:
	(1) RUBP (2) OAA	(3) PGA (4) PEP
31.	Connecting link between respiration (T	CA cycle) and protein synthesis is :
	(1) Citric acid	(2) α ketoglutaric acid
	(3) Succinic acid	(4) Fumaric acid
32.	Protein helping in opening of DNA dou	able helix in form of replication fork is:
	(1) DNA gyrase	(2) DNA polymerase I
	(3) DNA ligase	(4) DNA topoisomerase
33.	A decrease in photosynthetic rate with	increased availability of oxygen is called :
	(1) Warbing effect	(2) Richmond Lang effect
	(3) Blackman's law of limiting factors	(4) Emerson's enhancement effects
34.	The plant part which consists of two ge	nerations one within the other is:
	(1) Embryo	(2) Germinating pollen grain
	(3) Unfertilized ovule	(4) Seed
PHDU	RS-EE-2013/Botany/(C)	

35.	Plasmodesmata connection (1) Cytoplasmic streaming (2) Synchronous mitotic di (3) Locamotion of unicellul	ivision		
	(3) Locomotion of unicellul(4) Movement of substance			
36.	Which of the following bi cells to propogate intracells	iochemical reactio	ons is most commor	nly utilized by living
	(1) acylation	(2)	phosphorylation	
	(3) methylation	(4)	decarboxylation	
37.	Ribozymes: (1) are any ribonucleoprot (2) are enzymes whose cat (3) require a protein factor (4) All of the above	talytic function res		ts
38.	CAMP is a: (1) second messanger (3) proton pump		precursor for DNA first messanger	synthesis
39.	Intracellular receptors: (1) usually binds hydroph (2) may be located in the c (3) when bound to their lig (4) All of the above	cytosolor nucleus		
40.	The P21 and P15 proteins a	are example of :		
	(1) cdk inhibitors (2) cy	10.00	oncogenes (4)	growth factors
41.	How many microfibrils con (1) 50 (2) 10			250
42.	The parallel layering of me (1) Maximum light absorp (2) Maximum exposure of (3) Minimum light absorp (4) All of the above	ption f enzymes	**************************************	mperature
PHDU	RS-EE-2013/Botany/(C)			P. T. O

43.	 Eukaryotic cells have a well organised rea. Both 70s and 80s ribosomes 9 + 2 organization of flagella show cytoplasmic streaming DNA is complexed with histones to All are correct Only (c) and (d) are correct 	
44.	Which of the following is <i>not</i> considere	d as a part of endomembrane system?
	(1) Vacuole	(2) Lysosome
	(3) Golgi complex	(4) Peroxisome
45.	Important site for formation of glycopro	okins and glycolipids is :
	(1) Lysosome	(2) Vacuole
	(3) Golgi apparatus	(4) Plastid
46.	In Eubacteria, a cellular component the	t resembles eukaryotic cell is :
1 100 BOSO	(1) Cell wall	(2) Plasma membrane
	(3) Nucleus	(4) Ribosomes
47.	Synaptonemal complex was discovered	l in :
	(1) 1956 (2) 1950	(3) 1935 (4) 1980
48.	How many electrons, protons and pho- one molecule of oxygen?	tons are involved in the lysis of water to evolve
	(1) 4 e ⁻ , 4 H ⁺ and 4 photons	(2) 4 e ⁻ , 4 H ⁺ and 8 photons
	(3) 2 e ⁻ , 2 H ⁺ and 8 photons	(4) 2 e ⁻ , 2 H ⁺ and 4 photons
49.	Which of the given enzymes of glycoly a regulatory role?	sis catalyzes and irreversible reaction and have
	(1) Hexokinase (2) Aldolase	(3) Isomerase (4) Mutase
50.	Plant requires magnesium for:	
	(1) Protein synthesis	(2) Chlorophyll synthesis
	(3) Cell wall development	(4) Holding cells together
51.	The high solubility of amino acids in w	vater is due to :
	(1) presence of side chain	(2) dipolar ion structure
	(3) unipolarity	(4) hydrophilic nature of amino groups
PHDI	URS-EE-2013/Botany/(C)	

52.	Which is the most common approach globular proteins?	to	determine the precise 3-D structure of
	(1) Circular dichroism	(2)	Mass spectroscopy
	(3) Infrared spectroscopy	(4)	X-ray diffraction
53.	Which of the following contributes nit rings?	roge	en atoms to both purine and pyrimidine
	(1) Aspartate(3) Carbon dioxide		Carbamoyl phosphate Glutamine
54.	If a solution of double stranded DNA absorbance will:	is l	neated above its melting temperature, its
	(1) decrease	(2)	increase
	(3) remain unchanged	(4)	initially increase and then decrease
55.	N-Glyosyl linkage joins 1st carbon of pe	entos	se sugar with :
	(1) N-9 of pyrimidine	(2)	N-9 of purine
	(3) N-3 of pyrimidine	(4)	N-3 of purine
56.	Which of the following enzyme is correctly hexokinase – ATP (2) phosphofructokinase – glucose-6-p. (3) pyruvate kinase – alanine (4) glucokinase – fructose 2, 6 biphosp	hosp	ohate
57.	Which one of the following is <i>not true</i> a	abou	it monosaccharides? They are:
	(1) colourless		soluble in water
	(3) sweet in taste	(4)	soluble in non-polar solvent
58.	All of the following statement about the (1) fatty acid is essential component of (2) fatty acid are stored as triacylglyce (3) fatty acid acts as intracellular second (4) fatty acids mainly contain odd nur	f pla rols nd n	in body nessanger
59.	 the active site of enzymes sites other than the active site enzyme substrate complex 		
pHI	(4) any other site and modifies part of URS-EE-2013/Botany/(C)	all	P. T. O.
TIID	ONO LL ZOID DOMINY (C)		

60.	Which one of the following vitamins doe	LESTE SERVICE AND TRACE SERVICE AND SERVICE
	(1) Biotin (2) Thiamine	(3) Folic acid (4) Ascorbic acid
61.	The unusual property of Taq polymeras	
	(1) ability to use dNTPs as substrate	(2) ability to use ddNTPs as substrate
	(3) thermostability	(4) ability to use RNAs as template
62.		agnification than a light microscope because :
	(1) electrons have more energy than lig	
	(2) velocity of electrons is less than that	
	(3) wavelength of electrons used is sma(4) electron microscope uses more pow	
63.	Which of the following technique is rele	(2) DNA Microarray
	(1) yeast two hybrid analysis(3) SAGE	(4) All of the above
64		(2)
64.	RFLP analysis is a technique that:	DNA restriction fragments in genomic DNA
	(2) used to determine the transcription	
	(3) measures the transfer frequency of	
	(4) used to amplify genes for producin	g useful products
65.	Dendogram in numerical taxonomy rep	presents:
	(1) Phenetic similarities	(2) Phyogenetic similarities
	(3) Evolutionary similarities	(4) No smilarity
66.		
	(1) Southern blotting(3) Microarray	(2) Northern blotting(4) RT-PCR
07		
67.	unknown gene by hybridization is term	tagged with fluorescent tag used to identify ned as:
	(1) probe (2) reporter gene	The state of the s
68.	Silencing of mRNA has been used in p	roducing transgenic plants resistant to:
	(1) White rusts	(2) Bacterial blights
כוומ	(3) Bollworms	(4) Nematodes
THU	URS-EE-2013/Botany/(C)	

	69.	Which of the following is <i>not</i> correctly match?
		(1) Reporter Molecule – Acts as shuttle vector
		(2) Maxam Gilbert Method – Chemical modification of bases
		(3) Dideoxy terminators – Sanger Method
		(4) Biotin – Non-radioactive label
	70.	ELISA is used to detect viruses and they key reagent is:
		(1) Alkaline phosphatase (2) Catalase
		(3) DNA probe (4) RANase
	71.	Similarities in organisms with different genotype indicate:
		(1) Microevolution (2) Macroevolution
		(3) Convergent evolution (4) Divergent evolution
	72.	Prebiotic environment was different from present environment and was devoid of:
	-0.140-0.07	(1) CO_2 (2) atmosphere (3) O_2 (4) N_2
	72	
	73.	The beginning of plant cultivation is considered to have taken place in:
		(1) Neolithic age(2) Paleolithic age(3) Mesolithic age(4) None of these
	74.	Shotgun approach is used for the construction of:
		(1) cDNA library (2) Genomic library
		(3) Both (4) None
	75.	DNA finger printing process involves:
		(1) chain terminators (2) degenerate oligonucleotides
		(3) UNTR loci (4) RFLPs
	76.	A transgenic food crop that may help in solving the problem of night blindness in developing country is :
		(1) Golden rice (2) Flavr Savr tomatoes
		(3) Starlink Maize (4) Bt. soyabean
	77.	A genetically engineered micro-organism used in bioremediation of oil spills is a species of :
		(1) Trichoderma (2) Xanthomonas (3) Bacillus (4) Pseudomonas
P	HDU	RS-EE-2013/Botany/(C) P. T. O.

PHDURS-EE-2013/Botany/(C)

78.	What role do opines play in crown gall	diseases?	
	(1) transfer of T-DNA to plant cells		
	(2) source of carbon, nitrogen and ener	rgy for the Agrobacterium	
	(3) attachment of Agrobacterium to the p	plants	
	(4) induction of the expression of Vir g	genes	
79.	Which gene isolated from <i>Bacillus ti</i> population of corn borer?	thruingiensis is known to control the insec	ct
	(1) HLA-gene	(2) Cry I Ab-gene	
	(3) Cry I Ac-gene	(4) Cry II Ab-gene	
80.	Meristem culture is practised in horticu	ulture to get :	
	(1) Somaclonal variation	(2) Haploids	
	(3) Virus free plants	(4) Slow-growing callus	
81.	Which one of the following <i>correctly</i> re	epresents an organism and its ecological niche	?
	(1) Vallisenaria and pond		
	(2) Desert locust (<i>Schistocerca</i>) and deser	eert	
	(3) Plant lice (aphids) and leaf		
	(4) Vultures and dense forest		
82.	Which one of the following is <i>correct</i> national park?	tly matched for an endangered animal and	a
	(1) Great Indian Bustard – Keoladeo N	National Park	
	(2) Lion – Corbett National Park		
	(3) Rhinoceros – Kaziranga National Pa	Park	
	(4) Wild Ass – Dudhwa National Park	S	
83.	The zone of a lake lying below the light	t compensation depth is:	
	(1) Photic zone	(2) Profundal zone	
	(3) Disphotic zone	(4) Euphotic zone	
84.	The transitional zone where two differe	ent communities meet is called :	
	(1) Border (2) Ecotone	(3) Ecotype (4) Niche	
	AV 450 AV 450 AV 450 AV 450 AV		

PHDURS-EE-2013/Botany/(C)

P. T. O.

85.	Which are direct ecological factors which determine vegetation of an area?			
	(1) altitude, soil texture and wind(2) rain, soil and altitude			
	(3) soil, organisms, precipitation and altitude			
	(4) temperature, light, soil, air and humidity			
86.	36. Which of the following is most important for speciation?			
	(1) Seasonal isolation	(2) Reproductive is	solation	
	(3) Behavioural isolation	(4) Tropical isolation	on	
87.	The first step towards succession is:		y (ii)	
	(1) Ecesis (2) Migration	(3) Nudation	(4) Competition	
88.	Which one is linked to evolution?			
	(1) Extinction (2) Competition	(3) Variation	(4) Reproduction	
89.	Abiogenesis is the :			
	(1) origin of life from non-living mater	ial		
	(2) origin of life from living organism			
	(3) origin of viruses and microbes		*	
	(4) None			
90.	The phenomenon of genetic drift is mos	st likely to occur in po	opulations that are:	
	(1) small and inbred	(2) undergoing gen	ne flow	
	(3) allopatric	(4) large and pann	nictic	
91.	A tautomeric shift causing the substitut	tion of one purine for	a pyridine is called:	
	(1) transversion (2) translocation	(3) transition	(4) inversion	
92.	A common test to find the genotype of	a hybrid is :		
	(1) crossing of one F_1 progeny with fer	nale parent	E1 20	
	(2) studying the sexual behaviour of F	₁ progenies		
	(3) crossing of one F_1 progeny with ma	ale parent		
	(4) crossing of one F ₂ progeny with ma	ale parent		
93.	DNA elements that can switch their po	sition are called:		
	(1) Cistrons (2) Transposons	(3) Exons	(4) Introns	

94.	Retting of fibers is done by :			
	(1) Azotobacter (2) Clostridium	(3)	Rhizobium	(4) Pseudomonas
95.	Motile stages are <i>not</i> found in life cycle of :			
	(1) Red algae and green algae	(2)	(2) Red algae and brown algae	
	(3) Red algae and blue green algae	(4)) Green algae and brown algae	
96.	Bryophyte shows an advancement over,	, alg	ae in :	
	(1) having multicelluar sporophytic generation			
	2) having parasitic sporophyte			
	(3) having zygotic meiosis			
100	(4) None of the above		# 2	
97.	Cone bearing pteridophytes are :			
	(1) Lycopsida and Psilopsida	(2)	Filicinae and L	ycopsida
	(3) Filicinae and Sphenopsida	(4)	Lycopsida and	Sphenopsida
98.	Multiciliate male gametes are found in:			
	(1) Pinus (2) Cycas	(3)	Gnetum	(4) Mango
99.	A special modification of leaf of A photosynthetic is known as:	Acaco	cia in which p	petiole becomes flat and
	(1) Phylloclade (2) Cladode	(3)	Cladophyll	(4) Phyllode
100.	esence of staminode is characteristic feature of :			
	(1) Caesalpinoideae	salpinoideae (2) Mimosoideae		
	(3) Arecaceae	(4)	Euphorbiaceae	9.20

