Oppat found Sialed and operd for evaluation Purpase on 517) (6 at 12.32 Pm (DO NOT OPEN THIS QUESTION BOOKLET BEFORETIME OR UNTIL YOU ARE ASKEDTO DOSO) (PG-EE-2016) Maths, Math with Computer Science Code Sr. No. 11825

Time: 11/4 Hours
Roll No. \qquad
Name: \qquad Father's Name

Mother's Name :
(Signature of the candidate)
CANDIDATES MUST READ THE FOLLOWING INFORMATION/ INSTRUCTIONS BEFORE STARTING TXE QUESTION PAPER.

1. All questions are compulsory.
2. The candidates must return the Question book-lef as well as OMR answer-sheet to the Invigilator concerned before leaving the Cxamination Hall, failing which a case of use of unfair-means / misbehay four will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluatgd.
3. In case there is any discrepancy in any question(s) in the Question Booklet, the same may be br \&ught to the notice of the Controller of Examinations in writing within two hqurs after the teris over. No such complaint(s) will be entertained thereafter.
4. The candidate MUST NOT do any rough work or writing in the OMR Answer-Sheet. Rough wort, if gny, may be done in the question book-let itself. Answers MUST NOT blaticked in the Question book-let.
5. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
6. Use only Black or Blue BALL POINT PEN of good quality in the OMR Answer-Sheet,
7. BEFORE ANSWERING THE QUESTIONS, THE CANDIDATES SHOULD ENSURE THAT THEY HAVE BEEN SUPPLIED CORRECT AND COMPLETE BOOK-LETS, COMPLAINTS, IF ANY, REGARDING MISPRINTING ETC. WILL NOT BE ENTERTAINED 30 MINUTES AFTER STARTING OF THE EXAMINATION.

Code-A

Questions

1. Every skew-symmetric matrix of odd order is
(1) Symmetric
(2) Singular
(3) Non-singular
(4) Hermitian
2. If r is the rank of the matrix A, then the number of linearly independent solutions of the equation $\mathrm{AX}=0$ in n variables, is
(1) $\mathbf{n}-\mathbf{r}$
(2) $\mathrm{n}-\mathrm{r}-1$
(3) $\mathrm{r}-1$
(4) n / r
3. For the equation $x^{8}+5 x^{3}+2 x-3=0$, least number of imaginary roots is
(1) 4
(2) 5
(3) 6
(4) 2
4. Characteristic roots of a Hermitian matrix are all
(1) zero
(2) imaginary
(3) complex
(4) real
5. One root of the equation $a x^{3}+b x^{2}+c x+d=0$ is equal to the sum of the other two if
(1) $b^{2}+4 a b c+8 a^{2} d=0$
(2) $b^{2}+4 a b c-8 a^{2} d=0$
(3) $b^{3}-4 a b c+8 a^{2} d=0$
(4) $\mathrm{b}^{3}-4 a b c-8 \mathrm{a}^{2} \mathrm{~d}=0$
6. The roots of the equation $2 x^{3}+6 x^{2}+5 x+k=0$ are in A.P. Then the value of K is
(1) -1
(2) 1
(3) -2
(4) 2
7. If $\frac{x^{n}-2^{n}}{x-2}=80$ and n is a positive integer, then the value of n is
(1) 2
(2) 3
(3) 4
(4) 5

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-A

Code

Question

No.
8. Let $f(x)=\left\{\begin{array}{cl}a x+1 & , x \leq 2 \\ 3 a x+b, & 2<x<4 \\ 6, & x \geq 4\end{array}\right.$

Questions

Values of a and b such that $f(x)$ is continuous everywhere, are
(1) $\frac{-5}{8}, \frac{3}{2}$
(2) $\frac{5}{8}, \frac{-3}{2}$
(3) $\frac{5}{8}, \frac{3}{2}$
(4) $\frac{5}{3}, \frac{2}{3}$
9. Derivative of $\cos ^{-1} \sqrt{\frac{1+\mathrm{x}}{2}}, 0 \leq x<1$ is
(1) $\frac{-2}{\sqrt{1-\mathrm{x}^{2}}}$
(2) $\frac{-1}{2 \sqrt{1-x^{2}}}$
(3) $-\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$
(4) $\frac{1}{2 \sqrt{1-x^{2}}}$
10. The radius of curvature P for the curve $x y=c, c$ being constant, is
(1) $\left(x^{2}+y^{2}\right)^{-3 / 2}$
(2) $\frac{\left(x^{2}+y^{2}\right)^{3 / 2}}{c}$
(3) $\frac{\left(x^{2}+y^{2}\right)^{2 / 3}}{2 c}$
(4) $\frac{\left(x^{2}+y^{2}\right)^{3 / 2}}{2 c}$
11. Oblique asymptotes to the curve $y^{2}(x-2 a)=x^{3}-a^{3}$ are
(1) $\mathrm{y} \pm \mathrm{x}+2 \mathrm{a}=0$
(2) $x \pm y+2 a=0$
(3) $\mathrm{x} \pm \mathrm{y}+\mathrm{a}=0$
(4) $\mathrm{y} \pm \mathrm{x}+\mathrm{a}=0$
12. Area between the parabolas $\mathrm{x}^{2}=4$ ay and $\mathrm{y}^{2}=4 \mathrm{ax}$ is
(1) $\frac{3}{8} \mathrm{a}^{2}$
(2) $\frac{8}{3} \mathrm{a}^{2}$
(3) $\frac{16}{3} a^{2}$
(4) $\frac{16}{5} a^{2}$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-A

Code-A

Questions

13. $\int_{0}^{1} x^{6} \sqrt{1-x^{2}} d x=$
(1) $5 \pi / 32$
(2) $5 \pi / 16$
(3) $3 \pi / 128$
(4) $3 \pi / 32$
14. Co-ordinates of the centre of the conic
$8 x^{2}-24 x y+15 y^{2}+48 x-48 y=0$, are
(1) $(4,3)$
(2) $(3,4)$
(3) $(3,2)$
(4) $(2,3)$
15. Radius of the sphere
$x^{2}+y^{2}+z^{2}-4 x+6 y-8 z+4=0$ is
(1) 3
(2) 4
(3) $4 / 7$
(4) 5
16. The condition that the plane $a x+b y+c z=0$ cuts the cone $x y+y z+z x=0$ in perpendicular lines, is
(1) $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$
(2) $\frac{1}{\mathrm{a}}+\frac{2}{\mathrm{~b}}+\frac{3}{\mathrm{c}}=0$
(3) $\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}=0$
(4) $a+b+c=0$
17. Value of $\tan \left(i \log \frac{a-i b}{a+i b}\right)$ is
(1) $\frac{a b}{a^{2}-b^{2}}$
(2) $\frac{2 a b}{a^{2}-b^{2}}$
(3) $\frac{2 a b}{\left(a^{2}-b^{2}\right)^{2}}$
(4) $\frac{4 a b}{a^{2}-b^{2}}$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-A

Code-A

Questions

18. Which of the following congruences have solution
(1) $\mathrm{x}^{2} \equiv 2(\bmod 59)$
(2) $\mathrm{x}^{2} \equiv-2(\bmod 59)$
(3) $\mathrm{x}^{2} \equiv 2(\bmod 61)$
(4) $\mathrm{x}^{2} \equiv-2(\bmod 61)$
19. If $\tan ^{-1} 2 x+\tan ^{-1} 3 x=\frac{\pi}{4}$, then $x=$
(1) $\frac{1}{2}$
(2) $\frac{1}{3}$
(3) $\frac{4}{7}$
(4) $\frac{1}{6}$
20. If $\cosh x=2$, then $x=$
(1) $\log (2-\sqrt{5})$
(2) $\log (2-\sqrt{3})$
(3) $\log (2+\sqrt{5})$
(4) $\log (2+\sqrt{3})$
21. Sum of the series
$\sinh x+\frac{\sinh 2 x}{2}+\frac{\sinh 3 x}{3}+\cdots \cdots \infty$, is
(1) $\frac{1}{2}(\mathrm{i} \pi-\mathrm{x})$
(2) $\frac{1}{2}(\mathrm{i} \pi+\mathrm{x})$
(3) $\mathrm{i} \pi-\mathrm{x}$
(4) $i \pi+x$
22. An integrating factor of $x \frac{d y}{d x}+(3 x+1) y=x e^{-2 x}$, is
(1) $x e^{x}$
(2) $x e^{2 x}$
(3) $\mathrm{xe}^{3 \mathrm{x}}$
(4) $\frac{1}{2} x^{-3 x}$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-A

Questions

23. For the differential equation $\frac{d^{2} y}{d x^{2}}+a y=-4 \sin 2 x$, if $y=x \cos 2 x$ is a particular solution, then the value of a is
(1) 4
(2) -4
(3) $\frac{1}{4}$
(4) $-\frac{1}{4}$
24. Orthogonal trajectories of the family of parabolas $y^{2}=4$ ax are
(1) $2 x^{2}+y^{2}=c$
(2) $\mathrm{x}^{2}+2 \mathrm{y}^{2}=\mathrm{c}$
(3) $\mathrm{x}^{2}=4 a \mathrm{ay}+\mathrm{c}$
(4) $\mathrm{y}^{2}=4 \mathrm{x}+\frac{\mathrm{c}}{\mathrm{a}}$
25. The differential equation of the type $y=p x+f(p)$ is known with
the name
(1) Euler
(2) Lagrange
(3) Clairaut
(4) Cauchy
26. The vector $(x+3 y) \hat{\mathrm{i}}+(\mathrm{y}-2 \mathrm{z}) \hat{\mathrm{j}}+(\mathrm{x}+\lambda z) \hat{\mathrm{k}}$ is solenoidal, then the value of
λ is
(1) 0
(2) -1
(3) 2
(4) -2
27. Magnitude of maximum directional derivative of

$$
\phi(x, y, z)=x^{2}-2 y^{2}+4 z^{2} \text { at the point }(1,1,-1) \text { is }
$$

(1) $\sqrt{21}$
(2) $2 \sqrt{21}$
(3) $3 \sqrt{21}$
(4) $27 / 4$
28. A particle moves along the curve $x=4 \cos t, y=4 \sin t, z=6 t$, where t is time. Magnitude of acceleration at time t is
(1) 3
(2) $7 / 2$
(3) $\sqrt{5}$
(4) 4

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-A

Code-A

Questions

29. Using Stoke's theorem, value of the integral $\oint_{c}(y z d x+x z d y+x y d z)$, where c is the curve $\mathrm{x}^{2}+\mathrm{y}^{2}=1, \mathrm{z}=\mathrm{y}^{2}$; is
(1) 0
(2) 1
(3) 2
(4) $7 / 2$
30. If $\vec{f}=3 x y \hat{i}-y^{2} \hat{j}$, then $\int_{c} \vec{f} \cdot d r$, where c is the curve $y=2 x^{2}$, from $(0,0)$ to (1,2); is
(1) $5 / 7$
(2) $7 / 5$
(3) $-7 / 6$
(4) $-8 / 3$
31. If Lagrange's mean value theorem is used on the function $f(x)=x(x-1)$ in [1,2], then the value of ' c ' is
(1) $1 / 2$
(2) $3 / 2$
(3) $2 / 3$
(4) $3 / 4$
32. If $u=2 x y, v=x^{2}-y^{2}, x=r \cos \theta, y=r \sin \theta$, then $\frac{\partial(u, v)}{\partial(r, \theta)}=$
(1) $-4 r^{3}$
(2) $-4 \mathrm{r}^{2}$
(3) $-2 r^{3}$
(4) $-3 r^{2}$
33. If $u=f(x+2 y)+g(x-2 y)$, then $4 \frac{\partial^{2} u}{\partial x^{2}}=$
(1) $-\frac{\partial^{2} u}{\partial y^{2}}$
(2) $\frac{\hat{\sigma}^{2} u}{\partial y^{2}}$
(3) $2 \frac{\partial^{2} u}{\partial y^{2}}$
(4) $-2 \frac{\partial^{2} u}{\partial y^{2}}$
34. If $u=\log \left(x^{2}+x y+y^{2}\right)$ then $u \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=$
(1) 0
(2) -1
(3) 1
(4) 2

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-A

Code-A

Questions

35. The envelope of the family of curves $(x-a)^{2}+y^{2}=4 a$, a being the parameter ; is
(1) $x^{2}=4(y+1)$
(2) $x^{2}=2(x+1)$
(3) $\mathrm{y}^{2}=4(\mathrm{x}+1)$
(4) $y^{2}=-4(x+1)$
36. The locus of centre of curvature for a curve is called its
(1) envelope
(2) evolute
(3) torsion
(4) characteristic
37. $\lim _{x \rightarrow 0} \frac{\left(\tan ^{-1} x\right)^{2}}{\log \left(1+x^{2}\right)}=$
(1) 0
(2) $\frac{1}{2}$
(3) 1
(4) $\frac{3}{2}$
38. Partial differential equation obtained by eliminating the arbitrary constants a and b from the relation $2 \mathrm{z}=(\mathrm{ax}+\mathrm{y})^{2}+\mathrm{b}$, is
(1) $p x+q y=q^{2}$
(2) $\mathrm{py}+\mathrm{qx}=\mathrm{q}^{2}$
(3) $\mathrm{px}+\mathrm{qy}=\mathrm{p}^{2}$
(4) $p y+q x=p^{2}$
39. Solution of $p x+q y=3 z$ is
(1) $f\left(\frac{y}{x}, \frac{x^{2}}{z}\right)=0$
(2) $f\left(\frac{y}{x}, \frac{x^{3}}{z}\right)=0$
(3) $f\left(\frac{x}{y}, \frac{x^{2}}{z}\right)=0$
(4) $f\left(\frac{x}{y}, \frac{x^{3}}{z}\right)=0$
40. P.I. of the partial differential equation $\left(\mathrm{D}^{2}-2 \mathrm{DD}^{\prime}+\mathrm{D}^{\prime 2}\right) \mathrm{z}=12 \mathrm{xy}$, is
(1) $2 x^{5} y+x^{4}$
(2) $2 x^{3} y+y^{3}$
(3) $2 x^{3} y+3 x^{2}$
(4) $2 x^{3} y+3 x^{4}$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-A

Code-A

Question

Questions

No.
41. The equation $\frac{\partial^{2} u}{\partial x^{2}}+2 \frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=2 \frac{\partial^{2} u}{\partial x \partial y+}+2 \frac{\partial^{2} u}{\partial y \partial z}$ is
(1) Linear
(2) Elliptic
(3) Hyperbolic
(4) Parabolic
42. Every given system of forces acting on a rigid body can be reduced to a
(1) Couple
(2) Screw
(3) Wrench
(4) Null force
43. Absolute units of moment in S.I. system is
(1) Dyne centimeter
(2) Gram centimeter
(3) Kg. meter
(4) Newton meter
44. For two equal forces acting on a particle, if square of their resultant is three times their product, then the angle between these forces is
(1) $\pi / 2$
(2) $\pi / 3$
(3) $\pi / 4$
(4) $\pi / 6$
45. A body is slightly displaced and still remains in equilibrium in any position, then such equilibrium is known as
(1) Perfect equilibrium
(2) Stable equilibrium
(3) Neutral equilibrium
(4) Natural equilibrium
46. A body of weight 4 kg . rests in equilibrium on an inclined plane whose slope is 30°. The co-efficient of friction is
(1) $\sqrt{3}$
(2) $\frac{1}{\sqrt{2}}$
(3) $\frac{1}{\sqrt{3}}$
(4) $\frac{2}{\sqrt{3}}$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-A

Code-A

Questions

47. The series $\frac{2 p}{1^{q}}+\frac{3 p}{2^{q}}+\frac{4 p}{3^{q}}+\cdots \cdots \cdots$, where p and q are positive real numbers, is convergent if
(1) $\mathrm{p}<\mathrm{q}-2$
(2) p $<$ q-1
(3) $p>q$
(4) $\mathrm{p}=\mathrm{q}$
48. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{5}}$ is
(1) Absolutely convergent
(2) Divergent
(3) Conditionally convergent
(4) Oscillatory
49. The limit superior and limit inferior of $\left\{\frac{(-1)^{n}}{\mathrm{n}^{2}}\right\}$ are respectively equal to
(1) 0,0
(2) 1,0
(3) $1,-1$
(4) $-1,0$
50. If the series $\sum_{n=1}^{\infty} a_{n}$ is convergent and the series $<b_{n}>$ is monotonic and bounded, then the series $\sum_{n=1}^{\infty} a_{n} b_{n}$ is convergent. This result is due to
(1) Cauchy
(2) Leibnitz
(3) Dirichlet
(4) Abel
51. $\left\{\mathrm{J}_{\frac{1}{2}}(\mathrm{x})\right\}^{2}+\left\{\mathrm{J}_{-\frac{1}{2}}(\mathrm{x})\right\}^{2}=$
(1) $\frac{\pi x}{2}$
(2) $\frac{x}{2 \pi}$
(3) $\frac{2}{\pi \mathrm{x}}$
(4) $\frac{\pi}{2 x}$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-A

Code-A

Questions

No.
52. If the Hermite polynomial of degree n is denoted by $H_{n}(x)$, then $H_{1}(x)=$
(1) x
(2) $2 x$
(3) $-2 x$
(4) $\frac{x}{2}$
53.
$\int_{0}^{\infty} t e^{-2 t} \cos t d t=$
(1) $\frac{3}{16}$
(2) $\frac{9}{16}$
(3) $\frac{3}{25}$
(4) $\frac{9}{25}$
54. $\bar{L}^{-1}\left\{\frac{1}{(s-4)^{3}}\right\}=$
(1) $\frac{1}{4} t e^{3 t}$
(2) $\frac{1}{4} t^{2} e^{4 t}$
(3) $\frac{1}{2} t e^{4 t}$
(4) $\frac{1}{2} t^{2} e^{4 t}$
55. Fourier transform of the function

$$
\begin{aligned}
& f(t)=\left\{\begin{array}{clll}
e^{-a t}, & t>0, a>0 \\
0, & t<0
\end{array}\right. \text { is } \\
& \begin{array}{llll}
\text { (1) } \frac{1}{a+i s} & \text { (2) } \frac{\pi}{a+i s} & \text { (3) } \frac{a}{\pi+i s} & \text { (4) } \frac{\pi a}{1+i s}
\end{array}
\end{aligned}
$$

56. Given that

$$
\begin{aligned}
& \text { int } x=1, y=4 ; \\
& x=++x+--y ;
\end{aligned}
$$

Then the value of x is
(1). 4
(2) 5
(3) 6
(4) 7
57. The continue statement cannot be used with
(1) do
(2) while
(3) for
(4) switch

PG-EE-2016 (Maths, Maths with Comp. Se.) Code-A

Questions

58. The expression $(* \mathrm{p}) \cdot \mathrm{x}$ is equivalent to
(1) $* p \rightarrow x$
(2) $\mathrm{p} \rightarrow \mathrm{x}$
(3) $\mathrm{p} \rightarrow \cdot \mathrm{x}$
(4) $\mathrm{p}=\mathrm{x}$
59. The result of the expression (17*4) \% (int) $9-3$ is
(1) 5
(2) 4
(3) 3.7
(4) 7.3
60. The condition for covergence of the Newton - Raphson method to a root α is
(1) $\frac{f^{\prime}(\alpha)}{f^{\prime \prime}(\alpha)}<0$
(2) $\frac{f^{\prime}(\alpha)}{f^{\prime \prime}(\alpha)}<1$
(3) $\frac{f^{\prime}(\alpha)}{f^{\prime \prime}(\alpha)}>1$
(4) $\frac{\mathrm{f}^{\prime}(\alpha)}{\mathrm{f}^{\prime \prime}(\alpha)}<2$
61. The improper integral $\int_{1}^{2} \frac{x}{\sqrt{x-1}} d x$ converges to
(1) $5 / 3$
(2) $8 / 3$
(3) $3 / 8$
(4) $3 / 5$
62. Which of the following statements is not true
(1) Every singleton set is connected in any metric space
(2) Empty set is connected in every metric space
(3) Every subset having at least two points of a metric space is not connected
(4) None of these
63. $\int_{1}^{0} \frac{\sin \mathrm{x}}{\mathrm{x}^{\text {m }}} \mathrm{dx}$ converges absolutely if
(1) $\mathrm{m}<1$
(2) $\mathrm{m}>1$
(3) $\mathrm{m}=0$
(4) $\mathrm{m} \leq 1$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-A

Code-A

PG-EE-2016 (Maths, Maths with Comp. Se.) Code-A

Code-A

71. The number of prime ideals of Z_{10} is
(1) 2
(2) 4
(3) 5
(4) 10
72. If $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ is group homomorphism, then f is one-one if Kernel f is
(1) Empty
(2) Singleton set
(3) Any set
(4) Set of identity element
73. An ideal S of a commutative ring R with unity is maximal iff R / S is
(1) Anideal
(2) A vector space
(3) A ring
(4) A field
74. Which of the following statements is false
(1) Every field is a ring
(2) Every finite integral domain is a field
(3) Every field is an integral domain
(4) Every integral domain is a field
75. A person weighing 70 kg . is in a lift ascending with an acceleration of $1.4 \mathrm{~m} / \mathrm{sec}^{2}$. The thrust of his feet on the lift (in Newton) is
(1) 784 N
(2) 780 N
(3) 692 N
(4) 980 N
76. The horizontal range of a projectile is three times the greatest height, the angle of projection is
(1) $\tan ^{-1} \frac{3}{2}$
(2) $\tan ^{-1} \frac{2}{3}$
(3) $\tan ^{-1} \frac{4}{3}$
(4) $\tan ^{-1} \frac{3}{4}$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-A

Code-A

Question No.	Questions
77.	The law of force towards the pole under the curve $\mathrm{r}^{2}=2 \mathrm{ap}$ is (1) $\mathrm{F} \propto \frac{1}{\mathrm{r}^{2}}$ (2) $\mathrm{F} \propto \frac{1}{\mathrm{r}^{3}}$ (3) $\mathrm{F} \propto \frac{1}{\mathrm{r}^{4}}$ (4) $\mathrm{F} \propto \frac{1}{\mathrm{r}^{5}}$
78.	If θ be the angle which the tangent at a point makes with the radius vector, then the relation between angular velocity w and linear velocity v is (1) $\mathrm{w}=\mathrm{vr}$ (2) $\mathrm{w}=\frac{\mathrm{v} \cos \theta}{\mathrm{r}}$ (3) $\mathrm{w}=\frac{\mathrm{v} \sin \theta}{\mathrm{r}}$ (4) $\mathrm{w}=\mathrm{vr} \sin \theta$
79.	Two particles of mass m and 4 m are moving with equal momentum. The ratio of their kinetic energies is (1) $1: 2$ (2) $2: 1$ (3) $1: 4$ (4) $4: 1$
80.	Kepler law of motion says that each planet describes an ellipse having the sum at its (1) Focus (2) Centre (3) Origin (4) Outer cover
81.	A particle describes the cycloid $s=4 a \sin \psi$ with uniform speed v. The acceleration at any point is (1) $\frac{v^{2}}{4 a}$ (2) $\frac{v^{2}}{\sqrt{s^{2}-16 \mathrm{a}^{2}}}$ (3) $\frac{\mathrm{v}^{2}}{\sqrt{16 \mathrm{a}^{2}-\mathrm{s}^{2}}}$ (4) $\frac{v^{2}}{\sqrt{a^{2}-s^{2}}}$

PG-EE-2016 (Maths, Maths with Comp.Sc.) Code-A

Code-A

Questions

82.

$\int_{0}^{2}\left(8-x^{3}\right)^{-\frac{1}{3}} d x=$
(1) $\frac{1}{3} \beta\left(\frac{1}{3}, \frac{3}{2}\right)$
(2) $\frac{1}{3} \beta\left(\frac{1}{3}, \frac{2}{3}\right)$
(3) $\frac{2}{3} \beta\left(\frac{1}{3}, \frac{2}{3}\right)$
(4) $\beta\left(\frac{1}{3}, \frac{2}{3}\right)$
83. $\Gamma(\mathrm{n}) \Gamma(1-\mathrm{n})=$
(1) $\frac{\pi}{\sin n \pi}$
(2) $\frac{\sin n \pi}{\pi}$
(3) $\frac{n \pi}{\sin n \pi}$
(4) $\frac{2 \pi}{\sin n \pi}$
84. If Fourier co-efficient of $f(t)$ are Cn , then Fourier co-efficients of $\overline{f(t)}$ are
(1) $\overline{\mathrm{C}_{\mathrm{n}}}$
(2) $\overline{\mathrm{C}}_{-\mathrm{n}}$
(3) $-\overline{\mathrm{C}}_{\mathrm{b}}$
(4) $-\overline{\mathrm{C}}_{-\mathrm{n}}$
85. By changing the order of integration, the value of $\int_{0}^{a} \int_{y}^{a} \frac{x d x d y}{x^{2}+y^{2}}=$
(1) $\frac{3 a}{4}$
(2) $\frac{3 \pi a}{4}$
(3) $\frac{4 \pi \mathrm{a}}{3}$
(4) $\frac{\pi a}{4}$
86. Given that $\mathrm{f}(\mathrm{z})=2 \mathrm{x}^{2}+\mathrm{y}+\mathrm{i}\left(\mathrm{y}^{2}-\mathrm{x}\right) . C-$ Requations for this function are satisfied at
(1) the line $x=2 y$
(2) the line $y=2 x$
(3) every point of z-plane
(4) no point of z-plane

PG-EE-2016 (Waths, Maths with Comp. Sc.) Code-A

Question
Code-A
No.

Questions

87. Image of $|z-2 i|=2$ under the mapping $w=u+i v=\frac{1}{z}$ is
(1) $4 v+1=0$
(2) $4 u+1=0$
(3) $4 v-1=0$
(4) $4 u-1=0$
88. Fixed point of the transformation $w=\frac{3 z-4}{z-1}$ is
(1) $z=4$
(2) $\mathrm{z}=3$
(3) $\mathrm{z}=2$
(4) $z=1$
89. If V and W are vector spaces, then a linear transformation T from V to W is isomorphism if it is
(1) into
(2) one-one
(3) onto
(4) orthogonal
90. If $W=\{(a, b, c, d): b+c+d=0\}$ is a subspace of R^{4}, then $\operatorname{dim} W$ is
(1) 4
(2) 3
(3) 2
(4) 1
91. In an inner product space $V(F)$, the inequality $|(\alpha, \beta)| \leq\|\alpha\|\| \| \| \forall \alpha, \beta \in V$, is called
(1) Schwarz inequality
(2) Triangle inequality
(3) Bessel's inequality
(4) Normal inequality
92. If u and v are normal vectors in an inner product space V, then $\|u-v\|=$
(1) 0
(2) 1
(3) 2
(4) $\sqrt{2}$

PG-EE-2016 (Maths, Maths with Comp.Sc.) Code-A

Code-A

Questions

93. Which of the following is a orthogonal set
(1) $\{(1,0,1),(1,0,-1),(0,1,0)\}$
(2) $\{(1,0,1),(1,0,-1),(-1,0,1)\}$
(3) $\{(1,0,1),(1,0,-1),(0,2,3)\}$
(4) None of these
94. The missing term in the table

x	0	1	2	3	4
y	1	3	9		81

(1) 27
(2) 31
(3) 32
(4) 34
95. The sum of eigen values of a square matrix A of order n is equal to
(1) $\frac{n}{2}$
(2) $\frac{\mathrm{n}-1}{2}$
(3) trace (A)
(4) $|\mathrm{A}|$
96. In Simpson's $\frac{3}{8}$ th rule, the interpolating polynomial is of degree
(1) 2
(2) 1
(3) 4
(4) 3
97. Root of the equation $x^{4}-12 x+7=0$ which is approximately equal to 2 , is
(1) 1.92
(2) 1.95
(3) 2.05
(4) 2.15
98. Which of the following is not correct
(1) $\Delta=(1-\nabla)^{-1}$
(2) $1-\mathrm{E}^{-1}=\nabla$
(3) $\mathrm{E}=1+\Delta$
(4) $\delta=\mathrm{E}^{1 / 2}-\mathrm{E}^{-1 / 2}$

PG-EE-2016 (Maths, Maths with Comp.Sc.) Code-A

Code-A

Questions

99. For a normal distribution having mean μ and standard deviation σ, the most probable limits are
(1) $\mu \pm \sigma$
(2) $\mu \pm 2 \sigma$
(3) $\mu \pm \frac{3}{2} \sigma$
(4) $\mu \pm 3 \sigma$
100. In Gauss quadrature formula, the range of integration is
(1) $[0,1]$
(2) $[-1,1]$
(3) $[0, n]$
(4) $[-1,0]$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-A

Code-B

Puestion No.	Questions
1.	The number of prime ideals of Z_{10} is (1) 2 (2) 4 (3) 5 (4) 10
2.	If $f: G \rightarrow G^{\prime}$ is group homomorphism, then f is one-one if Kernel f is (1) Empty (2) Singleton set (3) Any set (4) Set of identity element
3.	An ideal S of a commutative ring R with unity is maximal iff R / S is (1) An ideal (2) A vector space (3) A ring (4) A field
4.	Which of the following statements is false (1) Every field is a ring (2) Every finite integral domain is a field (3) Every field is an integral domain (4) Every integral domain is a field
5.	A person weighing 70 kg . is in a lift ascending with an acceleration of $1.4 \mathrm{~m} / \mathrm{sec}^{2}$. The thrust of his feet on the lift (in Newton) is (1) 784 N (2) 780 N (3) 692 N (4) 980 N
6.	The horizontal range of a projectile is three times the greatest height, the angle of projection is (1) $\tan ^{-1} \cdot \frac{3}{2}$ (2) $\tan ^{-1} \frac{2}{3}$ (3) $\tan ^{-1} \frac{4}{3}$ (4) $\tan ^{-1} \frac{3}{4}$

Code-B

Question
Questions
No.
7. The law of force towards the pole under the curve $\mathrm{r}^{2}=2 \mathrm{ap}$ is
(1) $\mathrm{F} \propto \frac{1}{\mathrm{r}^{2}}$
(2) $\mathrm{F} \alpha \frac{1}{\mathrm{r}^{3}}$
(3) $\mathrm{F} \alpha \frac{1}{\mathrm{r}^{4}}$
(4) $\mathrm{F} \propto \frac{1}{\mathrm{r}^{5}}$
8. If θ be the angle which the tangent at a point makes with the radius vector, then the relation between angular velocity w and linear velocity v is
(1) $\mathrm{w}=\mathrm{vr}$
(2) $\mathrm{w}=\frac{\mathrm{v} \cos \theta}{\mathrm{r}}$
(3) $\mathrm{w}=\frac{\mathrm{v} \sin \theta}{\mathrm{r}}$
(4) $\mathrm{w}=\mathrm{vr} \sin \theta$
9. Two particles of mass m and 4 m are moving with equal momentum. The ratio of their kinetic energies is
(1) $1: 2$
(2) $2: 1$
(3) $1: 4$
(4) $4: 1$
10. Kepler law of motion says that each planet describes an ellipse having the sum at its
(1) Focus
(2) Centre
(3) Origin
(4) Outer cover
11.
$\left\{J_{\frac{1}{2}}(x)\right\}^{2}+\left\{J_{-\frac{1}{2}}(x)\right\}^{2}=$
(1) $\frac{\pi x}{2}$
(2) $\frac{x}{2 \pi}$
(3) $\frac{2}{\pi \mathrm{x}}$
(4) $\frac{\pi}{2 x}$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-B

Code-B

Questions

12. If the Hermite polynomial of degree n is denoted by $H_{n}(x)$, then $H_{1}(x)=$
(1) x
(2) $2 x$
(3) $-2 x$
(4) $\frac{x}{2}$
13. $\int_{0}^{\infty} t e^{-2 t} \cos t d t=$
(1) $\frac{3}{16}$
(2) $\frac{9}{16}$
(3) $\frac{3}{25}$
(4) $\frac{9}{25}$
14. $\bar{L}^{1}\left\{\frac{1}{(s-4)^{3}}\right\}=$
(1) $\frac{1}{4} t e^{3 t}$
(2) $\frac{1}{4} t^{2} e^{4 t}$
(3) $\frac{1}{2} t e^{4 t}$
(4) $\frac{1}{2} t^{2} e^{4 t}$
15. Fourier transform of the function
$f(t)=\left\{\begin{array}{cc}e^{-a t}, & t>0, a>0 \\ 0, & t<0\end{array}\right.$ is
(1) $\frac{1}{a+i s}$
(2) $\frac{\pi}{a+i s}$
(3) $\frac{a}{\pi+i s}$
(4) $\frac{\pi \mathrm{a}}{1+\mathrm{is}}$
16. Given that

$$
\begin{aligned}
& \text { int } x=1, y=4 \text {; } \\
& x=++x+--y \text {; }
\end{aligned}
$$

Then the value of x is
(1) 4
(2) 5
(3) 6
(4) 7
17. The continue statement cannot be used with
(1) do
(2) while
(3) for
(4) switch

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-B
(3)

Questions

18. The expression $(* \mathrm{p}) \cdot \mathrm{x}$ is equivalent to
(1) $* p \rightarrow x$
(2) $\mathrm{p} \rightarrow \mathrm{x}$
(3) $\mathrm{p} \rightarrow \mathrm{x}$
(4) $\mathrm{p}=\mathrm{x}$
19. The result of the expression $(17 * 4) \%$ (int) $9-3$ is
(1) 5
(2) 4
(3) 3.7
(4) 7.3
20. The condition for covergence of the Newton - Raphson method to a root α is
(1) $\frac{f^{\prime}(\alpha)}{f^{\prime \prime}(\alpha)}<0$
(2) $\frac{f^{\prime}(\alpha)}{f^{\prime \prime}(\alpha)}<1$
(3) $\frac{f^{\prime}(\alpha)}{f^{\prime \prime}(\alpha)}>1$
(4) $\frac{f^{\prime}(\alpha)}{f^{\prime \prime}(\alpha)}<2$
21. If Lagrange's mean value theorem is used on the function $f(x)=x(x-1)$ in $[1,2]$, then the value of ' c ' is
(1) $1 / 2$
(2) $3 / 2$
(3) $2 / 3$
(4) $3 / 4$
22. If $u=2 x y, v=x^{2}-y^{2}, x=r \cos \theta, y=r \sin \theta$, then $\frac{\partial(u, v)}{\partial(r, \theta)}=$
(1) $-4 r^{3}$
(2) $-4 r^{2}$
(3) $-2 r^{3}$
(4) $-3 r^{2}$
23. If $u=f(x+2 y)+g(x-2 y)$, then $4 \frac{\partial^{2} u}{\partial x^{2}}=$
(1) $-\frac{\partial^{2} u}{\partial y^{2}}$
(2) $\frac{\partial^{2} u}{\partial y^{2}}$
(3) $2 \frac{\partial^{2} u}{\partial y^{2}}$
(4) $-2 \frac{\partial^{2} u}{\partial y^{2}}$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-B

Code-B

Question

No.

Questions

24. If $u=\log \left(x^{2}+x y+y^{2}\right)$ then $u \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=$
(1) 0
(2) -1
(3) 1
(4) 2
25. The envelope of the family of curves $(x-a)^{2}+y^{2}=4 a$, a being the parameter ; is
(1) $x^{2}=4(y+1)$
(2) $\mathrm{x}^{2}=2(\mathrm{x}+1)$
(3) $\mathrm{y}^{2}=4(\mathrm{x}+1)$
(4) $\mathrm{y}^{2}=-4(\mathrm{x}+1)$
26. The locus of centre of curvature for a curve is called its
(1) envelope
(2) evolute
(3) torsion
(4) characteristic
27. $\lim _{x \rightarrow 0} \frac{\left(\tan ^{-1} x\right)^{2}}{\log \left(1+x^{2}\right)}=$
(1) 0
(2) $\frac{1}{2}$
(3) 1
(4) $\frac{3}{2}$
28. Partial differential equation obtained by eliminating the arbitrary constants a and b from the relation $2 \mathrm{z}=(\mathrm{ax}+\mathrm{y})^{2}+\mathrm{b}$, is
(1) $\mathrm{px}+\mathrm{qy}=\mathrm{q}^{2}$
(2) $\mathrm{py}+\mathrm{qx}=\mathrm{q}^{2}$
(3) $\mathrm{px}+\mathrm{qy}=\mathrm{p}^{2}$
(4) $\mathrm{py}+\mathrm{qx}=\mathrm{p}^{2}$
29. Solution of $p x+q y=3 z$ is
(1) $f\left(\frac{y}{x}, \frac{x^{2}}{z}\right)=0$
(2) $f\left(\frac{y}{x}, \frac{x^{3}}{z}\right)=0$
(3) $f\left(\frac{x}{y}, \frac{x^{2}}{z}\right)=0$
(4) $f\left(\frac{x}{y}, \frac{x^{3}}{z}\right)=0$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-B

Questions

No.
30. P.I. of the partial differential equation $\left(D^{2}-2 D D^{\prime}+D^{\prime 2}\right) z=12 x y$, is
(1) $2 x^{3} y+x^{4}$
(2) $2 x^{3} y+y^{3}$
(3) $2 x^{3} y+3 x^{2}$
(4) $2 x^{3} y+3 x^{4}$
31. Oblique asymptotes to the curve $y^{2}(x-2 a)=x^{3}-a^{3}$ are
(1) $y \pm x+2 a=0$
(2) $x \pm y+2 a=0$
(3) $x \pm y+a=0$
(4) $\mathrm{y} \pm \mathrm{x}+\mathrm{a}=0$
32. Area between the parabolas $x^{2}=4$ ay and $y^{2}=4$ ax is
(1) $\frac{3}{8} a^{2}$
(2) $\frac{8}{3} a^{2}$
(3) $\frac{16}{3} a^{2}$
(4) $\frac{16}{5} a^{2}$
33. $\int_{0}^{1} x^{6} \sqrt{1-x^{2}} d x=$
(1) $5 \pi / 32$
(2) $5 \pi / 16$
(3) $3 \pi / 128$
(4) $3 \pi / 32$
34. Co-ordinates of the centre of the conic
$8 x^{2}-24 x y+15 y^{2}+48 x-48 y=0$, are
(1) $(4,3)$
(2) $(3,4)$
(3) $(3,2)$
(4) $(2,3)$
35. Radius of the sphere
$x^{2}+y^{2}+z^{2}-4 x+6 y-8 z+4=0$ is
(1) 3
(2) 4
(3) $4 / 7$
(4) 5

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-B
(6)

Code-B

Question No.	Questions
36.	The condition that the plane $a x+b y+c z=0$ cuts the cone $x y+y z+z x=$ 0 in perpendicular lines, is (1) $\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}=1$ (2) $\frac{1}{\mathrm{a}}+\frac{2}{\mathrm{~b}}+\frac{3}{\mathrm{c}}=0$ (3) $\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}=0$ (4) $a+b+c=0$
37.	Value of $\tan \left(i \log \frac{a-i b}{a+i b}\right)$ is (1) $\frac{a b}{a^{2}-b^{2}}$ (2) $\frac{2 a b}{a^{2}-b^{2}}$ (3) $\frac{2 a b}{\left(a^{2}-b^{2}\right)^{2}}$ (4) $\frac{4 a b}{a^{2}-b^{2}}$
38.	Which of the following congruences have solution (1) $x^{2} \equiv 2(\bmod 59)$ (2) $\mathrm{x}^{2} \equiv-2(\bmod 59)$ (3) $x^{2} \equiv 2(\bmod 61)$ (4) $\mathrm{x}^{2} \equiv-2(\bmod 61)$
39.	If $\tan ^{-1} 2 x+\tan ^{-1} 3 x=\frac{\pi}{4}$, then $x=$ (1) $\frac{1}{2}$ (2) $\frac{1}{3}$ (3) $\frac{4}{7}$ (4) $\frac{1}{6}$
40.	If $\cosh x=2$, then $x=$ (1) $\log (2-\sqrt{5})$ (2) $\log (2-\sqrt{3})$ (3) $\log (2+\sqrt{5})$ (4) $\log (2+\sqrt{3})$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-B

Questions

41. In an inner product space $\mathrm{V}(\mathrm{F})$, the inequality $|(\alpha, \beta)| \leq\|\alpha\|\|\beta\| \forall \alpha, \beta \in \mathrm{V}$, is called
(1) Schwarz inequality
(2) Triangle inequality
(3) Bessel's inequality
(4) Normal inequality
42. If u and v are normal vectors in an inner product space V, then $\|u-v\|=$
(1) 0
(2) 1
(3) 2
(4) $\sqrt{2}$
43. Which of the following is a orthogonal set
(1) $\{(1,0,1),(1,0,-1),(0,1,0)\}$
(2) $\{(1,0,1),(1,0,-1),(-1,0,1)\}$
(3) $\{(1,0,1),(1,0,-1),(0,2,3)\}$
(4) None of these
44. The missing term in the table

x	0	1	2	3	4
y	1	3	9		81

(1) 27
(2) 31
(3) 32
(4) 34
45. The sum of eigen values of a square matrix A of order n is equal to
(1) $\frac{n}{2}$
(2) $\frac{\mathrm{n}-1}{2}$
(3) trace (A)
(4) $|A|$

PG-EE-2016 (Maths, Maths with Comp.Sc.) Code-B
46. In Simpson's $\frac{3}{8}$ th rule, the interpolating polynomial is of degree
(1) 2
(2) 1
(3) 4
(4) 3
47. Root of the equation $x^{4}-12 x+7=0$ which is approximately equal to 2 , is
(1) 1.92
(2) 1.95
(3) 2.05
(4) 2.15
48. Which of the following is not correct
(1) $\Delta=(1-\nabla)^{-1}$
(2) $1-\mathrm{E}^{-1}=\nabla$
(3) $\mathrm{E}=1+\Delta$
(4) $\delta=\mathrm{E}^{1 / 2}-\mathrm{E}^{-1 / 2}$
49. For a normal distribution having mean μ and standard deviation σ, the most probable limits are
(1) $\mu \pm \sigma$
(2) $\mu \pm 2 \sigma$
(3) $\mu \pm \frac{3}{2} \sigma$
(4) $\mu \pm 3 \sigma$
50. In Gauss quadrature formula, the range of integration is
(1) $[0,1]$
(2) $[-1,1]$
(3) $[0, \mathrm{n}]$
(4) $[-1,0]$
51. The improper integral $\int_{1}^{2} \frac{x}{\sqrt{x-1}} d x$ converges to
(1) $5 / 3$
(2) $8 / 3$
(3) $3 / 8$
(4) $3 / 5$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-B
(9)

Question No.	Questions
52.	Which of the following statements is not true (1) Every singleton set is connected in any metric space (2) Empty set is connected in every metric space (3) Every subset having at least two points of a metric space is not connected (4) None of these
53.	$\int_{1}^{\infty} \frac{\sin x}{x^{m}} d x$ converges absolutely if (1) $\mathrm{m}<1$ (2) $m>1$ (3) $\mathrm{m}=0$ (4) $\mathrm{m} \leq 1$
54.	A totally bounded metric space is (1) Compact (2) Complete (3) Separable (4) Everywhere dense
55.	If the set A is open and the set B is closed in R^{n}, then (1) $\mathrm{B}-\mathrm{A}$ is closed (2) $\mathrm{B}-\mathrm{A}$ is open (3) $\mathrm{B}-\mathrm{A}$ is semi-open (4) $\mathrm{B}-\mathrm{A}$ is null set
56.	For a Cantor's ternary set, which of the following is not correct (1) It is closed (2) It is uncountable (3) It is dense (4) It is perfect set
57.	Let f be a bounded function defined on the bounded interval $[a, b]$. Then f is Riemann integrable on $[a, b]$ iff (1) $\int_{a}^{b} f \geq f_{a}^{b} f$ (2) $\int_{a}^{b} f \leq f_{a}^{b} f$ (3) $\int_{a}^{b} \mathrm{f}<\mathrm{f}_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}$ (4) $\int_{a}^{b} f=f_{a}^{b} f$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-B

Code-B

Question

Questions

58. If G is a non-abelian group of order 125 , then $\mathrm{O}(\mathrm{Z}(\mathrm{G}))$ is
(1) 25
(2) 125
(3) 5
(4) 10
59. The number of abelian groups upto isomorphism of order 10^{5} is
(1) 50
(2) 49
(3) 45
(4) 39
60. The number of generators of a finite group of order 53 are
(1) 53
(2) 52
(3) 54
(4) $\lcm{52}$
61. A particle describes the cycloid $s=4 a \sin \psi$ with uniform speed v. The acceleration at any point is
(1) $\frac{v^{2}}{4 a}$
(2) $\frac{\mathrm{v}^{2}}{\sqrt{\mathrm{~s}^{2}-16 \mathrm{a}^{2}}}$
(3) $\frac{\mathrm{v}^{2}}{\sqrt{16 \mathrm{a}^{2}-\mathrm{s}^{2}}}$
(4) $\frac{v^{2}}{\sqrt{a^{2}-s^{2}}}$
62. $\int_{0}^{2}\left(8-x^{3}\right)^{-\frac{1}{3}} d x=$
(1) $\frac{1}{3} \beta\left(\frac{1}{3}, \frac{3}{2}\right)$
(2) $\frac{1}{3} \beta\left(\frac{1}{3}, \frac{2}{3}\right)$
(3) $\frac{2}{3} \beta\left(\frac{1}{3}, \frac{2}{3}\right)$
(4) $\beta\left(\frac{1}{3}, \frac{2}{3}\right)$
63. $\Gamma(\mathrm{n}) \Gamma(1-\mathrm{n})=$
(1) $\frac{\pi}{\sin n \pi}$.
(2) $\frac{\sin n \pi}{\pi}$
(3) $\frac{n \pi}{\sin n \pi}$
(4) $\frac{2 \pi}{\sin n \pi}$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-B
64. If Fourier co-efficient of $f(t)$ are Cn , then Fourier co-efficients of $\overline{f(t)}$ are
(1) $\overline{\mathrm{C}_{\mathrm{n}}}$
(2) $\overline{\mathrm{C}}_{-\mathrm{n}}$
(3) $-\overline{\mathrm{C}}_{\mathrm{n}}$
(4) $-\overline{\mathrm{C}}_{-\mathrm{n}}$
65. By changing the order of integration, the value of $\int_{0}^{a} \int_{y}^{a} \frac{x d x d y}{x^{2}+y^{2}}=$
(1) $\frac{3 a}{4}$
(2) $\frac{3 \pi a}{4}$
(3) $\frac{4 \pi \mathrm{a}}{3}$
(4) $\frac{\pi a}{4}$
66. Given that $\mathrm{f}(\mathrm{z})=2 \mathrm{x}^{2}+\mathrm{y}+\mathrm{i}\left(\mathrm{y}^{2}-\mathrm{x}\right) . C-R$ equations for this function are satisfied at
(1) the line $x=2 y$
(2) the line $y=2 x$
(3) every point of z-plane
(4) no point of z-plane
67. Image of $|z-2 i|=2$ under the mapping $w=u+i v=\frac{1}{z}$ is
(1) $4 v+1=0$
(2) $4 u+1=0$
(3) $4 v-1=0$
(4) $4 u-1=0$
68. Fixed point of the transformation $w=\frac{3 z-4}{z-1}$ is
(1) $\mathrm{z}=4$
(2) $\mathrm{z}=3$
(3) $\mathrm{z}=2$
(4) $\mathrm{z}=1$

Question No.	Questions
69.	If V and W are vector spaces, then a linear transformation T from V to W is isomorphism if it is (1) into (2) one-one (3) onto (4) orthogonal
70.	If $W=\{(a, b, c, d): b+c+d=0\}$ is a subspace of R^{4}, then $\operatorname{dim} W$ is (1) 4 (2) 3 (3) 2 (4) 1
71.	The equation $\frac{\partial^{2} u}{\partial x^{2}}+2 \frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=2 \frac{\partial^{2} u}{\partial x \partial y+}+2 \frac{\partial^{2} u}{\partial y \partial z}$ is (1) Linear (2) Elliptic (3) Hyperbolic (4) Parabolic
72.	Every given system of forces acting on a rigid body can be reduced to a (1) Couple (2) Screw (3) Wrench (4) Null force
73.	Absolute units of moment in S.I. system is (1) Dyne centimeter (2) Gram centimeter (3) Kg. meter (4) Newton meter
74.	For two equal forces acting on a particle, if square of their resultant is three times their product, then the angle between these forces is (1) $\pi / 2$ (2) $\pi / 3$ (3) $\pi / 4$ (4) $\pi / 6$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-B

Question No.	Questions
75.	A body is slightly displaced and still remains in equilibrium in any position, then such equilibrium is known as (1) Perfect equilibrium (2) Stable equilibrium (3) Neutral equilibrium (4) Natural equilibrium
76.	A body of weight 4 kg . rests in equilibrium on an inclined plane whose slope is 30°. The co-efficient of friction is (1) $\sqrt{3}$ (2) $\frac{1}{\sqrt{2}}$ (3) $\frac{1}{\sqrt{3}}$ (4) $\frac{2}{\sqrt{3}}$
77.	The series $\frac{2 p}{1^{q}}+\frac{3 p}{2^{q}}+\frac{4 p}{3^{q}}+\cdots \cdots \cdots$, where p and q are positive real numbers, is convergent if (1) p $<$ q-2 (2) $\mathrm{p}<\mathrm{q}-1$ (3) $p>q$ (4) $\mathrm{p}=\mathrm{q}$
78.	The series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{5}}$ is (1) Absolutely convergent (2) Divergent (3) Conditionally convergent (4) Oscillatory
79.	The limit superior and limit inferior of $\left\{\frac{(-1)^{n}}{n^{2}}\right\}$ are respectively equal to (1) 0,0 (2) 1,0 (3) $, 1,-1$ (4) $-1,0$

PG-EE-2016 (Maths,Maths with Comp. Sc.) Code-B

Code-B

$\begin{gathered} \text { Question } \\ \text { No. } \\ \hline \end{gathered}$	Questions
80.	If the series $\sum_{\mathrm{n}=1}^{\infty} \mathrm{a}_{\mathrm{n}}$ is convergent and the series $<\mathrm{b}_{\mathrm{n}}>$ is monotonic and bounded, then the series $\sum_{n=1}^{\infty} a_{n} b_{n}$ is convergent. This result is due to (1) Cauchy (2) Leibnitz (3) Dirichlet (4) Abel
81.	Sum of the series $\sinh \mathrm{x}+\frac{\sinh 2 \mathrm{x}}{2}+\frac{\sinh 3 \mathrm{x}}{3}+\cdots \cdots \infty$, is (1) $\frac{1}{2}(i \pi-x)$ (2) $\frac{1}{2}(\mathrm{i} \pi+\mathrm{x})$ (3) $\mathrm{i} \pi-\mathrm{x}$ (4) $\mathrm{i} \pi+\mathrm{x}$
82.	An integrating factor of $x \frac{d y}{d x}+(3 x+1) y=x e^{-2 x}$, is (1) $x e^{x}$ (2) $x e^{2 x}$ (3) $x e^{3 x}$ (4) $\frac{1}{2} x e^{-3 x}$
83.	For the differential equation $\frac{d^{2} y}{d x^{2}}+a y=-4 \sin 2 x$, if $y=x \cos 2 x$ is a particular solution, then the value of a is (1) 4 (2) -4 (3) $\frac{1}{4}$ (4) $-\frac{1}{4}$
84.	Orthogonal trajectories of the family of parabolas $\mathrm{y}^{2}=4 \mathrm{ax}$ are (1) $2 x^{2}+y^{2}=c$ (2) $\mathrm{x}^{2}+2 \mathrm{y}^{2}=\mathrm{c}$ (3) $\mathrm{x}^{2}=4$ ay $+c$ (4) $y^{2}=4 x+\frac{c}{a}$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-B

Question No.	Questions
85.	The differential equation of the type $y=p x+f(p)$ is known with the name (1) Euler (2) Lagrange (3) Clairaut (4) Cauchy
86.	The vector $(x+3 y) \hat{i}+(y-2 z) \hat{j}+(x+\lambda z) \hat{k}$ is solenoidal, then the value of λ is (1) 0 (2) -1 (3) 2 (4) -2
87.	Magnitude of maximum directional derivative of $\phi(x, y, z)=x^{2}-2 y^{2}+4 z^{2}$ at the point $(1,1,-1)$ is (1) $\sqrt{21}$ (2) $2 \sqrt{21}$ (3) $3 \sqrt{21}$ (4) $27 / 4$
88.	A particle moves along the curve $x=4 \cos t, y=4 \sin t, z=6 t$, where t is time. Magnitude of acceleration at time t is (1) 3 (2) $7 / 2$ (3) $\sqrt{5}$ (4) 4
89.	Using Stoke's theorem, value of the integral $\oint_{C}(y z d x+x z d y+x y d z)$, where c is the curve $\mathrm{x}^{2}+\mathrm{y}^{2}=1, \mathrm{z}=\mathrm{y}^{2}$; is (1) 0 (2) 1 (3) 2 (4) $7 / 2$
90.	If $\vec{f}=3 x y \hat{i}-y^{2} \hat{j}$, then $\int_{c} \vec{f} \cdot d r$, where c is the curve $y=2 x^{2}$, from $(0,0)$ to (1, 2); is (1) $5 / 7$ (2) $7 / 5$ (3) $-7 / 6$ (4) $-8 / 3$

PG-EE-2016 (Maths, Maths with Comp.Sc.) Code-B

Questions

91. Every skew-symmetric matrix of odd order is
(1) Symmetric
(2) Singular
(3) Non-singular
(4) Hermitian
92. If r is the rank of the matrix A, then the number of linearly independent solutions of the equation $A X=0$ in n variables, is
(1) $\mathrm{n}-\mathrm{r}$
(2) $\mathrm{n}-\mathrm{r}-1$
(3) $\mathrm{r}-1$
(4) n / r
93. For the equation $x^{8}+5 x^{3}+2 x-3=0$, least number of imaginary roots is
(1) 4
(2) 5
(3) 6
(4) 2
94. Characteristic roots of a Hermitian matrix are all
(1) zero
(2) imaginary
(3) complex
(4) real
95. One root of the equation $a x^{3}+b x^{2}+c x+d=0$ is equal to the sum of the other two if
(1) $\mathrm{b}^{3}+4 \mathrm{abc}+8 \mathrm{a}^{2} \mathrm{~d}=0$
(2) $\mathrm{b}^{2}+4 \mathrm{abc}-8 \mathrm{a}^{2} \mathrm{~d}=0$
(3) $b^{3}-4 a b c+8 a^{2} d=0$
(4) $\mathrm{b}^{3}-4 \mathrm{abc}-8 \mathrm{a}^{2} \mathrm{~d}=0$
96. The roots of the equation $2 x^{3}+6 x^{2}+5 x+k=0$ are in A. P. Then the value of K is
(1) -1
(2) 1
(3) -2
(4) 2
97. If $\frac{x^{n}-2^{n}}{x-2}=80$ and n is a positive integer, then the value of n is
(1) 2
(2) 3
(3) 4
(4) 5

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-B

Code-B

Questions

No.
98. Let $f(x)=\left\{\begin{array}{cl}a x+1, & x \leq 2 \\ 3 a x+b, & 2<x<4 \\ 6, & x \geq 4\end{array}\right.$

Values of a and b such that $f(x)$ is continuous everywhere, are
(1) $\frac{-5}{8}, \frac{3}{2}$
(2) $\frac{5}{8}, \frac{-3}{2}$
(3) $\frac{5}{8}, \frac{3}{2}$
(4) $\frac{5}{3}, \frac{2}{3}$
99. Derivative of $\cos ^{-1} \sqrt{\frac{1+\mathrm{x}}{2}}, 0 \leq x<1$ is
(1) $\frac{-2}{\sqrt{1-\mathrm{x}^{2}}}$
(2) $\frac{-1}{2 \sqrt{1-\mathrm{x}^{2}}}$
(3) $-\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$
(4) $\frac{1}{2 \sqrt{1-x^{2}}}$
100. The radius of curvature P for the curve $x y=c, c$ being constant, is
(1) $\left(x^{2}+y^{2}\right)^{-1 / 2}$
(2) $\frac{\left(x^{2}+y^{2}\right)^{3 / 2}}{c}$
(3) $\frac{\left(x^{2}+y^{2}\right)^{2 / 3}}{2 c}$
(4) $\frac{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{3 / 2}}{2 \mathrm{c}}$

Found sued \& op ard

5) 116 trot
(DO NOT OPEN THIS QUESTION BOOKLET BEFORETIME OR UNTIL YOU AREASKEDTO DO SO)

1. All questions are compulsory.
2. The candidates must return the Question book-let as well as OMR answer-sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means / misbehavipur will be registered against him / her, in addition to lodging/of an FIR with the police. Further the answer-sheet of such a candidate will hot be evaluated
3. In case there is any discrepancy in army questions) in the Question Booklet, the
 same may be brought to the notice of the Controller of Examinations in writing within two hours after the pest \hat{s} over. No such complaints) will be entertained thereafter.
4. The candidate MUST NOT do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question book-let itself. Answers MUST NOT be ticked in the Question book-let.
5. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMPA Answer-Sheet will be treated as incorrect answer.
6. Use only Black or Blue BAZL POINT PEN of good quality in the OMR Answer-Sheet.
7. BEFORE ANSWERING THE QUESTIONS, THE CANDIDATES SHOULD ENSURE THAT THEY HAVE BEEN SUPPLIED CORRECT AND COMPLETE BOOK-LETS. COMPLAINTS, IF ANY, REGARDING MISPRINTING ETC. WILL NOT BE ENTERTAINED 30 MINUTES AFTER STARTING OF THE EXAMINATION.

Code-C

Question No.	Questions
1.	The equation $\frac{\partial^{2} u}{\partial x^{2}}+2 \frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=2 \frac{\partial^{2} u}{\partial x \partial y+}+2 \frac{\partial^{2} u}{\partial y \partial z}$ is (1) Linear (2) Elliptic (3) Hyperbolic (4) Parabolic
2.	Every given system of forces acting on a rigid body can be reduced to a (1) Couple (2) Screw (3) Wrench (4) Null force
3.	Absolute units of moment in S.I. system is (1) Dyne centimeter (2) Gram centimeter (3) Kg. meter (4) Newton meter
4.	For two equal forces acting on a particle, if square of their resultant is three times their product, then the angle between these forces is (1) $\pi / 2$ (2) $\pi / 3$ (3) $\pi / 4$ (4) $\pi / 6$
5.	A body is slightly displaced and still remains in equilibrium in any position, then such equilibrium is known as (1) Perfect equilibrium (2) Stable equilibrium (3) Neutral equilibrium (4) Natural equilibrium
6.	A body of weight 4 kg . rests in equilibrium on an inclined plane whose slope is 30°. The co-efficient of friction is (1) $\sqrt{3}$ (2) $\frac{1}{\sqrt{2}}$ (3) $\frac{1}{\sqrt{3}}$ (4) $\frac{2}{\sqrt{3}}$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-C

Question No.	Questions
7.	The series $\frac{2 p}{1^{q}}+\frac{3 p}{2^{q}}+\frac{4 p}{3^{q}}+\cdots \cdots \cdots$, where p and q are positive real numbers, is convergent if (1) $\mathrm{p}<\mathrm{q}-2$ (2) $\mathrm{p}<\mathrm{q}-1$ (3) $p>q$ (4) $\mathrm{p}=\mathrm{q}$
8.	The series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{5}}$ is (1) Absolutely convergent (2) Divergent (3) Conditionally convergent (4) Oscillatory
9.	The limit superior and limit inferior of $\left\{\frac{(-1)^{n}}{\mathrm{n}^{2}}\right\}$ are respectively equal to (1) 0,0 (2) 1,0 (3) $1,-1$ (4) $-1,0$
10.	If the series $\sum_{n=1}^{\infty} a_{n}$ is convergent and the series $<b_{n}>$ is monotonic and bounded, then the series $\sum_{n=1}^{\infty} a_{n} b_{n}$ is convergent. This result is due to (1) Cauchy (2) Leibnitz (3) Dirichlet (4) Abel
11.	Sum of the series $\sinh \mathrm{x}+\frac{\sinh 2 \mathrm{x}}{2}+\frac{\sinh 3 \mathrm{x}}{3}+\cdots \cdots \infty$, is (1) $\frac{1}{2}(i \pi-x)$ (2) $\frac{1}{2}(\mathrm{i} \pi+\mathrm{x})$ (3) $\mathrm{i} \pi-\mathrm{x}$ (4) $i \pi+x$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-C

Code-C

Questions

12. An integrating factor of $x \frac{d y}{d x}+(3 x+1) y=x e^{-2 x}$, is
(1) $x e^{x}$
(2) $\mathrm{xe}^{2 \mathrm{x}}$
(3) $\mathrm{xe}^{3 \mathrm{x}}$
(4) $\frac{1}{2} \mathrm{xe}^{-3 \mathrm{x}}$
13. For the differential equation $\frac{d^{2} y}{d x^{2}}+a y=-4 \sin 2 x$, if $y=x \cos 2 x$ is a particular solution, then the value of a is
(1) 4
(2) -4
(3) $\frac{1}{4}$
(4) $-\frac{1}{4}$
14. Orthogonal trajectories of the family of parabolas $y^{2}=4$ ax are
(1) $2 \mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{c}$
(2) $x^{2}+2 y^{2}=c$
(3) $x^{2}=4 a y+c$
(4) $y^{2}=4 x+\frac{c}{a}$
15. The differential equation of the type $y=p x+f(p)$ is known with the name
(1) Euler
(2) Lagrange
(3) Clairaut
(4) Cauchy
16. The vector $(x+3 y) \hat{i}+(y-2 z) \hat{j}+(x+\lambda z) \hat{k}$ is solenoidal, then the value of λ is
(1) 0
(2) -1
(3) 2
(4) -2
17. Magnitude of maximum directional derivative of $\phi(x, y, z)=x^{2}-2 y^{2}+4 z^{2}$ at the point $(1,1,-1)$ is
(1) $\sqrt{21}$
(2) $2 \sqrt{21}$
(3) $3 \sqrt{21}$
(4) $27 / 4$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-C

Question No.	Questions
18.	A particle moves along the curve $x=4 \cos t, y=4 \sin t, z=6 t$, where t is time. Magnitude of acceleration at time t is (1) 3 (2) $7 / 2$ (3) $\sqrt{5}$ (4) 4
19.	Using Stoke's theorem, value of the integral $\oint_{C}(y z d x+x z d y+x y d z)$, where c is the curve $\mathrm{x}^{2}+\mathrm{y}^{2}=1, \mathrm{z}=\mathrm{y}^{2}$; is (1) 0 (2) 1 (3) 2 (4) $7 / 2$
20.	If $\vec{f}=3 x y \hat{i}-y^{2} \hat{\mathrm{j}}$, then $\int_{c} \vec{f} \cdot d r$, where c is the curve $y=2 x^{2}$, from $(0,0)$ to $(1,2)$; is (1) $5 / 7$ (2) $7 / 5$ (3) $-7 / 6$ (4) $-8 / 3$
21.	Every skew-symmetric matrix of odd order is (1) Symmetric (2) Singular (3) Non-singular (4) Hermitian
22.	If r is the rank of the matrix A, then the number of linearly independent solutions of the equation $\mathrm{AX}=0$ in n variables, is (1) $n-r$ (2) $\mathrm{n}-\mathrm{r}-1$ (3) $\mathrm{r}-1$ (4) n / r
23.	For the equation $x^{8}+5 x^{3}+2 x-3=0$, least number of imaginary roots (1) 4 (2) 5 (3) 6 (4) 2

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-C
(4)

Question No.	Questions
24.	Characteristic roots of a Hermitian matrix are all (1) zero (2) imaginary (3) complex (4) real
25.	One root of the equation $a x^{3}+b x^{2}+c x+d=0$ is equal to the sum of the other two if (1) $\mathrm{b}^{3}+4 a b c+8 \mathrm{a}^{2} \mathrm{~d}=0$ (2) $b^{2}+4 a b c-8 a^{2} d=0$ (3) $b^{3}-4 a b c+8 a^{2} d=0$ (4) $\mathrm{b}^{3}-4 a b c-8 \mathrm{a}^{2} \mathrm{~d}=0$
26.	The roots of the equation $2 x^{3}+6 x^{2}+5 x+k=0$ are in A. P. Then the value of K is (1) -1 (2) 1 (3) -2 (4) 2
27.	If $\frac{x^{n}-2^{n}}{x-2}=80$ and n is a positive integer, then the value of n is (1) 2 (2) 3 (3) 4 (4) 5
28.	Let $f(x)=\left\{\begin{array}{cl}a x+1, & x \leq 2 \\ 3 a x+b, & 2<x<4 \\ 6, & x \geq 4\end{array}\right.$ Values of a and b such that $f(x)$ is continuous everywhere, are (1) $\frac{-5}{8}, \frac{3}{2}$ (2) $\frac{5}{8}, \frac{-3}{2}$ (3) $\frac{5}{8}, \frac{3}{2}$ (4) $\frac{5}{3}, \frac{2}{3}$

PG-EE-2016 (Maths, Maths with Comp.Sc.) Code-C

Code-C

Question
No.

Questions

29. Derivative of $\cos ^{-1} \sqrt{\frac{1+\mathrm{x}}{2}}, 0 \leq \mathrm{x}<1$ is
(1) $\frac{-2}{\sqrt{1-\mathrm{x}^{2}}}$
(2) $\frac{-1}{2 \sqrt{1-x^{2}}}$
(3) $-\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$
(4) $\frac{1}{2 \sqrt{1-x^{2}}}$
30. The radius of curvature P for the curve $x y=c, c$ being constant, is
(1) $\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{-3 / 2}$
(2) $\frac{\left(x^{2}+y^{2}\right)^{3 / 2}}{c}$
(3) $\frac{\left(x^{2}+y^{2}\right)^{2 / 3}}{2 c}$
(4) $\frac{\left(x^{2}+y^{2}\right)^{3 / 2}}{2 c}$
31. In an inner product space $\mathrm{V}(\mathrm{F})$, the inequality $|(\alpha, \beta)| \leq\|\alpha\| \cdot\|\beta\| \forall \alpha, \beta \in \mathrm{V}$, is called
(1) Schwarz inequality
(2) Triangle inequality
(3) Bessel's inequality
(4) Normal inequality
32. If u and v are normal vectors in an inner product space V, then $\|u-v\|=$
(1) 0
(2) 1
(3) 2
(4) $\sqrt{2}$
33. Which of the following is a orthogonal set
(1) $\{(1,0,1),(1,0,-1),(0,1,0)\}$
(2) $\{(1,0,1),(1,0,-1),(-1,0,1)\}$
(3) $\{(1,0,1),(1,0,-1),(0,2,3)\}$
(4) None of these

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-C

Code-C

Questions

34. The missing term in the table

x	0	1	2	3	4
y	1	3	9		81

(1) 27
(2) 31
(3) 32
(4) 34
35. The sum of eigen values of a square matrix A of order n is equal to
(1) $\frac{\mathrm{n}}{2}$
(2) $\frac{\mathrm{n}-1}{2}$
(3) trace (A)
(4) $|\mathrm{A}|$
36. In Simpson's $\frac{3}{8}$ th rule, the interpolating polynomial is of degree
(1) 2
(2) 1
(3) 4
(4) 3
37. Root of the equation $x^{4}-12 x+7=0$ which is approximately equal to 2 , is
(1) 1.92
(2) 1.95
(3) 2.05
(4) 2.15
38. Which of the following is not correct
(1) $\Delta=(1-\nabla)^{-1}$
(2) $1-\mathrm{E}^{-1}=\nabla$
(3) $\mathrm{E}=1+\Delta$
(4) $\delta=\mathrm{E}^{1 / 2}-\mathrm{E}^{-1 / 2}$
39. For a normal distribution having mean μ and standard deviation σ, the most probable limits are
(1) $\mu \pm \sigma$
(2) $\mu \pm 2 \sigma$
(3) $\mu \pm \frac{3}{2} \sigma$
(4) $\mu \pm 3 \sigma$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-C

Code-C

Question No.	Questions
40.	In Gauss quadrature formula, the range of integration is (1) $[0,1]$ (2) $[-1,1]$ (3) $[0, \mathrm{n}]$ (4) $[-1,0]$
41.	The improper integral $\int_{1}^{2} \frac{x}{\sqrt{x-1}} d x$ converges to (1) $5 / 3$ (2) $8 / 3$ (3) $3 / 8$ (4) $3 / 5$
42.	Which of the following statements is not true (1) Every singleton set is connected in any metric space (2) Empty set is connected in every metric space (3) Every subset having at least two points of a metric space is not connected (4) None of these
48.	$\int_{1}^{\infty} \frac{\sin \mathrm{x}}{\mathrm{x}^{\mathrm{m}}} \mathrm{dx}$ converges absolutely if (1) $\mathrm{m}<1$ (2) $m>1$ (3) $\mathrm{m}=0$ (4) $\mathrm{m} \leq 1$
44.	A totally bounded metric space is (1) Compact (2) Complete (3) Separable (4) Everywhere dense
45.	If the set A is open and the set B is closed in R^{n}, then (1) B-A is closed (2) $\mathrm{B}-\mathrm{A}$ is open (3) $\mathrm{B}-\mathrm{A}$ is semi-open (4) $\mathrm{B}-\mathrm{A}$ is null set

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-C

Questions

46. For a Cantor's ternary set, which of the following is not correct
(1) It is closed
(2) It is uncountable
(3) It is dense
(4) It is perfect set
47. Let f be a bounded function defined on the bounded interval $[a, b]$. Then f is Riemann integrable on $[a, b]$ iff
(1) $\int_{a}^{b} f \geq f_{a}^{b} f$
(2) $\int_{a}^{b} f \leq f_{a}^{b} f$
(3) $\int_{a}^{b} f<f_{a}^{b} f$
(4) $\int_{a}^{b} f=f_{a}^{b} f$
48. If G is a non-abelian group of order 125 , then $\mathrm{O}(\mathrm{Z}(\mathrm{G}))$ is
(1) 25
(2) 125
(3) 5
(4) 10
49. The number of abelian groups upto isomorphism of order 10^{5} is
(1) 50
(2) 49
(3) 45
(4) 39
50. The number of generators of a finite group of order 53 are
(1) 53
(2) 52
(3) 54
(4) $\lcm{52}$
51. If Lagrange's mean value theorem is used on the function $f(x)=x(x-1)$ in [1, 2], then the value of ' c ' ' is
(1) $1 / 2$
(2) $3 / 2$
(3) $2 / 3$
(4) $3 / 4$
52. If $u=2 x y, v=x^{2}-y^{2}, x=r \cos \theta, y=r \sin \theta$, then $\frac{\partial(u, v)}{\partial(r, \theta)}=$
(1) $-4 r^{3}$
(2) $-4 r^{2}$
(3) $-2 \mathrm{r}^{3}$
(4) $-3 r^{2}$

Code-C

Question No.	Questions
53.	If $u=f(x+2 y)+g(x-2 y)$, then $4 \frac{\partial^{2} u}{\partial x^{2}}=$ (1) $-\frac{\partial^{2} u}{\partial y^{2}}$ (2) $\frac{\partial^{2} u}{\partial y^{2}}$ (3) $2 \frac{\partial^{2} u}{\partial y^{2}}$ (4) $-2 \frac{\partial^{2} u}{\partial y^{2}}$
54.	If $u=\log \left(x^{2}+x y+y^{2}\right)$ then $u \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=$ (1) 0 (2) -1 (3) 1 (4) 2
55.	The envelope of the family of curves $(x-a)^{2}+y^{2}=4 a$, a being the parameter ; is (1) $x^{2}=4(y+1)$ (2) $\mathrm{x}^{2}=2(\mathrm{x}+1)$ (3) $\mathrm{y}^{2}=4(\mathrm{x}+1)$ (4) $\mathrm{y}^{2}=-4(\mathrm{x}+1)$
56.	The locus of centre of curvature for a curve is called its (1) envelope (2) evolute (3) torsion (4) characteristic
57.	$\lim _{x \rightarrow 0} \frac{\left(\tan ^{-1} x\right)^{2}}{\log \left(1+x^{2}\right)}=$ (1) 0 (2) $\frac{1}{2}$ (3) -1 (4) $\frac{3}{2}$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-C

Question No.	Questions
58.	Partial differential equation obtained by eliminating the arbitrary constants a and b from the relation $2 \mathrm{z}=(\mathrm{ax}+\mathrm{y})^{2}+\mathrm{b}$, is (1) $p x+q y=q^{2}$ (2) $p y+q x=q^{2}$ (3) $p x+q y=p^{2}$ (4) $p y+q x=p^{2}$
59.	Solution of $p x+q y=3 z$ is (1) $f\left(\frac{y}{x}, \frac{x^{2}}{z}\right)=0$ (2) $f\left(\frac{y}{x}, \frac{x^{3}}{z}\right)=0$ (3) $f\left(\frac{x}{y}, \frac{x^{2}}{z}\right)=0$ (4) $f\left(\frac{x}{y}, \frac{x^{3}}{z}\right)=0$
60.	P.I. of the partial differential equation $\left(\mathrm{D}^{2}-2 \mathrm{DD}^{\prime}+\mathrm{D}^{\prime 2}\right) \mathrm{z}=12 \mathrm{xy}$, is (1) $2 x^{3} y+x^{4}$ (2) $2 x^{3} y+y^{3}$ (3) $2 x^{3} y+3 x^{2}$ (4) $2 x^{3} y+3 x^{4}$
61.	The number of prime ideals of Z_{10} is (1) 2 (2) 4 (3) 5 (4) 10
62.	If $f: G \rightarrow G^{\prime}$ is group homomorphism, then f is one-one if Kernel f is (1) Empty (2) Singleton set (3) Any set (4) Set of identity element
63.	An ideal S of a commutative ring R with unity is maximal iff R / S is (1) Anideal (2) A vector space (3) Aring (4) A field

PG-EE-2016 (Maths, Maths with Comp. Se.) Code-C

Code-C

64. Which of the following statements is false
(1) Every field is a ring
(2) Every finite integral domain is a field
(3) Every field is an integral domain
(4) Every integral domain is a field
65. A person weighing 70 kg . is in a lift ascending with an acceleration of $1.4 \mathrm{~m} / \mathrm{sec}^{2}$. The thrust of his feet on the lift (in Newton) is
(1) 784 N
(2) 780 N
(3) 692 N
(4) 980 N
66. The horizontal range of a projectile is three times the greatest height, the angle of projection is
(1) $\tan ^{-1} \frac{3}{2}$
(2) $\tan ^{-1} \frac{2}{3}$
(3) $\tan ^{-1} \frac{4}{3}$
(4) $\tan ^{-1} \frac{3}{4}$
67. The law of force towards the pole under the curve $\mathrm{r}^{2}=2$ ap is
(1) $\mathrm{F} \propto \frac{1}{\mathrm{r}^{2}}$
(2) $\mathrm{F} \propto \frac{1}{\mathrm{r}^{3}}$
(3) $\mathrm{F} \propto \frac{1}{\mathrm{r}^{4}}$
(4) $\mathrm{F} \propto \frac{1}{\mathrm{r}^{5}}$
68. If θ be the angle which the tangent at a point makes with the radius vector, then the relation between angular velocity w and linear velocity v is
(1) $\mathrm{w}=\mathrm{vr}$
(2) $\mathrm{w}=\frac{\mathrm{v} \cos \theta}{\mathrm{r}}$
(3) $\mathrm{w}=\frac{\mathrm{v} \sin \theta}{\mathrm{r}}$
(4) $\mathrm{w}=\mathrm{vr} \sin \theta$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-C

Code-C

Questions

No.
69. Two particles of mass m and 4 m are moving with equal momentum. The ratio of their kinetic energies is
(1) $1: 2$
(2) $2: 1$
(3) $1: 4$
(4) $4: 1$
70. Kepler law of motion says that each planet describes an ellipse having the sum at its
(1) Focus
(2) Centre
(3) Origin
(4) Outer cover
71. A particle describes the cycloid $\mathrm{s}=4 \mathrm{a} \sin \psi$ with uniform speed v . The acceleration at any point is
(1) $\frac{v^{2}}{4 a}$
(2) $\frac{v^{2}}{\sqrt{s^{2}-16 a^{2}}}$
(3) $\frac{v^{2}}{\sqrt{16 a^{2}-\mathrm{s}^{2}}}$
(4) $\frac{v^{2}}{\sqrt{a^{2}-s^{2}}}$
72.
$\int_{0}^{2}\left(8-x^{3}\right)^{-\frac{1}{3}} d x=$
(1) $\frac{1}{3} \beta\left(\frac{1}{3}, \frac{3}{2}\right)$
(2) $\frac{1}{3} \beta\left(\frac{1}{3}, \frac{2}{3}\right)$
(3) $\frac{2}{3} \beta\left(\frac{1}{3}, \frac{2}{3}\right)$
(4) $\beta\left(\frac{1}{3}, \frac{2}{3}\right)$
73. $\Gamma(\mathrm{n}) \Gamma(1-\mathrm{n})=$
(1) $\frac{\pi}{\sin n \pi}$
(2) $\frac{\sin n \pi}{\pi}$
(3) $\frac{\mathrm{n} \pi}{\sin \mathrm{n} \pi}$
(4) $\frac{2 \pi}{\sin n \pi}$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-C

Question No.	Questions
74.	If Fourier co-efficient of $f(t)$ are Cn , then Fourier co-efficients of $\overline{f(t)}$ are (1) $\overline{\mathrm{C}_{\mathrm{n}}}$ (2) $\overline{\mathrm{C}}_{-\mathrm{n}}$
	$\begin{array}{ll}\text { (3) }-\overline{\mathrm{C}}_{\mathrm{n}} & \text { (4) }-\overline{\mathrm{C}}_{-\mathrm{n}}\end{array}$
75.	By changing the order of integration, the value of $\int_{0}^{\pi} \int_{y}^{a} \frac{x d x d y}{x^{2}+y^{2}}=$ (1) $\frac{3 a}{4}$ (2) $\frac{3 \pi a}{4}$ (3) $\frac{4 \pi \mathrm{a}}{3}$ (4) $\frac{\pi a}{4}$
76.	Given that $f(z)=2 x^{2}+y+i\left(y^{2}-x\right) \cdot C-R$ equations for this function are satisfied at (1) the line $x=2 y$ (2) the line $y=2 x$ (3) every point of z-plane (4) no point of z-plane
77.	Image of $\|z-2 i\|=2$ under the mapping $w=u+i v=\frac{1}{z}$ is (1) $4 \mathrm{v}+1=0$ (2) $4 u+1=0$ (3) $4 \mathrm{v}-1=0$ (4) $4 u-1=0$
78.	Fixed point of the transformation $w=\frac{3 z-4}{z-1}$ is (1) $z=4$ (2) $\mathrm{z}=3$ (3) $\mathrm{z}=2$ (4) $\mathrm{z}=1$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-C

Code-C

Question No.	Questions
79.	If V and W are vector spaces, then a linear transformation T from V to W is isomorphism if it is (1) into (2) one-one (3) onto (4) orthogonal
80.	If $W=\{(a, b, c, d): b+c+d=0\}$ is a subspace of R^{4}, then $\operatorname{dim} W$ is (1) 4 (2) 3 (3) 2 (4) 1
81.	Oblique asymptotes to the curve $\mathrm{y}^{2}(\mathrm{x}-2 \mathrm{a})=\mathrm{x}^{3}-\mathrm{a}^{3}$ are (1) $\mathrm{y} \pm \mathrm{x}+2 \mathrm{a}=0$ (2) $x \pm y+2 a=0$ (3) $x \pm y+a=0$ (4) $y \pm x+a=0$
82.	Area between the parabolas $x^{2}=4$ ay and $y^{2}=4 a x$ is (1) $\frac{3}{8} a^{2}$ (2) $\frac{8}{3} a^{2}$ (3) $\frac{16}{3} a^{2}$ (4) $\frac{16}{5} a^{2}$
83.	$\int_{0}^{1} x^{6} \sqrt{1-x^{2}} d x=$ (1) $5 \pi / 32$ (2) $5 \pi / 16$ (3) $3 \pi / 128$ (4) $3 \pi / 32$
84.	Co-ordinates of the centre of the conic $8 x^{2}-24 x y+15 y^{2}+48 x-48 y=0$, are (1) $(4,3)$ (2) $(3,4)$ (3) $(3,2)$ (4) $(2,3)$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-C

Questions

85. Radius of the sphere

$$
\begin{aligned}
& x^{2}+y^{2}+z^{2}-4 x+6 y-8 z+4=0 \text { is } \\
& \begin{array}{llll}
\text { (1) } 3 & \text { (2) } 4 & \text { (3) } 4 / 7
\end{array}
\end{aligned}
$$

86. The condition that the plane $\mathrm{ax}+\mathrm{by}+\mathrm{cz}=0$ cuts the cone $\mathrm{xy}+\mathrm{yz}+\mathrm{zx}=$ 0 in perpendicular lines, is
(1) $\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}=1$
(2) $\frac{1}{\mathrm{a}}+\frac{2}{\mathrm{~b}}+\frac{3}{\mathrm{c}}=0$
(3) $\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}=0$
(4) $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$
87. Value of $\tan \left(i \log \frac{a-i b}{a+i b}\right)$ is
(1) $\frac{a b}{a^{2}-b^{2}}$
(2) $\frac{2 a b}{a^{2}-b^{2}}$
(3) $\frac{2 a b}{\left(a^{2}-b^{2}\right)^{2}}$
(4) $\frac{4 a b}{a^{2}-b^{2}}$
88. Which of the following congruences have solution
(1) $\mathrm{x}^{2} \equiv 2(\bmod 59)$
(2) $\mathrm{x}^{2} \equiv-2(\bmod 59)$
(3) $\mathrm{x}^{2} \equiv 2(\bmod 61)$
(4) $x^{2} \equiv-2(\bmod 61)$
89. If $\tan ^{-1} 2 x+\tan ^{-1} 3 x=\frac{\pi}{4}$, then $x=$
(1) $\frac{1}{2}$
(2) $\frac{1}{3}$
(3) $\frac{4}{7}$
(4) $\frac{1}{6}$

PG-EE-2016 (Maths, Maths with Comp.Sc.) Code-C

Code-C

90. If $\cosh x=2$, then $x=$
(1) $\log (2-\sqrt{5})$
(2) $\log (2-\sqrt{3})$
(3) $\log (2+\sqrt{5})$
(4) $\log (2+\sqrt{3})$
91.

$\left\{J_{\frac{1}{2}}(x)\right\}^{2}+\left\{J_{-\frac{1}{2}}(x)\right\}^{2}=$
(1) $\frac{\pi x}{2}$
(2) $\frac{x}{2 \pi}$
(3) $\frac{2}{\pi x}$
(4) $\frac{\pi}{2 x}$
92. If the Hermite polynomial of degree n is denoted by $\mathrm{H}_{\mathrm{n}}(\mathrm{x})$, then $\mathrm{H}_{1}(\mathrm{x})=$
(1) x
(2) $2 x$
(3) $-2 x$
(4) $\frac{x}{2}$
93.
$\int_{0}^{\infty} t e^{-2 t} \cos t d t=$
(1) $\frac{3}{16}$
(2) $\frac{9}{16}$
(3) $\frac{3}{25}$
(4) $\frac{9}{25}$
94.
$\tilde{L}^{2}\left\{\frac{1}{(s-4)^{3}}\right\}=$
(1) $\frac{1}{4} t e^{s t}$
(2) $\frac{1}{4} t^{2} e^{4 t}$
(3) $\frac{1}{2} t e^{4 t}$
(4) $\frac{1}{2} t^{2} e^{4 t}$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-C

Code-C

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-C
(18)

（DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKEDTO DO SO）
（PG－EE－2016） Maths，Math with Computer Science
Sr．No．

$$
11828
$$

Time： $1^{11 / 4}$ Hours
Max．Marks ： 100
Roll No． \qquad （in figure） \qquad （in words）

Name ： \qquad Father＇s Name ：

Mother＇s Name ： \qquad Date of Examination：

Code

DTotal Questions ： $\mathbf{1 0 0}$ （Signature of the candidate） （Signature of the Invigilator）

CANDIDATES MUST READ THE FOLLOWING INFORMATION／ INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER．
1．All questions are compulsory．
2．The candidates must return the Question book－lef as well as $O M R$ answer－sheet to the Invigilator concerned before leaving the Examination Hall，failing which a case of use of unfair－medns／misbehaviour will be registered against him／her， in addition to lodging of an FIR with the police．Further the answer－sheet of such a candidate will not be evaluated．
3．In case there is any discrepancy in and questions）in the Question Booklet，the same may be brought to the notice of the Controller of Examinations in writing within two hours after the test is ever．No such complaints）will be entertained thereafter．
4．The candidate MUST NOT do－any rough work or writing in the OMR Answer－Sheet．Rough work，if arr，may bo done in the question book－let itself． Answers MUST NOT be ticked din the Question book－let．
5．There will／be no negative marking．Each correct answer will be awarded one full mark．Cutting，erasing，overwriting and more than one answer in OMR Answer－Sheet will be treated as incorrect answer．
6．Use only Black or Blue BALL HOINT PEN of good quality in the OMR Answer－Sheet．
7．BEFORE ANSWERING THE QUESTIONS，THE CANDIDATES SHOULD ENSURE THAT THEY HAVE BEEN SUPPLIED CORRECT AND COMPLETE BOOK－LETS．COMPLAINTS，IF ANY，REGARDING MISPRINTING ETC．WILL NOT BE ENTERTAINED 30 MINUTES AFTER STARTING OF THE EXAMINATION．

Code-D

Question

Questions

1. Oblique asymptotes to the curve $y^{2}(x-2 a)=x^{3}-a^{3}$ are
(1) $y \pm x+2 a=0$
(2) $x \pm y+2 a=0$
(3) $x \pm y+z=0$
(4) $y \pm x+a=0$
2. Area between the parabolas $x^{2}=4$ ay and $y^{2}=4$ ax is
(1) $\frac{3}{8} \mathrm{a}^{2}$
(2) $\frac{8}{3} a^{2}$
(3) $\frac{16}{3} a^{2}$
(4) $\frac{16}{5} a^{2}$
3. $\int_{0}^{1} x^{6} \sqrt{1-x^{2}} d x=$
(1) $5 \pi / 32$
(2) $5 \pi / 16$
(3) $3 \pi / 128$
(4) $3 \pi / 32$
4. Co-ordinates of the centre of the conic
$8 x^{2}-24 x y+15 y^{2}+48 x-48 y=0$, are
(1) $(4,3)$
(2) $(3,4)$
(3) $(3,2)$
(4) $(2,3)$
5. Radius of the sphere
$x^{2}+y^{2}+z^{2}-4 x+6 y-8 z+4=0$ is
(1) 3
(2) 4
(3) $4 / 7$
(4) 5

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-D
(1)

Code-D

Question	Questions
6.	The condition that the plane $a x+b y+c z=0$ cuts the cone $x y+y z+z x=$ in perpendicular lines, is (1) $\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}=1$ (2) $\frac{1}{\mathrm{a}}+\frac{2}{\mathrm{~b}}+\frac{3}{\mathrm{c}}=0$ (3) $\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}=0$ (4) $a+b+c=0$
7.	Value of $\tan \left(i \log \frac{a-i b}{a+i b}\right)$ is (1) $\frac{a b}{a^{2}-b^{2}}$ (2) $\frac{2 a b}{a^{2}-b^{2}}$
	(3) $\frac{2 a b}{\left(a^{2}-b^{2}\right)^{2}}$ (4) $\frac{4 a b}{a^{2}-b^{2}}$
8.	Which of the following congruences have solution (1) $\mathrm{x}^{2} \equiv 2(\bmod 59)$ (2) $\mathrm{x}^{2} \equiv-2(\bmod 59)$ (3) $\mathrm{x}^{2} \equiv 2(\bmod 61)$ (4) $x^{2} \equiv-2(\bmod 61)$
9.	If $\tan ^{-1} 2 x+\tan ^{-1} 3 x=\frac{\pi}{4}$, then $\mathrm{x}=$ (1) $\frac{1}{2}$ (2) $\frac{1}{3}$
	(3) $\frac{4}{7}$ (4) $\frac{1}{6}$
10.	If $\cosh \mathrm{x}=2$, then $\mathrm{x}=$ (1) $\log (2-\sqrt{5})$ (2) $\log (2-\sqrt{3})$ (3) $\log (2+\sqrt{5})$ (4) $\log (2+\sqrt{3})$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-D

Code-D

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-D

Code-D

Question

Questions

16. In Simpson's $\frac{3}{8}$ th rule, the interpolating polynomial is of degree
(1) 2
(2) 1
(3) 4
(4) 3
17. Root of the equation $x^{4}-12 x+7=0$ which is approximately equal to 2 , is
(1) 1.92
(2) 1.95
(3) 2.05
(4) 2.15
18. Which of the following is not correct
(1) $\Delta=(1-\nabla)^{-1}$
(2) $1-\mathrm{E}^{-1}=\nabla$
(3) $\mathrm{E}=1+\Delta$
(4) $\delta=\mathrm{E}^{1 / 2}-\mathrm{E}^{-1 / 2}$
19. For a normal distribution having mean μ and standard deviation σ, the most probable limits are
(1) $\mu \pm \sigma$
(2) $\mu \pm 2 \sigma$
(3) $\mu \pm \frac{3}{2} \sigma$
(4) $\mu \pm 3 \sigma$
20. In Gauss quadrature formula, the range of integration is
(1) $[0,1]$
(2) $[-1,1]$
(3) $[0, \mathrm{n}]$
(4) $[-1,0]$
21. The number of prime ideals of Z_{10} is
(1) 2
(2) 4
(3) 5
(4) 10
22. If $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ is group homomorphism, then f is one-one if Kernel f is
(1) Empty
(2) Singleton set
(3) Any set
(4) Set of identity element

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-D

Code-D

Question No.	Questions
23.	An ideal S of a commutative ring R with unity is maximal iff R / S is (1) An ideal (2) A vector space (3) A ring (4) A field
24.	Which of the following statements is false (1) Every field is a ring (2) Every finite integral domain is a field (3) Every field is an integral domain (4) Every integral domain is a field
25.	A person weighing 70 kg . is in a lift ascending with an acceleration of $1.4 \mathrm{~m} / \mathrm{sec}^{2}$. The thrust of his feet on the lift (in Newton) is (1) 784 N (2) 780 N (3) 692 N (4) 980 N
26.	The horizontal range of a projectile is three times the greatest height, the angle of projection is (1) $\tan ^{-1} \frac{3}{2}$ (2) $\tan ^{-1} \frac{2}{3}$ (3) $\tan ^{-1} \frac{4}{3}$ (4) $\tan ^{-1} \frac{3}{4}$
27.	The law of force towards the pole under the curve $\mathrm{r}^{2}=2$ ap is (1) $\mathrm{F} \propto \frac{1}{\mathrm{r}^{2}}$ (2) $\mathrm{F} \propto \frac{1}{\mathrm{r}^{3}}$ (3) $\mathrm{F} \propto \frac{1}{\mathrm{r}^{4}}$ (4) $\mathrm{F} \propto \frac{1}{\mathrm{r}^{5}}$

PG-EE-2016 (Maths, Maths with Comp. Se.) Code-D

Code-D
Question

Questions

28. If θ be the angle which the tangent at a point makes with the radius vector, then the relation between angular velocity w and linear velocity v is
(1) $\mathrm{w}=\mathrm{vr}$
(2) $\mathrm{w}=\frac{\mathrm{v} \cos \theta}{\mathrm{r}}$
(3) $\mathrm{w}=\frac{\mathrm{v} \sin \theta}{\mathrm{r}}$
(4) $\mathrm{w}=\mathrm{vr} \sin \theta$
29. Two particles of mass m and 4 m are moving with equal momentum. The ratio of their kinetic energies is
(1) $1: 2$
(2) $2: 1$
(3) $1: 4$
(4) $4: 1$
30. Kepler law of motion says that each planet describes an ellipse having the sum at its
(1) Focus
(2) Centre
(3) Origin
(4) Outer cover
31.

$\left\{J_{\frac{1}{2}}(x)\right\}^{2}+\left\{J_{-\frac{1}{2}}(x)\right\}^{2}=$
(1) $\frac{\pi x}{2}$
(2) $\frac{x}{2 \pi}$
(3) $\frac{2}{\pi x}$
(4) $\frac{\pi}{2 x}$
32. If the Hermite polynomial of degree n is denoted by $H_{n}(x)$, then $H_{1}(x)=$
(1) x
(2) 2 x
(3) $-2 x$
(4) $\frac{x}{2}$
33.
$\int_{0}^{\infty} t e^{-2 t} \cos t d t=$
(1) $\frac{3}{16}$
(2) $\frac{9}{16}$
(3) $\frac{3}{25}$
(4) $\frac{9}{25}$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-D

Code-D

Questions

34. $\tilde{L}^{-1}\left\{\frac{1}{(s-4)^{3}}\right\}=$
(1) $\frac{1}{4} t \mathrm{e}^{3 t}$
(2) $\frac{1}{4} t^{2} e^{4 t}$
(3) $\frac{1}{2} t e^{4 t}$
(4) $\frac{1}{2} t^{2} e^{4 t}$
35. Fourier transform of the function
$f(t)=\left\{\begin{array}{cl}e^{-a t}, & t>0, a>0 \\ 0, & t<0\end{array}\right.$ is
(1) $\frac{1}{a+i s}$
(2) $\frac{\pi}{a+i s}$
(3) $\frac{\mathrm{a}}{\pi+\mathrm{is}}$
(4) $\frac{\pi \mathrm{a}}{1+\mathrm{is}}$
36. Given that

$$
\begin{aligned}
& \text { int } x=1, y=4 ; \\
& x=++x+--y
\end{aligned}
$$

Then the value of x is
(1) 4
(2) 5
(3) 6
(4) 7
37. The continue statement cannot be used with
(1) do
(2) while
(3) for
(4) switch
38. The expression $(* \mathrm{p}) \cdot \mathrm{x}$ is equivalent to
(1) $* p \rightarrow x$
(2) $\mathrm{p} \rightarrow \mathrm{x}$
(3) $\mathrm{p} \rightarrow \cdot \mathrm{x}$
(4) $\mathrm{p}=\mathrm{x}$
39. The result of the expression (17*4) \% (int) 9-3 is
(1) 5
(2) 4
(3) 3.7
(4) 7.3

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-D
40. The condition for covergence of the Newton - Raphson method to a root α is
(1) $\frac{f^{\prime}(\alpha)}{f^{\prime \prime}(\alpha)}<0$
(2) $\frac{\mathrm{f}^{\prime}(\alpha)}{\mathrm{f}^{\prime \prime}(\alpha)}<1$
(3) $\frac{f^{\prime}(\alpha)}{f^{\prime \prime}(\alpha)}>1$
(4) $\frac{\mathrm{f}^{\prime}(\alpha)}{\mathrm{f}^{\prime \prime}(\alpha)}<2$
41. If Lagrange's mean value theorem is used on the function $f(x)=x(x-1)$ in $[1,2]$, then the value of ' c ' is
(1) $1 / 2$
(2) $3 / 2$
(3) $2 / 3$
(4) $3 / 4$
42. If $u=2 x y, v=x^{2}-y^{2}, x=r \cos \theta, y=r \sin \theta$, then $\frac{\partial(u, v)}{\partial(r, \theta)}=$
(1) $-4 r^{3}$
(2) $-4 \mathrm{r}^{2}$
(3) $-2 r^{3}$
(4) $-3 \mathrm{r}^{2}$
43. If $u=f(x+2 y)+g(x-2 y)$, then $4 \frac{\partial^{2} u}{\partial x^{2}}=$
(1) $-\frac{\partial^{2} u}{\partial y^{2}}$
(2) $\frac{\partial^{2} u}{\partial y^{2}}$
(3) $2 \frac{\partial^{2} u}{\partial y^{2}}$
(4) $-2 \frac{\partial^{2} u}{\partial y^{2}}$
44. If $u=\log \left(x^{2}+x y+y^{2}\right)$ then $u \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=$
(1) 0
(2) -1
(3) 1
(4) 2

PG-EE-2016 (Maths, Maths with Comp.Sc.) Code-D

Code-D

Question

No.
45. The envelope of the family of curves $(x-a)^{2}+y^{2}=4 a$ a a being the parameter ; is
(1) $x^{2}=4(y+1)$
(2) $\mathrm{x}^{2}=2(\mathrm{x}+1)$
(3) $\mathrm{y}^{2}=4(\mathrm{x}+1)$
(4) $y^{2}=-4(x+1)$
46. The locus of centre of curvature for a curve is called its
(1) envelope
(2) evolute
(3) torsion
(4) characteristic
47. $\lim _{x \rightarrow 0} \frac{\left(\tan ^{-1} x\right)^{2}}{\log \left(1+x^{2}\right)}=$
(1) 0
(2) $\frac{1}{2}$
(3) 1
(4) $\frac{3}{2}$
48. Partial differential equation obtained by eliminating the arbitrary constants a and b from the relation $2 \mathrm{z}=(\mathrm{ax}+\mathrm{y})^{2}+\mathrm{b}$, is
(1) $p x+q y=q^{2}$
(2) $p y+q x=q^{2}$
(3) $p x+q y=p^{2}$
(4) $\mathrm{py}+\mathrm{qx}=\mathrm{p}^{2}$
49. Solution of $p x+q y=3 z$ is
(1) $f\left(\frac{y}{x}, \frac{x^{2}}{z}\right)=0$
(2) $f\left(\frac{y}{x}, \frac{x^{3}}{z}\right)=0$
(3) $f\left(\frac{x}{y}, \frac{x^{2}}{z}\right)=0$
(4) $f\left(\frac{x}{y}, \frac{x^{3}}{z}\right)=0$
50. P.I. of the partial differential equation $\left(\mathrm{D}^{2}-2 \mathrm{DD}^{\prime}+\mathrm{D}^{\prime 2}\right) \mathrm{z}=12 \mathrm{xy}$, is
(1) $2 x^{3} y+x^{4}$
(2) $2 x^{3} y+y^{3}$
(3) $2 x^{3} y+3 x^{2}$
(4) $2 x^{3} y+3 x^{1}$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-D

Code-D

$\begin{aligned} & \begin{array}{l} \text { Question } \\ \text { No. } \end{array} \end{aligned}$	Questions
51. $\%$	Sum of the series $\sinh \mathrm{x}+\frac{\sinh 2 \mathrm{x}}{2}+\frac{\sinh 3 \mathrm{x}}{3}+\cdots \cdots \infty$, is (1) $\frac{1}{2}(i \pi-\mathrm{x})$ (2) $\frac{1}{2}(\mathrm{i} \pi+\mathrm{x})$ (3) $\mathrm{i} \pi-\mathrm{x}$ (4) $\mathrm{i} \pi+\mathrm{x}$
52.	An integrating factor of $x \frac{d y}{d x}+(3 x+1) y=x e^{-2 x}$, is (1) $x e^{x}$ (2) $x e^{2 x}$ (3) $\mathrm{xe}^{3 \mathrm{x}}$ (4) $\frac{1}{2} x e^{-3 x}$
53.	For the differential equation $\frac{d^{2} y}{d x^{2}}+a y=-4 \sin 2 x$, if $y=x \cos 2 x$ is a particular solution, then the value of a is (1) 4 (2) -4 (3) $\frac{1}{4}$ (4) $-\frac{1}{4}$
54.	Orthogonal trajectories of the family of parabolas $y^{2}=4$ ax are (1) $2 \mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{c}$ (2) $\mathrm{x}^{2}+2 \mathrm{y}^{2}=\mathrm{c}$ (3) $x^{2}=4 a y+c$ (4) $y^{2}=4 x+\frac{c}{a}$
55.	The differential equation of the type $y=p x+f(p)$ is known with the name (1) Euler (2) Lagrange (3) Clairaut (4) Cauchy

PG-EE-2016 (Maths, Maths with Comp. Se.) Code-D

Code-D

Question No.	Questions
56.	The vector $(x+3 y) \hat{i}+(y-2 z) \hat{j}+(x+\lambda z) \hat{k}$ is solenoidal, then the value of λ is (1) 0 (2) -1 (3) 2 (4) -2
57.	Magnitude of maximum directional derivative of $\phi(x, y, z)=x^{2}-2 y^{2}+4 z^{2}$ at the point $(1,1,-1)$ is (1) $\sqrt{21}$ (2) $2 \sqrt{21}$ (3) $3 \sqrt{21}$ (4) $27 / 4$
58.	A particle moves along the curve $x=4 \cos t, y=4 \sin t, z=6 t$, where t is time. Magnitude of acceleration at time t is (1) 3 (2) $7 / 2$ (3) $\sqrt{5}$ (4) 4
59.	Using Stoke's theorem, value of the integral $\oint_{c}(y z d x+x z d y+x y d z)$, where c is the curve $\mathrm{x}^{2}+\mathrm{y}^{2}=1, \mathrm{z}=\mathrm{y}^{2}$; is (1) 0 (2) 1 (3) 2 (4) $7 / 2$
60.	If $\overrightarrow{\mathrm{f}}=3 x y \hat{\mathrm{i}}-y^{2} \hat{\mathrm{j}}$, then $\int_{c} \overrightarrow{\mathrm{f}} \cdot d r$, where c is the curve $\mathrm{y}=2 \mathrm{x}^{2}$, from $(0,0)$ to $(1,2)$; is (1) $5 / 7$ (2) $7 / 5$ (3) $-7 / 6$ (4) $-8 / 3$

Code-D

Question

Questions

61. The equation $\frac{\partial^{2} u}{\partial x^{2}}+2 \frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=2 \frac{\partial^{2} u}{\partial x \partial y+}+2 \frac{\partial^{2} u}{\partial y \partial z}$ is
(1) Linear
(2) Elliptic
(3) Hyperbolic
(4) Parabolic
62. Every given system of forces acting on a rigid body can be reduced to a
(1) Couple
(2) Screw
(3) Wrench
(4) Null force
63. Absolute units of moment in S.I. system is
(1) Dyne centimeter
(2) Gram centimeter
(3) Kg. meter
(4) Newton meter
64. For two equal forces acting on a particle, if square of their resultant is three times their product, then the angle between these forces is
(1) $\pi / 2$
(2) $\pi / 3$
(3) $\pi / 4$
(4) $\pi / 6$
65. A body is slightly displaced and still remains in equilibrium in any position, then such equilibrium is known as
(1) Perfect equilibrium
(2) Stable equilibrium
(3) Neutral equilibrium
(4) Natural equilibrium
66. A body of weight 4 kg . rests in equilibrium on an inclined plane whose slope is 30°. The co-efficient of friction is
(1) $\sqrt{3}$
(2) $\frac{1}{\sqrt{2}}$
(3) $\frac{1}{\sqrt{3}}$
(4) $\frac{2}{\sqrt{3}}$

Code-D

$\begin{gathered} \text { Question } \\ \text { No. } \\ \hline \end{gathered}$	Questions
67.	The series $\frac{2 \mathrm{p}}{1^{q}}+\frac{3 \mathrm{p}}{2^{q}}+\frac{4 \mathrm{p}}{3^{q}}+\cdots \cdots \cdots$, where p and q are positive real numbers, is convergent if (1) $\mathrm{p}<\mathrm{q}-2$ (2) p $<$ q-1 (3) $p>q$ (4) $p=q$
68.	The series $\sum_{\mathrm{n}=1}^{\infty} \frac{(-1)^{\mathrm{n}-1}}{\mathrm{n}^{5}}$ is (1) Absolutely convergent (2) Divergent (3) Conditionally convergent (4) Oscillatory
69.	The limit superior and limit inferior of $\left\{\frac{(-1)^{\mathrm{a}}}{\mathrm{n}^{2}}\right\}$ are respectively equal to (1) 0,0 (2) 1,0 (3) $1,-1$ (4) $-1,0$
70.	If the series $\sum_{\mathrm{n}=1}^{\infty} \mathrm{a}_{\mathrm{n}}$ is convergent and the series $<\mathrm{b}_{\mathrm{n}}>$ is monotonic and bounded, then the series $\sum_{n=1}^{\infty} a_{n} b_{n}$ is convergent. This result is due to (1) Cauchy (2) Leibnitz (3) Dirichlet (4) Abel
71.	The improper integral $\int_{1}^{2} \frac{x}{\sqrt{x-1}} d x$ converges to (1) $5 / 3$ (2) $8 / 3$ (3) $3 / 8$ (4) $3 / 5$

PG-EE-2016 (Maths, Maths with Comp.Sc.) Code-D

Code-1

Questions

72. Which of the following statements is not true
(1) Every singleton set is connected in any metric space
(2) Empty set is connected in every metric space
(3) Every subset having at least two points of a metric space is not connected
(4) None of these
73.

$\int_{1}^{0} \frac{\sin x}{x^{m}} d x$ converges absolutely if
(1) $\mathrm{m}<1$
(2) $\mathrm{m}>1$
(3) $\mathrm{m}=0$
(4) $\mathrm{m} \leq 1$
74. A totally bounded metric space is
(1) Compact
(2) Complete
(3) Separable
(4) Everywhere dense
75. If the set A is open and the set B is closed in R^{n}, then
(1) $\mathrm{B}-\mathrm{A}$ is closed
(2) $\mathrm{B}-\mathrm{A}$ is open
(3) $\mathrm{B}-\mathrm{A}$ is semi-open
(4) $\mathrm{B}-\mathrm{A}$ is null set
76. For a Cantor's ternary set, which of the following is not correct
(1) It is closed
(2) It is uncountable
(3) It is dense
(4) It is perfect set
77. Let f be a bounded function defined on the bounded interval $[a, b]$. Then f is Riemann integrable on $[a, b]$ iff
(1) $\int_{a}^{b} f \geq f_{a}^{\bar{b}} f$
(2) $\int_{a}^{b} f \leq f_{a}^{b} f$
(3). $\int_{a}^{b} f<f_{a}^{b} f$
(4) $\int_{a}^{b} f=f_{a}^{b} f$
78. If G is a non-abelian group of order 125 , then $\mathrm{O}(\mathrm{Z}(\mathrm{G}))$ is
(1) 25
(2) 125
(3) 5
(4) 10

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-D

Code-D

Question No.
79.

Questions

79. The number of abelian groups unto isomorphism of order 10^{5} is
(1) 50
(2) 49
(3) 45
(4) 39
80. The number of generators of a finite group of order 53 are
(1) 53
(2) 52
(3) 54
(4) $\lcm{52}$
81. Every skew-symmetric matrix of odd order is
(1) Symmetric
(2) Singular
(3) Non-singular
(4) Hermitian
82. If r is the rank of the matrix A, then the number of linearly independent solutions of the equation $A X=0$ in n variables, is
(1) $n-r$
(2) $\mathrm{n}-\mathrm{r}-1$
(3) $r-1$
(4) n / r
83. For the equation $x^{8}+5 x^{3}+2 x-3=0$, least number of imaginary roots is
(1) 4
(2) 5
(3) 6
(4) 2
84. Characteristic roots of a Hermitian matrix are all
(1) zero
(2) imaginary
(3) complex
(4) real
85. One root of the equation $a x^{3}+b x^{2}+c x+d=0$ is equal to the sum of the other two if
(1) $b^{3}+4 a b c+8 a^{2} d=0$
(2) $\mathrm{b}^{2}+4 a b c-8 \mathrm{a}^{2} \mathrm{~d}=0$
(3) $\mathrm{b}^{3}-4 a b c+8 \mathrm{a}^{2} \mathrm{~d}=0$
(4) $b^{3}-4 a b c-8 a^{2} d=0$

Code-D

$\begin{gathered} \text { Question } \\ \text { No. } \\ \hline \end{gathered}$	Questions
86.	The roots of the equation $2 x^{3}+6 x^{2}+5 x+k=0$ are in A. P. Then the value of K is (1) -1 (2) 1 (3) -2 (4) 2
87.	If $\frac{x^{n}-2^{n}}{x-2}=80$ and n is a positive integer, then the value of n is (1) 2 (2) 3 (3) 4 (4) 5
88.	Let $f(x)=\left\{\begin{array}{cl}a x+1, & x \leq 2 \\ 3 a x+b, & 2<x<4 \\ 6, & x \geq 4\end{array}\right.$ Values of a and b such that $f(x)$ is continuous everywhere, are (1) $\frac{-5}{8}, \frac{3}{2}$ (2) $\frac{5}{8}, \frac{-3}{2}$ (3) $\frac{5}{8}, \frac{3}{2}$ (4) $\frac{5}{3}, \frac{2}{3}$
89.	Derivative of $\cos ^{-1} \sqrt{\frac{1+x}{2}}, 0 \leq x<1$ is (1) $\frac{-2}{\sqrt{1-x^{2}}}$ (2) $\frac{-1}{2 \sqrt{1-x^{2}}}$ (3) $-\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$ (4) $\frac{1}{2 \sqrt{1-x^{2}}}$

90. The radius of curvature P for the curve $x y=c, c$ being constant, is
(1) $\left(x^{2}+y^{2}\right)^{-3 / 2}$
(2) $\frac{\left(x^{2}+y^{2}\right)^{3 / 2}}{c}$
(3) $\frac{\left(x^{2}+y^{2}\right)^{2 / 3}}{2 c}$
(4) $\frac{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{3 / 2}}{2 \mathrm{c}}$

Code-D

Question No.	Questions
91.	A particle describes the cycloid $s=4 \mathrm{a} \sin \psi$ with uniform speed v . The acceleration at any point is (1) $\frac{v^{2}}{4 a}$ (2) $\frac{v^{2}}{\sqrt{s^{2}-16 a^{2}}}$ (3) $\frac{\mathrm{v}^{2}}{\sqrt{16 \mathrm{a}^{2}-\mathrm{s}^{2}}}$ (4) $\frac{v^{2}}{\sqrt{a^{2}-s^{2}}}$
92.	$\int_{0}^{2}\left(8-x^{3}\right)^{-\frac{1}{3}} d x=$ (1) $\frac{1}{3} \beta\left(\frac{1}{3}, \frac{3}{2}\right)$ (2) $\frac{1}{3} \beta\left(\frac{1}{3}, \frac{2}{3}\right)$ (3) $\frac{2}{3} \beta\left(\frac{1}{3}, \frac{2}{3}\right)$ (4) $\beta\left(\frac{1}{3}, \frac{2}{3}\right)$
93.	$\Gamma(\mathrm{n}) \Gamma(1-\mathrm{n})=$ (1) $\frac{\pi}{\sin n \pi}$ (2) $\frac{\sin n \pi}{\pi}$ (3) $\frac{n \pi}{\sin n \pi}$ (4) $\frac{2 \pi}{\sin n \pi}$
94.	If Fourier co-efficient of $f(t)$ are Cn , then Fourier co-efficients of $\overline{f(t)}$ are (1) $\overline{C_{n}}$ (2) $\overline{\mathrm{C}}_{-\mathrm{n}}$ (3) $-\overline{\mathrm{C}}_{n}$ (4) $-\overline{\mathrm{C}}_{-\mathrm{n}}$

PG-EE-2016 (Maths, Maths with Comp. Sc.) Code-D

Code-D

Question

Questions

95. By changing the order of integration, the value of $\int_{0}^{a} \int_{y}^{a} \frac{x d x d y}{x^{2}+y^{2}}=$
(1) $\frac{3 \mathrm{a}}{4}$
(2) $\frac{3 \pi a}{4}$
(3) $\frac{4 \pi a}{3}$
(4) $\frac{\pi \mathrm{a}}{4}$
96. Given that $f(z)=2 x^{2}+y+i\left(y^{2}-x\right)$. $C-R$ equations for this function are satisfied at
(1) the line $x=2 y$
(2) the line $y=2 x$
(3) every point of z-plane
(4) no point of z-plane
97. Image of $|z-2 i|=2$ under the mapping $w=u+i v=\frac{1}{z}$ is
(1) $4 v+1=0$
(2) $4 u+1=0$
(3) $4 \mathrm{v}-1=0$
(4) $4 \mathrm{u}-1=0$
98. Fixed point of the transformation $\mathrm{w}=\frac{3 \mathrm{z}-4}{\mathrm{z}-1}$ is
(1) $\mathrm{z}=4$
(2) $\mathrm{z}=3$
(3) $\mathrm{z}=2$
(4) $z=1$
99. If V and W are vector spaces, then a linear transformation T from V to W is isomorphism if it is
(1) into
(2) one-one
(3) onto
(4) orthogonal
100. If $W=\{(a, b, c, d): b+c+d=0\}$ is a subspace of R^{4}, then $\operatorname{dim} W$ is
(1) 4
(2) 3
(3) 2
(4) 1

| 1.2 | 16.3 | 31.2 | 46.3 | 61.2 | 76.3 | 91.1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2.1 | 17.2 | 32.1 | 47.2 | 62.4 | 77.4 | 92.4 |
| 3.3 | 18.2 | 33.2 | 48.1 | 63.2 | 78.3 | 93.1 |
| 4.4 | 19.4 | 34.4 | 49.1 | 64.3 | 79.4 | 94.2 |
| 5.3 | 20.4 | 35.3 | 50.4 | 65.1 | 80.1 | 95.3 |
| 6.1 | 21.1 .1 | 36.2 | 51.3 | 66.3 | 81.3 | 96.4 |
| 7.4 | 22.3 | 37.3 | 52.2 | 67.4 | 82.2 | 97.3 |
| 8. 2 | 23.1 | 38.1 | 53.3 | 68.3 | 83.1 | 98.1 |
| 9.2 | 24.1 | 39.4 | 54.4 | 69.2 | 84.2 | 99.4 |
| 10.4 | 25.3 | 40.1 | 55.1 | 70.2 | 85.4 | 100.2 |
| 11.3 | 26.4 | 41.4 | 56.2 | 71.1 | 86.2 | |
| 12.3 | 27.2 | 42.3 | 57.4 | 72.1 | 87.1 | |
| 13.1 | 28.4 | 43.4 | 58.2 | 73.4 | 88.3 | |
| 14.2 | 29.1 | 44.2 | 59.1 | 74.4 | 89.3 | |
| 15.4 | 30.3 | 45.3 | 60.3 | 75.1 | 90.2 | |

fitandr os 17116
rotessor * Heosa. Matheman-
A.D. University. ROI

Litander os 17116
ruressor at Hown Doportment of Mathemu.. 1 D. University, ROHIR:

| 1.4 | 16.4 | 31.1 | 46.3 | 61.1 | 76.2 | 91.3 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2. 3 | 17.2 | 32.4 | 47.4 | 62.1 | 77.1 | 92.2 |
| 3. 4 | 18.4 | 33.1 | 48.3 | 63.4 | 78.3 | 93.3 |
| 4.2 | 19.1 | 34.2 | 49.2 | 64.4 | 79.3 | 94.4 |
| 5. 3 | 20.3 | 35.3 | 50.2 | 65.1 | 80.2 | 95.1 |
| 6.3 | 21.2 | 36.4 | 51.2 | 66.3 | 81.3 | 96.2 |
| 7.2 | 22.1 | 37.3 | 52.1 | 67.4 | 82.3 | 97.4 |
| 8.1 | 23.3 | 38.1 | 53.2 | 68.3 | 83.1 | 98.2 |
| 9.1 | 24.4 | 39.4 | 54.4 | 69.4 | 84.2 | 99.1 |
| 10.4 | 25.3 | 40.2 | 55.3 | 70.1 | 85.4 | 100.3 |
| 11.1 | 26.1 | 41.2 | 56.2 | 71.3 | 86.3 | |
| 12.3 | 27.4 | 42.4 | 57.3 | 72.2 | 87.2 | |
| 13.1 | 28.2 | 43.2 | 58.1 | 73.1 | 88.2 | |
| 14.1 | 29.2 | 44.3 | 59.4 | 74.2 | 89.4 | |
| 15.3 | 30.4 | 45.1 | 60.1 | 75.4 | 90.4 | |

roteneor se Resch.
A.D. Univessity.

1. 3
2. 4 31. 3
3. 2
4. 4
5. 3 91. 3
6. 3
7. 3
8. 2
9. 3
10. 3
11. 4
12. 2
13. 1
14. 1
15. 3
16. 1
17. 478.3
18. 1
19. 2
20. 4
21. 4
22. 4
23. 2
24. 2
25. 2
26. 4
27. 2
28. 1
29. 1
30. 3
31. 2
32. 4
33. 3
34. 1
35. 2
36. 1
37. 3
38. 2
39. 2
40. 2
41. 1
42. 4
43. 3
44. 2
45. 1
46. 1
47. 2
48. 4 38. 2
49. 1
50. 1
51. 3
52. 3
53. 4
54. 4
55. 1
56. 1
57. 1
58. 4
59. 3
60. 4
61. I
62. 3
63. 3
64. 4

B5. 3 100. 2
11. 1
26. 3
41. 2
56. 4
71. 2
86. 1
12. 4
27. 4
42. 1
57. 2
72. 4
87. 4
13. 1
28. 3
43. 2
58. 4
73. 2
88. 2
14. 2
29. 4 44. 4
59. 1
74. 3
89. 2
15. 3
30. 1
45. 3
60. 3
75. 190.4
frandy
$05 / 7116$
Tolseeor \& Howa,
Depertheoss of Mashoman-:
N.D. Uslveriliy. ROH:

