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If n(A) = 115, n(B) = 225, n(A — B) = 73, then n(Au B) =
(1) 265 (2) 278 (3) 295 (4) 298

The set of interior points of which of the following sets is not empty ?

(1) R (2) N 3) Z 4) I

If X is the set of even natural numbers less than 8 and Y is the set of odd prime
numbers less than equal to 7, then the number of relations from X to Y is::

1) 9 ) 27-1 @ 27 4) 2°

2 . when nis even

The sequence S, = { has limit point :

lowest prime factor (#1)of n , whennis odd

1) 2 (2) countable in number

3 1,23.4,........ (4) uncountable in number

2 1
The series Z 5

n=1 i
n

(1) convergent (2) conditionally convergent

(3) divergent , (4) oscillatory

Bl g B =
n—>0 n2 (112+12) (?12+22)

(1) 0 ) % 3) g (4) %
. sinhx—sinx

EE} xsinzx 4

1) < @ 3) % (4 —
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8. Let f(x)={7, ,1/x ~ o , then which of the following is true ?
0 , x=0

(1) flx)is continuousatx =0
(2) ftx) is discontinuous at x = 0
(3) flx)is differentiable atx =0
(4) f(x) has discontinuity of first kind from left at x = 0
9. Ifflx+y)=flx)ly) ¥ x, yand f(5) = -2 and f'(0)=3, then the value of f'(5)=
(1) =3 @) -5 3) -6 (4) 6

10. What is the abscissa of the point at which the tangent to the curve y = x (x — 1) is
parallel to the chord joining the extrimities of the curve in the interval [1, 2] ?

(1) 5/4 () 5/3 3) 4/3 (4) 3/2
11. A function f(x) is a monotonic function if f(x) is :

(1) either increasing or decreasing function

(2) only increasing function

(3) only decreasing function

(4) a constant function

12. The integral J. S e
a X
(1) converges absolutely ~ (2) does not converge
(3) converges but not absolutely - (4) does not exist

2 : 31
13. Let f,(x)=nxe™" ,x €[0,1], then which of the following is 7ot a point sequence ?

1) a,=2ne?" Q) a,=ne" (3) a,=2ne"  (4) a,=0




14.

15.

16.

17.

18.

19.

2

Xy -
¥ fiy)=922+y* ° (xy)#(0.0) , then the directional derivative along

0 , (x,y)=(0,0)
U= (\/5, \/i) at(0,0)is:

(1) 2 @) 242

1 1
2) —= @) —=
V2 22
Iff: X - R, X< R? and (2, b) € Xis such that f,, f, are differentiable at (2, b), then
fw(a,b)= f,,(a,b). This resultis known as :
(1) Schwarz's theorem (2) Young's theorem

(3) Taylor's theorem (4) Implicit function theorem

The function f(x,y)=x" +x’y +y”is:

(1) minimum at (0, 0)

(2) neither minimum nor maximum at (0, 0)
(3) maximum at (0, 0)

(4) discontinuous at (0, 0)

If <E, > is a sequence of Lebesgue measurable sets and m is the Lebesgue measure,
then :

(1) m(UE;)=> mE, ' 2) m(UE;)=) mE,
(3) m(u i)—FmEi 4) m(u -:')ZD
| ; _
Ifa>0and B >0and f(x)= x Smﬁf o B8 0, then f(x) is of bounded variation in
. 0 5 ez
[0, 1] if:
(1) a<p 2) 1+a<p 3) a+p=1 4) a>p

LetX={x:0<d(0,x)<1,and x e R? } where 0 = (0, 0) and d is the usual metric on X,
then which of the following is not true ?

(1) Xis closed (2) Xisbounded
(3) Xisnot compact (4) Xis éompact
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20.

21,

22,

23,

24.

25.

26.

27.

~ 28.

X = XywinX ,,T is an n-tuple non-zero vector, then the n x n matrix V =XX" :
(1) hasrank zero (2) hasrank1 (3) hasrankn (4) is orthogonal

2 -2 3

For the matrix A=|-2 —1 6/, one of the eigen values is 3, the other two eigen
‘

values are :

1) 2,-5 (2)°3; 5 (3) 3,-5 4) 2,5

Let V be the vector space of ordered pairs of complex numbers over the real field R,
then the dimension of V is : "
(1) 6 (2) 4 @2 4) 1

Let T be a linear transformation on a vector space V such that T> =T +1=0, then T _
is: ‘ >
(1) singular (2) invertible (3) notinvertible (4) idempotent

A real quadratic form X' AX in three variables is equivalent to the diagonal form
3-y12 —_4y§ +5y% . Then, the quadratic form X TAX is:

(1) positive definite (2) negative definite
(3) positive semi-definite (4) indefinite

The orthogonal complement of inner product space V is :

(1) zero subspace (2) any subspace

(3) V itself (4) None of these

If z=—\/§.—i then a value of z* is

1) 8(1+1'J§§ @ 8(1-iV3) @ 8(-1+iv3) (@ 8(3-i)

If w=u + iv, z = x+ iy, then the image of the line x = — 3 under the complex mapping
o 5
w=2z"1s:

1 3 2 3"2 3 9”2 4 9”2
(1) u=-30 @ w=3+T @) v=9-T @) u=9-T
Valueofz”s

«/'_ I 3 1 T 1 1
1§ e A BN A} S 1) =
(1) 5! (2) it ()2+21 ()2+21
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29.

30.

31.

32.

33.

34.

35.

Solution of ¢* = —j¢> i .

() 4+ (2n—1)ni @) 4+%(2n—1)m’

@) 4+ % (4n —1) ni (4) :1—(2}1—1}711’

Solution of the equation cos z = i sin z is :

(1) Z=Mﬂ:i (2) z:(4n+1)z;

(3) fznz”J ni (4) No solution
\

The function f(z)=Z% is:

(1) Everywhere differentiable

(2) Nowhere differentiable

(3) Differentiable onlyatz =0

(4) Differentiable everywhere except at z = ()

J‘ldz, where r(f) = sin t + 7 cos £O<t<2m, is:
Z
i
(1) -2n ) 4ni (3) 2ni (4) —2mi
Using Cauchy's integral formula for derivatives J‘ 511;2 dz, where C is the circle
C
]z] =248
(1) mi/2 2 ni/3 (3) —mni/3 (4) —mi/2
. A ! :
For the function f(z)=2z"sin| = | the pointz =0 is:
L :
(1) zero of order one (2) pole of order one
(3) essential singularity (4) zero of order two

Residue of if(2) = e apz= 0,is:

1]
B @) 3 (3) &’ 4) w
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