for The Young of John ?

Total No. of Printed Pages: 13

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

PG-EE-2013

SUBJECT: Chemistry

C /		Sr. No
Time : 1¼ Hours Roll No. (in figures)	Max. Marks : 100 (in words)	Total Questions: 100
Name	Father's Name Date of Examination _	
(Signature of the Candidate)		(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory and carry equal marks.
- 2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means/misbehaviour will be registered against him/her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. In case there is any discrepancy in any question(s) in the Question Booklet, the same may be brought to the notice of the Controller of Examinations in writing within two hours after the test is over. No such complaint(s) will be entertained thereafter.
- 4. The candidate *must not* do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers Must Not be ticked in the question booklet.
- 5. Use only black or blue ball point pen of good quality in the OMR Answer-Sheet.
- 6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet, containing 100 questions (Sr. No. 1 to 100). Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

PG-EE-2013/Chemistry/(C)

1.	In Rutile structure, the coordination num	nbei	of Titanium ato	ms i	s:
	(1) Six (2) Four	(3)	Two	(4)	Eight
2.	Which of the following metal ion pairs h	nave	similar ionic rac	lii?	
	(1) Ti^{4+} and Zr^{4+}	(2)	V^{5+} and Nb^{5+}		
	(3) Cr^{3+} and Mn^{3+}	(4)	Zr^{4+} and Hf^{4+}		over some f
3.	Which of the following solid will behave	e as	p-type semicond	lucto	or?
	(1) NaCl (2) ZnS	(3)	FeS	(4)	AgCl
4.	Which metal has highest cohesion energ	y?			
	(1) Cobalt (2) Nickel	(3)	Copper	(4)	Zinc
5.	The aqueous solution of which metal ion	n wi	ll be colourless?		
	(1) Ti^{3+} (2) Cr^{3+}	(3)	Cu ⁺	(4)	Cu^{2+}
6.	Which of the following is a Lanthanide	elen	nent?		
	(1) Francium (2) Europium	(3)	Tungsten	(4)	Polonium
7.	In the reaction $HClO_4 + HF \rightleftharpoons H_2F^+ +$	ClO	the base is:		
	(1) HClO ₄ (2) HF	(3)	H_2F^+	(4)	ClO ₄
8.	Which of the following will behave as a	Lev	vis acid?		
	(1) NH_3 (2) NH_4^+	(3)	BF ₃	(4)	CH ₄
9.	If you titrate an aqueous solution of bor	ax v	vith HCl, indicate	or us	sed will be:
	(1) Phenolphthalein	(2)	Methyl orange		
	(3) Methyl red	(4)	Eriochrome bla	ck T	
0.	As per HSAB concept, the hardest acid	will	be:		and y
	(1) Fe^{3+} (2) Zn^{2+}	(3)	Ag^+	(4)	Hg ²⁺
1.	Which is a local anaesthetic?				10270000
	(1) Cocaine (2) Quinine	(3)	Morphine	(4)	None

12	. Which enhances the absorption of Vit	amin A ?	
	(1) Vit. K (2) Vit. C	(3) DMG (4) None	
13.	By which of the following reaction, ac	etophenone can be converted to phenol ?	
	(1) m-CPBA followed by base catalyz		
	(2) Conc. HNO ₃		
	(3) Iodine and NaOH		
	(4) Singlet oxygen followed by hydro	lysis	
14.	Diazomethane with acetylene gives:	Agent Comment of the American Beauty States	
	(1) Pyrazole (2) Pyrazoline	(3) Piperidine (4) Pyrimidine	
15.	Cinnamoyl alcohol with lead tetraaceta	ate gives :	
	(1) Cinnamic acid	(2) Cinnamoyl acetate	
	(3) Cinnamaldehyde	(4) Acetophenone	
16.	Betaine is an intermediate in :		
	(1) Wittig reaction	(2) Stobbe reaction	
	(3) Stephenson reduction	(4) MPV reduction	
17.	If the migrating group in Beckman rear	rrangement is chiral, then:	
	(1) Its configuration will change		
	(2) Its configuration will be retained		
	(3) Both		
	(4) None		
18.	Which reduces only the carbonyl grobond and ester functional groups?	up in the presence of nitro, carboxyl, dou	ıble
		(3) NaBH ₄ (4) H ₂ /Ni	
PG-EE	-2013/Chemistry/(C)		

19. Which is the correct decreasing substitution?	order of reactivity towards electrophilic aromatic
(1) Indole > Pyrrole > Pyridine	(2) Pyrrole > Pyridine > Indole
(3) Pyrrole > Indole > Pyridine	(4) Indole > Pyridine > Pyrrole
20. OH signal of alcohol appears at wh	at ppm range?
(1) 0.5 – 5.0 (2) 0.1 – 8.0	(3) 0.3 – 4.0 (4) 0.3 – 10.0
21. C = C frequency in Oct-4-ene appear	rs at:
(1) 1680-1600 cm ⁻¹ (very weak)	confolion confolion
(2) 1680-1600 cm ⁻¹ (strong)	with acety
(3) 1680-1600 cm ⁻¹ (m)	(2) 7
(4) No peak in this region of 1680-16	600 cm ⁻¹
22. I for C-13 is:	,
(1) 1 (2) 1/2	(3) 3/2 (4) 2
23. I for P-31 is:	alsibratures in a second second
(1) 1 (2) 1/2	(3) 3/2 (4) 3
24. What is the right order of coupling co	onstants?
(1) $J^1 > J^2 > J^3$ (2) $J^3 > J^2 > J^1$	(3) $J^1 = J^2 = J^3$ (4) None of these
25. Which aromatic band shows fine structure	cture?
(1) Primary (2) Secondary	(3) Tertiary (4) None
26. Which is a better Diels Alder Diene for	
(1) Furan (2) Pyrrole	(3) Thiophene (4) Pyridine
27. Which is a strong base?	
(1) Aniline	(2) Cyclohexylamine
(3) Pyrrole	(4) Quinoline
PG-EE-2013/Chemistry/(C)	
	P. T. O.

(1)
$$CH_3 - CH_2 > OH_2 > CH = C > OH$$

(2)
$$CH \equiv C > NH_2 > CH \equiv C > OH$$

(3)
$$OH > NH_2 > CH \equiv C > CH_3 - CH_2$$

(4).
$$\stackrel{\Theta}{NH_2} > CH \equiv \stackrel{\Theta}{C} > \stackrel{\Theta}{OH} > CH_3 - \stackrel{\Theta}{CH_2}$$

Which gives single mononitroderivative?

- (1) Naphthalene (2) O-xylene
- (3) Ethylbenzene (4) p-xylene

Which one is most effective in an SN^2 displacement on methyl bromide?

- (1) C₂H₅ $\overset{\Theta}{O}$
- (2) HO
- (3) $C_6H_5\overset{\Theta}{O}$ (4) $CH_3CO\overset{\Theta}{O}$

The force constant of a diatomic S.H.O. can be calculated by employing relation:

 $(1) \quad k = 4\pi^2 c^2 \left(\overline{v}^2\right) \mu$

(2) $k = 4\pi^2 c(\overline{v}^2)\mu$

- (3) $k = 4\pi^2 c(\overline{v}) \mu^2$
- (4) $k = 4\pi^2 \,\mu \,c$

where all the symbols have their usual meaning.

Zero point energy for diatomic molecule possessing harmonic motion is : 32.

- (1) zero
- (3) $\frac{1}{2}hv$ (4) $\frac{1}{3}hv$

The power output of a laser in which 2.0 J pulse can be delivered in one nanosecond

- (1) 2.0 GW
- (2) 20.0 GW
- (3) 0.20 GW
- (4) None of these

For Arhenius equation, $A = e^{-E_a/RT}$, if $T \to \infty$, then value of E_a will be:

- (1) positive
- (2) negative
- (3) zero
- (4) equal to A

The molarity of pure water is:

- (1) 50
- (2) 18
- (3) 100
- (4) 55.6

PG-EE-2013/Chemistry/(C)

P. T. O.

36	The degeneracy of the rotational ener is:	gy level with J	= 4 for a heterodiatomic molecul	e
	(1) 4 (2) 7	(3) 9	(4) 8	
37	. Mean free path of a gas molecule is:	€.	ED < LHX	
	(1) inversely proportional to pressure	e	S. Hoer and the same	
	(2) directly proportional to pressure	¥-		
	(3) independent of pressure		n case of college at the	
	(4) independent of temperature		donale · · · · · · · · · · · · · · · · · · ·	
38.	In B.E.T. equation one of the following	g statement is no	ot true. Select the one:	
	(1) It considers the multi layer adsorp	otion	tride tech in E. (4)	
	(2) It doesn't use the concept of satura	ation of vapour	pressure	
	(3) It is not valid for porous adsorben	t		
	(4) It uses the concept of latent heat o	f condensation		
39.	No diffraction would result, if:		tenno pilko neli Man solt. 84.	
	(1) $\lambda < 2d$ (2) $\lambda \approx 2d$	(3) λ < < d	(4) $\lambda > 2d$	
40.	11.2×10^3 m ³ of a gas at STP requires 1 C_v for the gas is :	04.6 J to raise it	s temperature by 10 degree. The	
	(1) 20.92 J deg ⁻¹ mole ⁻¹	(2) 10.46 J de	eg ⁻¹ mole ⁻¹	
	(3) $9.4 J \text{deg}^{-1} \text{mole}^{-1}$	(4) zero		
41.	How many peaks are observed in UV-	visible absorption	on spectra of $\left[Ni(H_2O)_6^2\right]^{2+}$?	
	(1) One (2) Two	(3) Three	(4) Four	
42.	Write the Ground Term of Cr^{3+} :			
	(1) 6_S (2) 4_F	(3) 2 _D	(4) 3 _P	
PG-EE	-2013/Chemistry/(C)		P. T. O	

43.	Predict the Point	Group in	$Fe(CO)_5$:
-----	-------------------	----------	--------------

- (1) Oh
- (2) C3V
- (3) C_{2V}
- (4) D_{3h}

Nitrogenase enzyme consists of:

- (1) Co
- (2) Se
- (3) Mo, Fe
- (4) Mg

45. Vitamin
$$B_{12}$$
 consists of:

- (1) Fe
- (2) Co 🝜 -
- (3) Mn (4) V

$$\int_{92}^{235} U + \int_{0}^{1} n \to_{56}^{141} Ba + \int_{36}^{92} Kr + \dots$$

- $(1) \ 2 \ \frac{1}{0}n$
- $(2) \frac{1}{1}H$
- (3) ${}_{1}^{2}H$
- (4) ⁴₂He

Bhopal Tragedy which killed thousands of people, was due to air pollution of:

(1) CO

(2) SO₂

(3) Nitrogen oxides

(4) Methyl Isocyanate

- (1) $\hat{L}_x = i\hbar \left[x \cdot \frac{\partial}{\partial x} z \cdot \frac{\partial}{\partial z} \right]$ (2) $-i\hbar \left[y \cdot \frac{\partial}{\partial z} z \cdot \frac{\partial}{\partial y} \right]$
- (3) $\hat{L}_x = i\hbar \left[y \cdot \frac{\partial}{\partial z} z \cdot \frac{\partial}{\partial u} \right]$
- (4) $-i\hbar \left[x \cdot \frac{\partial}{\partial z} z \cdot \frac{\partial}{\partial x}\right]$

49. Operators
$$\hat{A}$$
 and \hat{B} are said to be commutative, if :

(1) $\hat{A} - \hat{B} = 0$

(2) $\hat{A} + \hat{B} = 0$

(3) $\hat{A} \hat{B} - \hat{B} \hat{A} = 0$

(4) $\hat{A} \hat{B} + \hat{B} \hat{A} = 0$

- (1) $\frac{\sqrt{2}}{a}\sin\frac{n\pi x}{a}$ (2) $\sqrt{\frac{2}{a}}\frac{n\pi x}{a}$ (3) $\sqrt{\frac{2}{a}}\sin\frac{\pi x}{a}$ (4) $\sqrt{\frac{2}{a}}\sin\frac{n\pi x}{a}$

51.	What is the decreas	sing order of chemic	al shi	fts for protons a	mor	ng these ?	
		nnes > Alkenes		Alkanes > Alke			
	(3) Alkynes > Alke			Alkenes > Alky	nes	> Alkanes	
52.	The singlet at about which protons?	t 4.0 ppm in the pro	oton l	NMR spectrum	of m	nethylacetate is	due to
	(1) Methyl		(2)	Methoxy			
	(3) Methyl and Mo	ethoxy	(4)	None of these			
53.	Which is not an ant	ti-cancer drug?				verse and made	
	(1) Vincristine	9.1	(2)	Cyclophosphai	mide		
	(3) Doxorubicin	31	(4)	Gabapentin			
54.		ction with metachlor hydride and then w					nt with
	(1) Hexane	(2) Hexan-1-ol	(3)	Hexan-2-ol	(4)	None	
55.	Write the symbol o	f atomic orbital if n :	= 3, 1	= 2 and $m = -2$,	-1,	0, + 1, + 2:	
	(1) 2s	(2) 3s	(3)	3p	(4)	3 <i>d</i>	
56.	An element with at	omic number 72 bel	ongs	to:			
	(1) s-block	(2) p-block	(3)	d-block	(4)	f-block	
57.	Which of the follow	ving metals has lowe	est io	nization potenti	al?		
	(1) Lithium	(2) Sodium	(3)	Berylium	(4)	Magnesium	
58.	Which cation has h	ighest polarizing po	wer '	?			
	(1) Na ⁺	(2) Mg^{2+}	(3)	K ⁺	(4)	Al^{3+}	
59.	How many lone pa	irs of electrons are p	oresei	nt in ICl ₂ ion?			
	(1) Zero	(2) One	(3)	Two	(4)	Three	
60.	Which of the follow	ving molecules/ions	has	smallest O – O l	ond	?	
	(1) O ₂	(2) O ₂ ⁺ ,	(3)	O ₂	(4)	O_2^{2-}	
61.	The Boyle tempera	ture is that at which	the s	econd virial coe	fficie	ent of real gas i	s:
	(1) zero	(2) one	(3)	four	(4)	one and half	
PG-EE	E-2013/Chemistry/(C)					P. T. O.

62.	The fugacity function is defined as:	desirant harabas various site algorithms to the se
	(1) $\underset{P\to 0}{limit} \frac{p}{f} = 1$ (2) $\underset{P\to 0}{limit} \frac{f}{p} = 1$	(3) $\underset{f\to 0}{limit} \frac{p}{f} = 1$ (4) $\underset{P\to 0}{limit} \frac{p}{f} = 0$
63.	Choose the correct relation:	
		(2) $\left(\frac{\partial A}{\partial T}\right)_V = \left(\frac{\partial G}{\partial T}\right)_P$
	(3) $\left(\frac{\partial T}{\partial S}\right)_P = \left(\frac{\partial V}{\partial S}\right)_P$	(4) $\left(\frac{\partial S}{\partial P}\right)_T = -\left(\frac{\partial T}{\partial V}\right)_P$
64.	For the combustion of one mole of CF	I ₃ COOH(l) at 298 K, Δn is :
	(1) 1 (2) -1	(3) zero (4) -1/2
day.	In the limit $T \rightarrow 0$, for a crystal:	
	where C_p is the heat capacity at const	(3) $S_T = C_p / 2$ (4) $S_T = C_p / 3$
cc		
66.		Entire Transfer of the party of the same o
	(1) 0.375 (2) 0.400	(3) zero (4) 0.512
67.	The Joule-Thomson expansion of an ic	leal gas is :
	(1) Adiabatic process	(2) an isentropic process
	(3) an isenthalpic process	(4) an isothermal process
68.	The spacing between 123 planes in a $b = 100$ pm and $c = 150$ pm is:	an orthorhombic unit cells having $a = 50$ pm
	(1) 2.9 pm (2) 29 pm	(3) 9.2 pm (4) 92 pm
69.	The cell potential is a:	
	(1) Colligative property	(2) Thermodynamic property
	(3) Intensive property	(4) Extensive property
70.	The solubility of silver chloride in wat product will be:	er at 298.15 K is $0.00179 \text{ g litre}^{-1}$. The solubility
	(1) $156 \times 10^{-10} \mathrm{mol}^2 \mathrm{dm}^{-6}$	(2) $1.56 \times 10^{-9} \text{ mol}^2 \text{dm}^{-6}$
	(3) $15.6 \times 10^{-12} \mathrm{mol}^2 \mathrm{dm}^{-6}$	(4) $1.56 \times 10^{-10} \mathrm{mol}^2 \mathrm{dm}^{-6}$
PG-EE	-2013/Chemistry/(C)	Sittle (b) Site (1) Site (1)

71.	In the lead acid bat	tery during charging	, the	cathode reaction	n is:	
	(1) reduction of Pl	o ⁺² to Pb	(2)	formation of Pl	bSO ₄	
	(3) formation of Pi	bO ₂	(4)	None of these		
72.	When a radioactive	e element loses one 'o	a' and	d two 'β' particle	es, it y	yields:
	(1) Isobar	(2) Isomer	(3)	Isotope	(4)	Allotrope
73.	50 ml of 0.1 NaOH	are added to 49 ml o			the re	esulting solution is
	(1) 12	(2) 11	(3)	10	(4)	9
74.	The heat of reaction	n is independent of:				
	(1) Pressure	7.	(2)	Temperature		
	(3) Physical state		(4)	The path by wl	hich 1	product is formed
75.	Which of the follow	wing will show ESR s	spect	ra?		
	(1) C_6H_6	(2) CH ₃	(3)	CH ₄	(4)	H_2
76.	What is the freque	ncy of radiation poss	sessir	ng wave length	400 n	m?
	(1) $7.5 \times 10^{-14} \mathrm{S}^{-1}$	(2) $7.5 \times 10^{14} \text{ S}^{-1}$	(3)	$7.5 \times 10^{9} \text{S}^{-1}$	(4)	$7.5 \times 10^{-13} \text{ S}^{-1}$
77.	In aerosol, the disp	persion medium is:		Rosensons Edit		Continue to Contin
	(1) Gas		(3)	Liquid	(4)	Mixture of all
78.	The polymers cons	sist of coil like polym	ner cl	nain are:		Personal III
	(1) Thermoplasts	(2) Elastomers	(3)	Thermosets	(4)	None of these
79.	Which of the follow	wing is a state functi	on?			
	(1) E – PV	(2) E + PV	(3)	Q/W	(4)	Q - W
80.	The ilkovic equati	on for diffusion curr	ent is	s expressed as:		proceedings (g)
	$(1) \overrightarrow{I}_d = 607n DC$	$2m^{2/3}t^{1/6}$		$\overrightarrow{I}_d = 607n D^1$		
	$(3) \overrightarrow{I}_d = 607nCD$	$n^{1/2} m^{2/3} t^{1/6}$	(4)	$\overrightarrow{I}_d = 607n D^1$	$^{/2}C^{1}$	$^{/2} m^{1/3} t^{1/6}$

81	. Which reacts fastest with N-bromos	uccinimide (NBS) ?
	(1) Toluene (2) Methane	(3) Pyridine (4) Benzene
82	. When vinyl cyanide reacts with ethy	valled a presence of a base, what is formed
	$(1) CH_2 = CH - OH$	(2) $C_2H_5O - CH_2 - CH_2CN$
	(3) CH ₃ CH ₂ OH	(4) $C_2H_5 - O - C_2H_5$
83.	Which is the best leaving group?	
	(1) Chloride (2) Fluoride	(3) Tosylate (4) None
84.	With cis-alkenes, the triplet carbenes	give:
	(1) cis-product	(2) trans-product
	(3) no product	(4) both cis and trans products
85.	DNFB is used to identify N-terminal	amino acid of peptides. The reagent is called:
	(1) Van-Slyke reagent	(2) Sorenson reagent
	(3) Sanger's reagent	(4) Stephens reagent
86.	Continuous wave NMR spectroscopy	involves:
	(1) sequential detection of resonances	s of nuclei
	(2) simultaneous detection of all reso	nances of nuclei
	(3) sometimes sequential and sometimes	mes simultaneous detection of nuclei
	(4) None	
87.	The addition of Br_2 to methyl acetyler	ne to give trans-1, 2-dibromopropene is a :
	(1) Stereoselective reaction	
	(2) Stereospecific reaction	
	(3) Stereoselective and Stereospecific	reaction
	(4) None	
PG-EE-	-2013/Chemistry/(C)	and the second s

P. T. O.

C

PG-EE-2013/Chemistry/(C)

Predict the type of isomerism in $[Co(NH_3)_6][Cr(CN)_6]$ and $[Cr(NH_3)_6][Co(CN)_6]$:

- (1) Linkage Isomerism (2) Coordination Isomerism
- (3) Stereoisomerism (4) Coordination position Isomerism

Which of the following complex ions will not be square planar in structure?

- (1) $\left[Co(CN)_4\right]^{2-}$ (2) $\left[Ni(CN)_4^{*}\right]^{2-}$ (3) $\left[Cu(NH_3)_4\right]^{2+}$ (4) $Ni(CO)_4$