used for jumbled chart verification of kind kind Total No. of Printed Pages: 17

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

CPG-EE-2018 (Chemistry)-(SET-X)

A		Sr. No	10365
Time: 1½ Hours	Total Questions: 100		Max. Marks: 100
Roll No. (in figures)	(in words)		
Candidate's Name		Date of Birth—	
Father's Name —	——— Mother's Nam	ne	
Date of Exam :			
(Signature of the Candidate)		(Signature of	the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are *compulsory* and carry equal marks. The candidates are required to attempt all questions.
- 2. The candidates *must return* the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means/misbehaviour will be registered against him/her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. In case there is any discrepancy in any question(s) in the Question Booklet, the same may be brought to the notice of the Controller of Examinations in writing within two hours after the test is over. No such complaint(s) will be entertained thereafter.
- **4.** The candidate *must not* do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers *must not* be ticked in the question booklet.
- 5. Use only black or blue ball point pen of good quality in the OMR Answer-Sheet.
- **6.** There will be **negative** marking. Each correct answer will be awarded **one** full mark and each incorrect answer will be negatively marked for which the candidate will get ¼ discredit. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Before answering the questions, the candidates should ensure that they have been supplied correct & complete question booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

1.	What is the wavelength of a ball weighing	g 20	0 g and moving	at a	speed of 5 m/l	n ?
•	(1) 1.6×10^{-24} m	2)	2.3×10^{-30} m			
	(3) 3.2×10^{-28} m	4)	4.8×10^{-26} m			
2.	Which set of quantum numbers is not suit	tabl	e to an electron	?		
· _ ·			1, 0, 0, -½			
	$(3) 2, 0, 0, +\frac{1}{2} $	4)	1, 1, 1, +½			
3.	What is the correct order of radii?					
	$(1) O^{2-} > F^{-} > O > F $	2)	$O^{2-} > F^- > F > 0$			
	(3) $F^- > O^{2-} > F > O$	4)	$O^{2-} > O > F^{-} > I$	F		
4.	Effective nuclear charge of an ion is:					
	(1) Nuclear charge					
	(2) Nuclear charge + Screening constant					
	(3) Nuclear charge – Screening constant					
	(4) Nuclear charge + Charge on ion					
5.	Which of the following molecule does not	t po	ssess permanent	dir	oole moment ?	
	(1) NF_3 (2) CH_2Cl_2 (3)			_	BF_3	
6.	According to VSEPR theory shape of ClF ₃	is				
	(1) T-shaped (2) Triangular ((4)	Square planar	
7.	Maximum number of water molecules hydrogen bonding is:					rough
	(1) Two (2) Four (3)	3)	Six	(4)	Eight	
8.	Which of the following has highest lattice	en	ergy?			
	(1) KF (2) NaF (3)	3)	CsF	(4)	RbF	
9.	Glauber's salt is:					
	$(1) MgSO_4.7H_2O $	2)	$Na_2SO_4.10H_2O$			
	$(3) CuSO_4.5H_2O $	4)	FeSO ₄ .7H ₂ O			
G-E	EE-2018/(Chemistry)-(SET-X)/(A)		1 2			P. T. O.

10.	KO_2 is used in oxygen cylinders in space as it:		
	(1) absorbs CO_2	(2) produces O_3	
	(3) absorbs moisture	(4) absorbs CO_2 and increases O_2	
11.	In "Inorganic benzene" hybridization o	of B and N respectively is:	
	(1) Both have sp^2	(2) sp^2 and sp^3	
	(3) Both have sp^3	(4) sp^3 and sp^2	
12.	Three oxygen atoms of $[SiO_4]^{4-}$ are sha	ared in:	
	(1) Pyrosilicate	(2) Linear chain silicate	
	(3) Sheet silicate	(4) Three dimensional silicate	
13.	Number of P-O-P bonds in cyclic metal	phosphoric acid are:	
	(1) Zero (2) Two	(3) Three (4) Four	
14.	Oxyacid of Sulphur which contains lon	ne pair on Sulphur is :	
	(1) Sulphuric acid	(2) Pyrosulphuric acid	
i v	(3) Peroxy disulphuric acid	(4) Sulphurous acid	
15.	Order of acidity of the following is:		
	$(1) HClO_4 < HClO_3 < HClO_2 < HClO$		
	$(2) HClO < HClO_4 < HClO_3 < HClO_2$		
	$(3) HClO < HClO_2 < HClO_3 < HClO_4$		
	$(4) HClO_4 < HClO_2 < HClO_3 < HClO$		
16.	Which of the following have same num	nber of electron pair on Xenon atom?	
	() 37 0	(c) XeF_6	
	(1) Only (a) & (b)	(2) Only (b) & (c)	
	(3) Only (a) & (c)	(4) (a), (b) & (c)	
17.	Which of the following is not coloured ?	?	
	(1) $KMnO_4$ (2) $K_2Cr_2O_7$	(3) CuCl ₂ (4) TiO ₂	
CPG-E	E-2018/(Chemistry)-(SET-X)/(A)		

18	8. Which of the following shows magn (1) $[CoCl_4]^{4-}$	
	$(3) TiCl_4$	(2) $[Ni(CN)_6]^{2-}$ (4) $[Cu(NH_3)_4]^{2+}$
19	Cis and trans complexes of [PtA₂X₂(1) Kurnakov test] are distinguished by:
	(3) Chromyl Chloride test	(2) Ring test(4) Carbylamine test
20	 (1) Tetra chloro nickel (II) – Tetra ar (2) Tetra ammine-nickel (II) – Tetra 	nmine nickelate (0) chloro nickelate (II)
	(3) Tetra chloro nickel (II) – Tetra an	
21.	(4) Tetra ammine nickel (II) – Tetra of Term symbol of Ni^{2+} is:	chloro nickel (II)
	(1) ${}^{3}F_{4}$ (2) ${}^{3}F_{2}$	(3) ${}^{2}D_{0}$ (4) ${}^{2}D_{5/2}$
22.	Lowest energy transition in $[Ti(H_2O)]$ (1) ${}^2T_{2g} \rightarrow {}^2Eg$	
	$(3) {}^{2}A_{2g} \rightarrow {}^{2}T_{2g}$	$(4) {}^{2}T_{2g} \rightarrow {}^{2}A_{2g}$
23.	In octahedral field which of the follow (1) Co^{2+} (low spin) (3) Fe^{3+} (high spin)	ving has zero crystal field stabilization energy? (2) Fe^{3+} (low spin) (4) Cr^{3+} (high spin)
24.	+7 oxidation state is shown by following (1) <i>U</i> , <i>Np</i> (2) <i>Pu</i> , <i>Am</i>	ing actinoids: (3) Am, Cm (4) Np, Pu
25.	Which of the following lanthanide is p (1) Sm^{3+} (2) La^{3+}	
26.	The complex which does not obey 18 e (1) $Fe_2(CO)_9$ (2) $Fe(CO)_5$	electron rule is:
CPG-E	E-2018/(Chemistry)-(SET-X)/(A)	(3) $V(CO)_6$ (4) $Ni(CO)_4$ P. T. O.

21.	which of the following will give cross i	linked silicone polymer on hydrolysis?
	$(1) RSiCl_3 \qquad (2) R_3SiCl$	$(3) R_4Si \qquad \qquad (4) R_2SiCl_2$
28.	Among all which is not a lewis acid?	
	$(1) AlCl_3 \qquad (2) SO_2$	(3) SbF_5 (4) CN^-
29.	The donor atoms of the hard bases have	re:
	(1) Low polarization	(2) High electronegativity
	(3) Low electronegativity	(4) Both (1) & (2)
30.	The behaviour shown by urea in followanhydrous H_2SO_4 is respectively:	wing solvents (a) water (b) liquid ammonia (c)
	(1) Base, acid, non-electrolyte	(2) Non electrolyte, base, acid
	(3) Non electrolyte, acid, base	(4) Acid, base, non-electrolyte
31.	$AgNO_3$ on treatment with hypo gives time black ppt is:	s white ppt which changes to black after some
	(1) $Ag_2S_2O_3$ (2) Ag_2SO_4	(3) Ag_2S (4) $Ag_2S_4O_6$
32.	Which of the following is used to remove and Cl^- ions?	ove SO_4^{2-} ions from a mixture of SO_4^{2-} , $C_2O_4^{2-}$
	(1) $Ba(OH)_2$ (2) $NaOH$	(3) KOH (4) BaSO ₄
33.	The myoglobin is:	
	(1) Monomer (2) Dimer	(3) Trimer (4) Tetramer
34.	Residual entropy is:	
	(1) The entropy possessed by crystalling	ne substance at –273°C
	(2) The entropy in excess over the norm	mal value
	(3) The entropy arising out of the defea	cts in crystalline substance
	(4) None of these	
35.	Which of the following is correct one?	
	(1) $1 \text{ eV} = 80.656 \text{ cm}^{-1}$	(2) $1 \text{ eV} = 806.56 \text{ cm}^{-1}$
	(3) $1 \text{ eV} = 8065.6 \text{ cm}^{-1}$	(4) $1 \text{ eV} = 8.0656 \text{ cm}^{-1}$
CPG-E	EE-2018/(Chemistry)-(SET-X)/(A)	

- Critical temperature, T_C is related to Vander Waal's constants a' and b' by relation:
 - (1) $T_C = \frac{27Ra}{8b}$ (2) $T_C = \frac{8ab}{27R}$ (3) $T_C = \frac{8a}{27Rb}$ (4) $T_C = \frac{27R}{8ab}$

- The Boyle temperature is that at which second Virial coefficient of real gas is:
 - (1) One
- (2) Two
- (3) Three
- (4) Zero
- The average momentum of a particle can be estimated quantum mechanically using 38.
 - $(1) < p_x > = \frac{\int \psi \psi^{\otimes} dx}{\int \psi \hat{p}_x \psi^{\otimes} dx}$

 $(2) < p_x > = \int \psi \hat{p}_x \psi^{\otimes} dx$

- $(3) < p_x > = \frac{\int \psi \hat{p}_x \psi^{\otimes} dx}{\int \psi \psi^{\otimes} dx}$
- $(4) < p_x > = \frac{\int \hat{p}_x \psi \psi^{\otimes} dx}{\int \psi \psi^{\otimes} dx}$

where $\langle p_x \rangle$ represent average momentum of a particle moving in a direction parallel

- 50 ml of 0.1 M NaOH is added to 49 ml of 0.1 M HCl. The pH of the resulting solution
 - (1) 11
- (2) 9
- (3) 8
- (4) 13

- Henry's law is applicable to real gases, if:
 - (1) Pressure is high

- (2) Solubility of gas is appreciable
- (3) Dissolved gas react with solvent
- (4) Temperature is not too low
- The operator for energy is:
 - (1) $h \frac{\partial}{\partial t}$
- (2) $\hbar \cdot \frac{\partial}{\partial t}$
- (3) $i\hbar \cdot \frac{\partial}{\partial t}$
- (4) $-i\hbar \cdot \frac{\partial}{\partial t}$

The rate law for the multiple chain reaction

$$H_2 + Br_2 \rightarrow 2HBr$$
 is

$$\frac{d}{dt}[HBr] = \frac{kr_1[H_2][Br_2]^{3/2}}{[Br_2] + kr_2[HBr]}$$

Which of the following represent rate law in the limit of high pressure of bromine?

(1) Rate = $kr_1[Br_2]$

(2) Rate = $kr_1 = [H_2]$

(3) Rate = $kr_1[H_2][Br_2]$

(4) Rate = $kr_1[H_2][Br_2]^{1/2}$

CPG-EE-2018/(Chemistry)-(SET-X)/(A)

P. T. O.

- **43.** If $\left(\frac{\partial P}{\partial T}\right)_V = \frac{\alpha}{\beta}$; then according to Maxwell's relation:
 - $(1) \quad \left(\frac{\partial S}{\partial V}\right)_T = -\frac{\alpha}{\beta}$

 $(2) \left(\frac{\partial S}{\partial V} \right)_T = \frac{\alpha}{\beta}$

(3) $\left(\frac{\partial S}{\partial V}\right)_T = \frac{\beta}{\alpha}$

- (4) $\left(\frac{\partial S}{\partial V}\right)_T = -\frac{\beta}{\alpha}$
- **44.** Saturated solution of KNO_3 is used to make a salt bridge because:
 - (1) velocities of K^+ and NO_3^- ions are nearly same
 - (2) velocity of K^+ is greater than that of NO_3^- ions
 - (3) velocity of NO_3^- is greater than that of Na^+ ions
 - (4) None of the above
- **45.** Stefen law states that the total amount of energy E radiated by perfectly black body per unit area per unit time is directly proportional to:
 - (1) T
- (2) T^2
- (3) T^3
- (4) T^4
- **46.** The Brunauer, Emmett and Teller (BET) equation relating to adsorption is expressed as:

(1)
$$\frac{P}{v_{\text{total}} (P_0 - P)} = \frac{1}{v_{\text{mono}} C} - \frac{C - 1}{v_{\text{mono}}} \left(\frac{P}{P_0} \right)$$

(2)
$$\frac{P}{v_{\text{total}} (P_0 - P)} = \frac{1}{v_{\text{mono}} C} + \frac{C - 1}{v_{\text{mono}} C} \left(\frac{P}{P_0}\right)$$

(3)
$$\frac{P}{v_{\text{total}} (P_0 - P)} = \frac{1}{C} + \frac{C - 1}{v_{\text{mono}} C} \left(\frac{P}{P_0} \right)$$

(4)
$$\frac{P}{P_0 - P} = \frac{1}{v_{\text{mono}} C} + \frac{C - 1}{v_{\text{mono}} C} \left(\frac{P}{P_0}\right)$$

Where all the symbols have their usual meanings.

- **47.** An organic fatty acid forms a surface film on water that obeys two-dimensional ideal gas law. If the surface tension lowering is $10 \, mN^{-1}$ at 25°C, then surface excess concentration is given by :
 - (1) $40.4 \times 10^{-6} \ mol \, m^{-2}$

(2) $4.04 \times 10^{-6} \ mol \, m^{-2}$

(3) $404 \times 10^{-6} \ mol \, m^{-2}$

(4) $0.404 \times 10^{-6} \ mol \, m^{-2}$

				The state of the s
48	. The molecule which is IR inactive but	t Ram	nan active is :	
	(1) <i>HCl</i> (2) SO_2			(4) Protein
49.	In the lead-acid battery during charging (1) Reduction of <i>Pb</i> ⁺² to <i>Pb</i> (3) Formation of <i>PbO</i> ₂	(2	ne Cathode read) Formation of) None of thes	f PbSO ₄
50.	The number of α and β particles emit $\frac{206}{82}Pb$ will be:	itted l	$\frac{218}{81}Ra \text{ in charge}$	anging to a stable isotope of
	(1) 1 and 2 (2) 2 and 4	(3)	1 and 4	(4) 3 and 4
51.	Select the correct statement from the form (1) Work is a state function (2) Delayed flourescence is phosphore (3) Quantum yield of any reaction is a (4) The molar extinction coefficient is	escen	ce vs positive	
52.	because the degree of freedom is:	n the	phase diagram	for one-component system,
	(1) 3 (2) 4	(3)	-1	(4) Zero
53.	Milk is a/an:			
,	(1) Gel (2) Emulsion	(3)	Suspension	(4) Solution
54.	Isotonic solutions have the same:			
	(1) Viscosity(3) pH		Surface tension Osmotic press	
55.	The rotational spectra of <i>HCl</i> molecuseparated by 22.70 cm ⁻¹ . The intermediate (all notations have their usual meanings)	nucle	suggest that re ear bond leng	otational lines are equally th will be estimated by
	(1) $ \left[\frac{h \times 10^{-2}}{8\pi^2 \mu C \times 11.35} \right]^{1/2} $	(2)	$\frac{h \times 10^{-2}}{8\pi^2 \mu C \times 22.70}$	$\left[\frac{1}{2} \right]^{1/2}$
	(3) $ \left[\frac{h \times 10^{-2}}{8\pi^2 \mu^2 C \times 11.35} \right]^{1/2} $	(4)	$\left[\frac{h\times10^{-2}}{8\pi^2\mu C^2\times22.5}\right]$	$\left[\frac{1}{70}\right]^{1/2}$

- **56.** Cellulose nitrate relates to which of the following category of the polymers? (1) Synthetic polymers (2) Natural polymers (3) Semi Synthetic polymers (4) None of these **57.** Which of the following monomers are not suitable for condensation polymerization? (1) Butane-dioic acid and glycol
 - - (2) Propanoic acid and ethanol
 - (3) Diamines and dicarboxylic acid
 - (4) Hydroxy acid
- **58.** The transition zone for Raman spectra is:
 - (1) between electronic levels
 - (2) between magnetic levels of nuclei
 - (3) between magnetic levels of unpaired electrons
 - (4) between vibrational and rotational levels
- 59. Dry ice is used for fire extinguishers. It is stored in the cylinder in solid form. When sprayed on a fire, it quickly changes into gas called CO2. The change of state is called :
 - (1) Sublimation

(2) Evaporation

(3) Condensation

- (4) Distillation
- **60.** For an isentropic change of state:
 - (1) dH = 0
- (2) dT = 0
- (3) ds = 0
- (4) ds = 1

- Which of the following is a correct relation?

 - (1) $pH = \frac{1}{2}pk_w + \frac{1}{2}pk_a + \frac{1}{2}pk_b$ (2) $pH = \frac{1}{2}pk_w + \frac{1}{2}pk_a \frac{1}{2}pk_b$
 - (3) $pH = \frac{1}{2}pk_w + \frac{1}{2}k_a \frac{1}{2}k_b$
 - (4) $pH = \frac{1}{2}pk_w \frac{1}{2}k_a + \frac{1}{2}k_b$

Where all the notation have their usual meanings.

- **62.** The IR absorption at 1665 cm⁻¹ in salicylic acid is due to :
 - (1) C-H bending

(2) O – H bending

(3) O – H stretching

(4) C = O stretching

- No Bragg reflection of X-rays from a crystal will be observed, if d_{hkl} is less than:
 - (1) λ
- $(2) \lambda/2$
- $(3) \lambda/3$
- $(4) \lambda/4$
- The number of collisions, Z_{11} between the reacting molecules per sec per dm^3 , according to kinetic theory of gases is expressed as:
 - (1) $Z_{11} = \frac{1}{\sqrt{2}} \pi \sigma^2(n^2) \overline{C}$

(2) $Z_{11} = \sqrt{2\pi\sigma^2(n^2)}\overline{C}$

(3) $Z_{11} = \frac{1}{\sqrt{2}} \pi \sigma(n^2) \overline{C}$

- (4) $Z_{11} = \sqrt{2\pi\sigma^2(n)C}$
- In a closed room of 500 m³ a perfumed bottle is opened. The room develops smell. This is due to opened. The room develops smell. This is due to :
 - (1) Diffusion
- (2) Absorption
- (3) Desorption
- (4) Viscosity

- **66.** $\Psi_{21(-1)}$ represents :
 - (1) $2 p_x$ orbital (2) $2 p_y$ orbital (3) $2 p_z$ orbital
- (4) None of these
- **67.** Which of the following will give meso form with Baeyer's reagent?

(1)
$$H_3C = C CH_3$$

$$H H$$

$$(2) \qquad \begin{array}{c} H_3C \\ CH_3 \end{array}$$

(3)
$$Me$$
 $C = C$ Et Me

$$(4) \qquad Ph = C COOH$$

The IUPAC name of compound:

$$COOH$$
 Br
 NO_2 is:

- (1) 2-bromo-3-carboxy-5- hydroxy-1-nitrobenzene
- (2) 2-bromo-5-hydroxy-3-nitrobenzoic acid
- (3) 4-bromo-3-carboxy-5-nitrophenol
- (4) 4-bromo-3-carboxy-5-nitro-1-hydroxybenzene

- **69.** In structural representation of molecules, the prefixes Z and E stands for :
 - (1) Zeigler-Erythro

(2) Zurammen-Estrogen

(3) Zeigler-Erhard

- (4) Zusamann-Enteggen
- **70.** β -phenylethyl chloride is the minor product obtained by reaction of chlorine with :

$$CH = CH_2$$
(1)

$$(3) H3C - C - CH3$$

$$C \equiv CH$$
(4)

71.
$$CH_2(COOEt)_2 + (CH_2)_3 Br_2 \xrightarrow{NaOEt} I \xrightarrow{H_3O^{\oplus}} II$$

II is:

72.
$$H_3C - C = C - CH_3 + B_2H_6 \to A \xrightarrow{H_3C \ COOH} B$$

B is:

(1)
$$CH_3 = C$$

$$CH_3$$

$$C = C$$

$$C - CH_3$$

$$C = C$$

(2)
$$H_3C = C COCH_3$$

$$CH_3$$

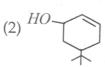
$$(3) \qquad H_3C = C \qquad H$$

(4)
$$H_3C = C H_3$$

$$CH_3$$

- **73.** A solution of (+) 2-chloro-2-phenylethane in toluene racemises slowly in presence of small amount of *SbCl*⁵ due to formation of :
 - (1) Carbanion
- (2) Carbene
- (3) Carbocation
- (4) Free radical
- **74.** Which one of the following radicals exists in free state?
 - (1) $(C_6H_5)_3 \mathring{C}$

(2) $(H_3C)_3 - \dot{C}$


(4)
$$H_3C - CH_3 - CH_2 = CH - CH_2 + H_3C$$

75. In the given reaction:

$$\begin{array}{c}
 & \xrightarrow{NBS/CCl_4} A \xrightarrow{H_2O/K_2CO_3} B
\end{array}$$

B will be:

- (4) HOOC
- **76.** Carbenes give which of the following reactions?
 - 1. Addition with alkenes
 - 2. Insertion into C-H bonds
 - 3. Addition with arynes
 - 4. Insertion into C P bonds
 - (1) Only 4
- (2) 3 and 1
- (3) 2 and 4
- (4) 1, 2 and 3
- 77. Which one of the following ylides give cyclopropane derivative with α , β -unsaturated carbonyl compounds ?
 - (1) Phosphorus ylide

(2) Sulphoxonium ylide

(3) Sulphonium ylide

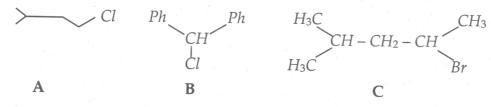
(4) Nitrogen ylide

CPG-EE-2018/(Chemistry)-(SET-X)/(A)

P. T. O.

- 78. Carbonyl compounds react with which of the following compounds to form enamines?
 - (a) $C_6H_5NH_2$

(b) $C_6H_9NHCH_3$


Select the correct answer from the codes given below:

(1) Only a

(2) Only c & d

(3) a, c & d

- (4) b, c & d
- 79. Arrange the following compounds in order of increasing reactivity towards aqueous formic acid:

order is:

(1) C < B < A

(2) B < A < C

(3) A < C < B

- (4) A < B < C
- **80.** Arrange the following reactions in order of decreasing amount of isocyanide formed:
 - (A) $EtCl + NaCN \rightarrow EtCN + EtNC$
 - (B) $EtCl + AgCN \rightarrow EtCN + EtNC$
 - (C) $EtI + NaCN \rightarrow EtCN + EtNC$
 - (1) A > B > C
- (2) B > A > C
- (3) C > B > A (4) C > A > B
- **81.** Arrange the following compounds in decreasing order of reactivity with *NBS/CCl*₄ /hv:
 - (a) $PhCH_3$

(b) PhCH₂CH₂CH₃

(c) $PhCH_2CH = CH_2$

(d) $Ph - CH - CH = CH_2$ CH_3

- (1) d, c, a, b
- (2) d, c, b, a
- (3) a, b, c, d (4) a, c, b, d

(1) CH_3COOH

P. T. O.

		(3) CH_3CH_2COOH	(4) HOOC CH ₂ CH ₂ COOH	
	83.	83. In which compound electrophilic addition takes place according to anti-Markov rules?		vnikov
		(a) $CH_2 = CH - NO_2$	(b) $CH_2 = CH - CHO$	
		(c) $H_3C = CH - CN$	(d) $CH_3 - CH = CH_2$	
		Answer is:		
		(1) a, b and c (2) a, b, c & d	(3) Only d (4) Only a	
	84.	For electrophilic addition with HX whice (a) $CH_3 - CH = CH_2$: alkyl carbocation (b) $CH_3 - C = CH$: vinyl carbocation (c) $CH_2 = CH - CH = CH_2$: alkyl carbocation (d) $C_6H_5 - CH = CH - CH_3$: Benzyl carbo	cation	
		Select the correct answer:		
		(1) a and d (2) a, b and d	(3) b, c and d (4) a, c and d	
	85.	Which among the following reagents gives (a) Br_2	ves syn-addition with alkenes : (b) Dil $KMNO_4 \mid \overset{\ominus}{O}H$	
		(c) $OsOH \mid NaSO_3H \mid HOH$ Select the correct answer :	(d) $H_2 Ni \Delta$	
		(1) Only a (2) b and c	(3) b, c and d (4) Only d	
	86.	In the given reaction:	Ha(QAa)	
		$H_3C CH = CH$ [X] will be:	$H_2 \xrightarrow{Hg(OAc)_2} IX$ OH	
		(1) $CH_3CH_2CH_2OH$	OH (2) $CH_3 - CH - CH_3$	
		OH (3) $CH_3 - CH - CH_2OAc$		
		$(3) CH_3 - CH - CH_2OAc$	$(4) H_3CCH_2CH_2OAc$	
C	PG-E	E-2018/(Chemistry)-(SET-X)/(A)		P. T. O

82. Which of the following will undergo free radical bromination most readily?

(2) CH_3COCl

- **87.** Which one of the following compounds undergoes thermal elimination reaction γ
 - (1) Acetate
- (2) Chlorides
- (3) Bromide
- (4) Alcohols

88. In the given reaction

$$\begin{array}{ccc} CH_3 & Br \\ H_3C - C - CH_2 - CH - CH_3 & \xrightarrow{Alc \ KOH} \\ CH_3 & CH_3 & \end{array}$$

[X] will be:

(1)
$$H_3C - C - CH = CH - CH_3$$
 (2) $H_3C - C - CH_2 - CH = CH_2$ (3) $H_3C - C - CH_3 - CH_3$ (4) $H_3C - C - CH_3 - CH_3$

(2)
$$H_3C - C - CH_2 - CH = CH_2$$

 CH_3

(3)
$$H_3C - C = C - CH_2CH_3$$

 CH_3CH_3

(3)
$$H_3C - C = C - CH_2CH_3$$
 (4) $H_2C = C - CH - CH_2 - CH_3$ CH_3CH_3

Arrange reactivity of alcohols in decreasing order for dehydration reaction:

(a)
$$CH_3 - CH - CH_3$$

(b)
$$H_3C - C - CH_3$$

(c)
$$H_5C_6 - C - CH_3$$

 CH_3

(d) H_3CCH_2OH

Select the answer:

- (1) c, b, d, a
- (2) b, c, d, a (3) b, c, a, d (4) c, b, a, d
- **90.** Arrange acidity of given alcohols in decreasing order:
 - (a) 4-nitro-1-butanol

(b) 2-nitro-1-butanol

(c) 3-nitro-1-butanol

(d) 1-butanol

Correct answer is:

(1) a, b, d, c

(2) a, b, c, d

(3) b, c, a, d

(4) b, c, d, a

91. The ether
$$\bigcirc -O - CH_2 - \bigcirc$$
 When treated with HI gives:

 \circ \rightarrow CH_2I

- 92. Formaldehyde does not undergo following reaction:
 - (1) Reduction

(2) Aldol condensation

(3) Polymerisation

(4) Oxidation

93.
$$B \leftarrow \frac{KMnO_4}{alkaline} \longrightarrow \frac{HCO_3H}{A}$$

A and B are:

(1) both
$$OH$$

(3) A is trans, B is cis

(4) A is cis, B is trans

94.
$$H_2C = CH - CH = CH_2 \xrightarrow{H_2} A \xrightarrow{O_3/H_2O} B$$

A and B are:

(1)
$$CH_2 = CH - CH_2 CH_3, CH_2 CH_2 CH_0, HCHO$$

A B

(2)
$$H_3CCH = CH - CH_3$$
, CH_3CHO
A B

- (3) Both correct
- (4) None is correct
- **95.** Dehydration will be maximum in:

$$\begin{array}{ccc} (1) & CH_3 - CH - CH_2 CH_3 \\ & OH \end{array}$$

(2)
$$H_3C - C - CH - CH_2 - CH_3$$

 OH
 CH_3
(4) $CH_3 - C - OH$

(3)
$$H_3C - CH - C - OH$$

$$(4) CH_3 - C - OH_3$$

$$CH_2$$

- In which case, product is same in the absence and presence of peroxide when HBr reacts with:
 - (1) 1-butene
- (2) 2-butene
- (3) Isobutene
- (4) 2-pentene

97. Following reaction is acid catalysed:

oction is acid catalysed.

OH

$$O - C - CH_3 \stackrel{\text{H}}{\rightleftharpoons} O - C = CH_2$$

If D^+ (deuterium) is taken, product can be:

$$\begin{array}{c|c}
OH \\
(1) \bigcirc -C = CH_2 \\
OH \\
(3) \bigcirc -C = CHD
\end{array}$$

$$\begin{array}{c}
OD \\
O-C = CH_2 \\
OD \\
(4) \bigcirc -C = CH D
\end{array}$$

98. $C_4 H_8 Cl_2 \xrightarrow{H_2O} C_4 H_8 O$, B forms oximes but negative haloform test, hence A and B A

are:

(1) CH₃CH₂CH₂CHCl₂, CH₃COCH₂CH₃

- (4) none

99.
$$(4)$$
 none
$$C = A$$

Required product is obtained when A is:

- (1) Ethyl-3-chlorobutyrate
- (2) ethyl-3-chloropropionate
- (3) Ethyl-2-chloropropionate
- (4) Ethyl chloroacetate

100. Cinnamic acid can be prepared from benzaldehyde by:

- (1) Perkin condensation
- (2) Grignard reaction
- (3) Cannizarro reaction

(4) Aldol condensation

wed for jumbed cheet very ficher for kond Small No. of Printed Pages: 17

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

CPG-EE-2018 (Chemistry)-(SET-X)

В

LI L	Professor & Head,
	- of Chemisury,
	M.D. 10358ty, Rohtal
Sr. No	

Time: 11/2 Hours	Total Questions: 100	Max. Marks : 10 0
Roll No. (in figures)	(in words)	
Candidate's Name	Da	ate of Birth—
Father's Name		
Date of Exam :		

(Signature of the Candidate)

(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are *compulsory* and carry equal marks. The candidates are required to attempt all questions.
- 2. The candidates *must return* the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means/misbehaviour will be registered against him/her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. In case there is any discrepancy in any question(s) in the Question Booklet, the same may be brought to the notice of the Controller of Examinations in writing within two hours after the test is over. No such complaint(s) will be entertained thereafter.
- **4.** The candidate *must not* do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers *must not* be ticked in the question booklet.
- 5. Use only black or blue ball point pen of good quality in the OMR Answer-Sheet.
- **6.** There will be **negative** marking. Each correct answer will be awarded **one** full mark and each incorrect answer will be negatively marked for which the candidate will get ¼ discredit. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Before answering the questions, the candidates should ensure that they have been supplied correct & complete question booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

- The operator for energy is:

- (1) $h \frac{\partial}{\partial t}$ (2) $\hbar \cdot \frac{\partial}{\partial t}$ (3) $i\hbar \cdot \frac{\partial}{\partial t}$ (4) $-i\hbar \cdot \frac{\partial}{\partial t}$
- The rate law for the multiple chain reaction

$$H_2 + Br_2 \rightarrow 2HBr$$
 is

$$\frac{d}{dt}[HBr] = \frac{kr_1[H_2][Br_2]^{3/2}}{[Br_2] + kr_2[HBr]}$$

Which of the following represent rate law in the limit of high pressure of bromine?

- (1) Rate = $kr_1[Br_2]$
- (2) Rate = $kr_1 = [H_2]$
- (3) Rate = $kr_1[H_2][Br_2]$
- (4) Rate = $kr_1[H_2][Br_2]^{1/2}$
- 3. If $\left(\frac{\partial P}{\partial T}\right)_{X} = \frac{\alpha}{\beta}$; then according to Maxwell's relation:
 - (1) $\left(\frac{\partial S}{\partial V}\right)_{T} = -\frac{\alpha}{\beta}$

(2) $\left(\frac{\partial S}{\partial V}\right)_T = \frac{\alpha}{\beta}$

(3) $\left(\frac{\partial S}{\partial V}\right)_{T} = \frac{\beta}{\alpha}$

- (4) $\left(\frac{\partial S}{\partial V}\right)_{T} = -\frac{\beta}{\alpha}$
- **4.** Saturated solution of KNO_3 is used to make a salt bridge because :
 - (1) velocities of K^+ and NO_3^- ions are nearly same
 - (2) velocity of K^+ is greater than that of NO_3^- ions
 - (3) velocity of NO_3^- is greater than that of Na^+ ions
 - (4) None of the above
- Stefen law states that the total amount of energy E radiated by perfectly black body per unit area per unit time is directly proportional to:

- $(4) T^4$

The Brunauer, Emmett and Teller (BET) equation relating to adsorption is expressed

(1)
$$\frac{P}{v_{\text{total}} (P_0 - P)} = \frac{1}{v_{\text{mono}} C} - \frac{C - 1}{v_{\text{mono}}} \left(\frac{P}{P_0}\right)$$

(2)
$$\frac{P}{v_{\text{total}} (P_0 - P)} = \frac{1}{v_{\text{mono}} C} + \frac{C - 1}{v_{\text{mono}} C} \left(\frac{P}{P_0}\right)$$

(3)
$$\frac{P}{v_{\text{total}} (P_0 - P)} = \frac{1}{C} + \frac{C - 1}{v_{\text{mono}} C} \left(\frac{P}{P_0}\right)$$

(4)
$$\frac{P}{P_0 - P} = \frac{1}{v_{\text{mono}} C} + \frac{C - 1}{v_{\text{mono}} C} \left(\frac{P}{P_0}\right)$$

Where all the symbols have their usual meanings.

- 7. An organic fatty acid forms a surface film on water that obeys two-dimensional ideal gas law. If the surface tension lowering is 10 mN^{-1} at 25°C, then surface excess concentration is given by:
 - (1) $40.4 \times 10^{-6} \ mol \, m^{-2}$

(2) 4.04×10^{-6} mol m⁻²

(3) $404 \times 10^{-6} \text{ mol m}^{-2}$

- (4) $0.404 \times 10^{-6} \text{ mol m}^{-2}$
- The molecule which is IR inactive but Raman active is:
 - (1) *HCl*
- (2) SO_2
- $(3) N_2$
- (4) Protein
- **9.** In the lead-acid battery during charging, the Cathode reaction is:
 - (1) Reduction of Pb^{+2} to Pb
- (2) Formation of $PbSO_4$
- (3) Formation of PbO_2

- (4) None of these
- The number of α and β particles emitted by $\frac{218}{81}Ra$ in changing to a stable isotope of $^{206}_{82}Pb$ will be:
 - (1) 1 and 2.
- (2) 2 and 4 (3) 1 and 4
- (4) 3 and 4
- **11.** $CH_2(COOEt)_2 + (CH_2)_3 Br_2 \xrightarrow{NaOEt} I \xrightarrow{H_3O^{\oplus}} II$

II is:

12. $H_3C - C \equiv C - CH_3 + B_2H_6 \rightarrow A \xrightarrow{H_3C \ COOH} B$ is:

(1)
$$CH_3 C = C$$

$$CH_3 C - CH_3$$

$$C - CH_3 C - CH_3$$

(2)
$$H_3C$$
 $COCH_3$ CH_3

(3)
$$H_3C = C H_3$$

(4)
$$H_3C$$
 $C = C$ CH_3

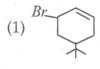
- **13.** A solution of (+) 2-chloro-2-phenylethane in toluene racemises slowly in presence of small amount of $SbCl_5$ due to formation of :
 - (1) Carbanion

(2) Carbene

(3) Carbocation

- (4) Free radical
- **14.** Which one of the following radicals exists in free state?
 - (1) $(C_6H_5)_3 \dot{C}$

(2) $(H_3C)_3 - \dot{C}$


(4) $H_3C - CH_3 - CH_3CH_3$ H_3C

15. In the given reaction :

$$\begin{array}{c}
NBS/CCl_4 \\
h_0
\end{array}$$

$$A \xrightarrow{H_2O/K_2CO_3} B$$

B will be

- **16.** Carbenes give which of the following reactions?
 - 1. Addition with alkenes
 - 2. Insertion into C-H bonds
 - 3. Addition with arynes
 - 4. Insertion into C P bonds
 - (1) Only 4
- (2) 3 and 1
- (3) 2 and 4
- (4) 1, 2 and 3
- 17. Which one of the following ylides give cyclopropane derivative with α , β -unsaturated carbonyl compounds ?
 - (1) Phosphorus ylide

(2) Sulphoxonium ylide

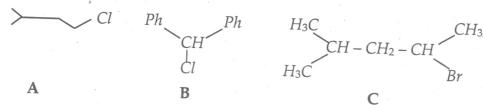
(3) Sulphonium ylide

- (4) Nitrogen ylide
- **18.** Carbonyl compounds react with which of the following compounds to form enamines?
 - (a) $C_6H_5NH_2$

(b) $C_6H_9NHCH_3$

(c) N

(d) $\binom{O}{N}$


Select the correct answer from the codes given below:

(1) Only a

(2) Only c & d

(3) a, c & d

- (4) b, c & d
- **19.** Arrange the following compounds in order of increasing reactivity towards aqueous formic acid:

order is:

(1) C < B < A

(2) B < A < C

(3) A < C < B

(4) A < B < C

20. Arrange the following reactions in order of decreasing amount of isocyanide formed:

(A)
$$EtCl + NaCN \rightarrow EtCN + EtNC$$

(B)
$$EtCl + AgCN \rightarrow EtCN + EtNC$$

(C)
$$EtI + NaCN \rightarrow EtCN + EtNC$$

(1)
$$A > B > C$$

(2)
$$B > A > C$$

(3)
$$C > B > A$$

(4)
$$C > A > B$$

21. The ether $\bigcirc -O - CH_2 - \bigcirc$ When treated with HI gives :

(2)
$$\langle O \rangle$$
- Cu_2OH

$$(3) \quad \bigcirc -I$$

(4)
$$\langle O \rangle$$
-OCH₃

22. Formaldehyde does not undergo following reaction:

(1) Reduction

(2) Aldol condensation

(3) Polymerisation

(4) Oxidation

23.
$$B \leftarrow \frac{KMnO_4}{alkaline} \longrightarrow \frac{HCO_3H}{A}$$

A and B are:

(1) both
$$OH$$

(3) A is trans, B is cis

(4) A is cis, B is trans

24.
$$H_2C = CH - CH = CH_2 \xrightarrow{H_2} A \xrightarrow{O_3/H_2O} B$$

A and B are:

(1)
$$CH_2 = CH - CH_2 CH_3, CH_2 CH_2 CH_0, HCH_0$$

Α

В

(2)
$$H_3CCH = CH - CH_3$$
, CH_3CHO

- (3) Both correct
- (4) None is correct

25. Dehydration will be maximum in :

(1)
$$CH_3 - CH - CH_2 CH_3$$

OH

(2)
$$H_3C - C - CH - CH_2 - CH_3$$

(3)
$$H_3C - CH - C - OH$$

OH

$$CH_3$$
(4) $CH_3 - C - OH$
 CH_3

26. In which case, product is same in the absence and presence of peroxide when HBr reacts with:

(1) 1-butene

(2) 2-butene

(3) Isobutene

(4) 2-pentene

$$\begin{array}{c}
O \\
\bigcirc -C - CH_3 & \stackrel{H^{\oplus}}{\rightleftharpoons} & \bigcirc -C = CH_2
\end{array}$$

If D^+ (deuterium) is taken, product can be:

OH
$$(1) \quad \bigcirc -\stackrel{|}{C} = CH_2$$

$$OH$$

$$(3) \quad \bigcirc -\stackrel{|}{C} = CHD$$

(2)
$$\bigcirc OD$$

$$C = CH_2$$

$$OD$$

$$C = CH_2$$

$$OD$$

$$C = CH_2$$

$$(3) \bigcirc -C = CHD$$

$$(4) \quad \bigcirc \bigcirc -C = CHD$$

28.
$$C_4 H_8 Cl_2 \xrightarrow{H_2O} C_4 H_8 O$$
, B forms oximes but negative haloform test, hence A and B are:

(1) $CH_3CH_2CH_2CHCl_2$, $CH_3COCH_2CH_3$

(2)
$$CH_3$$
 $CHCHCl_2$, H_3C $CHCHO$ H_3C

- (3) $CH_3CH_2CCl_2CH_3$, $CH_3CH_2CH_2CHO$
- (4) none

29.
$$C$$
 $NK + \alpha$ -halo ester
 A
 $Gabriel$
 H_2N
 $COOH$

Required product is obtained when A is:

- (1) Ethyl-3-chlorobutyrate
- (2) ethyl-3-chloropropionate
- (3) Ethyl-2-chloropropionate
- (4) Ethyl chloroacetate
- **30.** Cinnamic acid can be prepared from benzaldehyde by :
 - (1) Perkin condensation
- (2) Grignard reaction
- (3) Cannizarro reaction
- (4) Aldol condensation
- **31.** What is the wavelength of a ball weighing 200 g and moving at a speed of 5 m/h?
- (1) 1.6×10^{-24} m (2) 2.3×10^{-30} m (3) 3.2×10^{-28} m (4) 4.8×10^{-26} m
- **32.** Which set of quantum numbers is not suitable to an electron?
 - (1) $1, 0, 0, +\frac{1}{2}$
- (2) 1, 0, 0, $-\frac{1}{2}$
- (3) $2, 0, 0, +\frac{1}{2}$ (4) $1, 1, 1, +\frac{1}{2}$

- **33.** What is the correct order of radii?
 - (1) $O^{2-} > F^{-} > O > F$

(2) $O^{2-} > F^{-} > F > O$

(3) $F^- > O^{2-} > F > O$

- (4) $O^{2-} > O > F^{-} > F$
- **34.** Effective nuclear charge of an ion is:
 - (1) Nuclear charge
 - (2) Nuclear charge + Screening constant
 - (3) Nuclear charge Screening constant
 - (4) Nuclear charge + Charge on ion
- **35.** Which of the following molecule does not possess permanent dipole moment?
 - (1) NF_3
- (2) CH_2Cl_2
- $(3) NO_2$
- (4) BF_3
- **36.** According to VSEPR theory shape of *ClF*₃ is:
 - (1) T-shaped
- (2) Triangular
- (3) Tetrahedral (4) Square planar
- 37. Maximum number of water molecules that one water molecule can hold through hydrogen bonding is:
 - (1) Two
- (3) Six
- (4) Eight

CPG-EE-2018/(Chemistry)-(SET-X)/(B)

P. T. O.

38.	Which of the following has highest lattice	e en	ergy?	
	(1) KF (2) NaF	(3)	CsF	(4) RbF
39.	Glauber's salt is:			
	$(1) MgSO_4.7H_2O$	(2)	$Na_2SO_4.10H_2C$)
	(3) $CuSO_4.5H_2O$	(4)	$FeSO_4.7H_2O$	
40.	KO ₂ is used in oxygen cylinders in space	e as	it:	
	(1) absorbs CO_2	(2)	produces O_3	
	(3) absorbs moisture	(4)	absorbs CO_2 and	nd increases O_2
41.	Select the correct statement from the following (1) Work is a state function (2) Delayed flourescence is phosphores (3) Quantum yield of any reaction is also (4) The molar extinction coefficient is used to be a statement from the following	cend	ce s positive	
42.	There cannot be a quadrupole point on because the degree of freedom is :	the	phase diagram f	or one-component system,
	(1) 3 (2) 4	(3)	-1	(4) Zero
43.	Milk is a/an:			
	(1) Gel (2) Emulsion	(3)	Suspension	(4) Solution
44.	Isotonic solutions have the same:			
	(1) Viscosity	, ,	Surface tension	
	(3) pH		Osmotic press	
45.	The rotational spectra of <i>HCl</i> molecular separated by 22.70 cm ⁻¹ . The intermediate (all notations have their usual meaning) $ \left[\frac{h \times 10^{-2}}{8\pi^2 \mu C \times 11.35} \right]^{1/2} $	nucl s) :	suggest that rollear bond length $\frac{h \times 10^{-2}}{8\pi^2 \mu C \times 22.70}$	th will be estimated by
	(3) $\left[\frac{h \times 10^{-2}}{8\pi^2 \mu^2 C \times 11.35}\right]^{1/2}$		$\int \frac{h \times 10^{-2}}{8\pi^2 \mu C^2 \times 22.5}$	71/2

46.	Cellulose nitrate relates to which of the	following category of the polymers?
	(1) Synthetic polymers	(2) Natural polymers
	(3) Semi Synthetic polymers	(4) None of these
47.	Which of the following monomers are not (1) Butane-dioic acid and glycol (3) Diamines and dicarboxylic acid	ot suitable for condensation polymerization? (2) Propanoic acid and ethanol (4) Hydroxy acid
48.	The transition zone for Raman spectra is (1) between electronic levels (2) between magnetic levels of nuclei (3) between magnetic levels of unpaired (4) between vibrational and rotational levels	d electrons
49.		is stored in the cylinder in solid form. When a gas called CO ₂ . The change of state is called: (2) Evaporation (4) Distillation
50.	For an isentropic change of state:	
	(1) $dH = 0$ (2) $dT = 0$	(3) $ds = 0$ (4) $ds = 1$
51.	Which of the following is a correct relati	on?
	(1) $pH = \frac{1}{2}pk_w + \frac{1}{2}pk_a + \frac{1}{2}pk_b$	(2) $pH = \frac{1}{2}pk_w + \frac{1}{2}pk_a - \frac{1}{2}pk_b$
	(3) $pH = \frac{1}{2}pk_w + \frac{1}{2}k_a - \frac{1}{2}k_b$	(4) $pH = \frac{1}{2}pk_w - \frac{1}{2}k_a + \frac{1}{2}k_b$
	Where all the notation have their usual	meanings.
52.	The IR absorption at 1665 cm ⁻¹ in salicyl	ic acid is due to :
	(1) C – H bending	(2) O – H bending
	(3) O – H stretching	(4) C = O stretching
53.	No Bragg reflection of X-rays from a cry	stal will be observed, if d_{hkl} is less than:
	(1) λ (2) $\lambda/2$	(3) $\lambda/3$ (4) $\lambda/4$
PG-E	E-2018/(Chemistry)-(SET-X)/(B)	P. T. O.

54. The number of collisions, Z_{11} between the reacting molecules per sec per dm^3 , according to kinetic theory of gases is expressed as:

(1)
$$Z_{11} = \frac{1}{\sqrt{2}} \pi \sigma^2 (n^2) \overline{C}$$

(2)
$$Z_{11} = \sqrt{2\pi\sigma^2(n^2)}\overline{C}$$

(3)
$$Z_{11} = \frac{1}{\sqrt{2}} \pi \sigma(n^2) \overline{C}$$

$$(4) \quad Z_{11} = \sqrt{2}\pi\sigma^2(n)\overline{C}$$

- In a closed room of 500 m³ a perfumed bottle is opened. The room develops smell. This is due to opened. The room develops smell. This is due to :
 - (1) Diffusion
- (2) Absorption
- (3) Desorption
- (4) Viscosity

- **56.** $\Psi_{21(-1)}$ represents :
 - (1) $2 p_x$ orbital
- (2) $2 p_y$ orbital (3) $2 p_z$ orbital
- (4) None of these
- Which of the following will give meso form with Baeyer's reagent?

(1)
$$H_3C = C CH_3$$

$$H$$

(2)
$$H_3C = C H$$

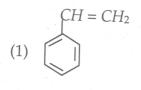
$$CH_3$$

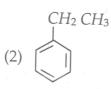
(3)
$$Me$$
 $C = C$ Et Me

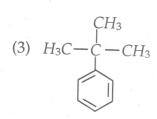
$$(4) Ph C = C COOH$$

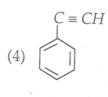
The IUPAC name of compound: 58.

$$COOH$$
 Br is
 NO_2


- (1) 2-bromo-3-carboxy-5- hydroxy-1-nitrobenzene
- (2) 2-bromo-5-hydroxy-3-nitrobenzoic acid
- (3) 4-bromo-3-carboxy-5-nitrophenol
- (4) 4-bromo-3-carboxy-5-nitro-1-hydroxybenzene
- In structural representation of molecules, the prefixes *Z* and *E* stands for :
 - (1) Zeigler-Erythro


(2) Zurammen-Estrogen


(3) Zeigler-Erhard


(4) Zusamann-Enteggen

 β -phenylethyl chloride is the minor product obtained by reaction of chlorine with :

61. Term symbol of Ni^{2+} is:

- $(1)^{-3}F_4$
- (2) ${}^{3}F_{2}$
- (3) $^{2}D_{0}$
- (4) $^{2}D_{5/2}$

62. Lowest energy transition in $[Ti(H_2O)_6]^{3+}$ is:

- (1) ${}^{2}T_{2g} \rightarrow {}^{2}Eg$ (2) ${}^{2}Eg \rightarrow {}^{2}T_{2g}$ (3) ${}^{2}A_{2g} \rightarrow {}^{2}T_{2g}$ (4) ${}^{2}T_{2g} \rightarrow {}^{2}A_{2g}$

63. In octahedral field which of the following has zero crystal field stabilization energy?

(1) Co^{2+} (low spin)

(2) Fe^{3+} (low spin)

(3) Fe^{3+} (high spin)

(4) Cr^{3+} (high spin)

64. +7 oxidation state is shown by following actinoids:

- (1) *U*, *Np*
- (2) Pu, Am
- (3) *Am*, *Cm*
- (4) Np, Pu

Which of the following lanthanide is paramagnetic?

- (1) Sm^{3+}
- (2) La^{3+}
- (3) Lu^{3+}

The complex which does not obey 18 electron rule is:

- (1) $Fe_2(CO)_9$
- (2) $Fe(CO)_5$
- (3) $V(CO)_6$
- (4) $Ni(CO)_4$

67. Which of the following will give cross linked silicone polymer on hydrolysis?

- (1) $RSiCl_3$
- (2) R_3SiCl
- (3) R_4Si
- (4) R_2SiCl_2

Among all which is not a lewis acid?

- (1) $AlCl_3$
- (2) SO_2
- (3) SbF_5
- (4) CN^-

PG-EE-2018/(Chemistry)-(SET-X)/(B)

P. T. O.

	69.	. The donor atoms of the hard bases have :		
		(1) Low polarization	(2) High electronegativity	
		(3) Low electronegativity	(4) Both (1) & (2)	
	70.	The behaviour shown by urea in follow anhydrous H_2SO_4 is respectively:	wing solvents (a) water (b) liquid ammonia (c)	
	•	(1) Base, acid, non-electrolyte(3) Non electrolyte, acid, base	(2) Non electrolyte, base, acid(4) Acid, base, non-electrolyte	
	71.	In "Inorganic benzene" hybridization of (1) Both have sp^2 (3) Both have sp^3	B and N respectively is: (2) sp^2 and sp^3 (4) sp^3 and sp^2	
	72.	Three oxygen atoms of $[SiO_4]^{4-}$ are sha	red in:	
		(1) Pyrosilicate	(2) Linear chain silicate	
		(3) Sheet silicate	(4) Three dimensional silicate	
	73.	Number of P-O-P bonds in cyclic metap	phosphoric acid are:	
		(1) Zero (2) Two	(3) Three (4) Four	
	74.	Oxyacid of Sulphur which contains lone	e pair on Sulphur is :	
		(1) Sulphuric acid	(2) Pyrosulphuric acid	
		(3) Peroxy disulphuric acid	(4) Sulphurous acid	
	75.	Order of acidity of the following is: (1) $HClO_4 < HClO_3 < HClO_2 < HClO$ (2) $HClO < HClO_4 < HClO_3 < HClO_2$ (3) $HClO < HClO_2 < HClO_3 < HClO_4$ (4) $HClO_4 < HClO_2 < HClO_3 < HClO$		
	76.	Which of the following have same num	ber of electron pair on Xenon atom?	
		(a) XeO_3 (b) $XeOF_4$	(c) XeF_6	
		(1) Only (a) & (b)	(2) Only (b) & (c)	
		(3) Only (a) & (c)	(4) (a), (b) & (c)	
C)	PG-E	E-2018/(Chemistry)-(SET-X)/(B)		

77.	77. Which of the following is not coloured?					
	(1) $KMnO_4$ (2) $K_2Cr_2O_7$ (3) $CuCl_2$	(4) TiO ₂				
78.	78. Which of the following shows magnetic moment 1.74 BM	Which of the following shows magnetic moment 1.74 BM?				
	(1) $[CoCl_4]^{4-}$ (2) $[Ni(CN)_6]^{2-}$					
	(3) $TiCl_4$ (4) $[Cu(NH_3)_4]^2$	+				
79.	79. Cis and trans complexes of $[PtA_2X_2]$ are distinguished by	Cis and trans complexes of $[PtA_2X_2]$ are distinguished by :				
	(1) Kurnakov test (2) Ring test					
	(3) Chromyl Chloride test (4) Carbylamine	etest				
80.	80. IUPAC name of $[Ni(NH_3)_4][NiCl_4]$ is:					
	(1) Tetra chloro nickel (II) – Tetra ammine nickelate (0)					
	(2) Tetra ammine-nickel (II) – Tetra chloro nickelate (II)	(2) Tetra ammine-nickel (II) – Tetra chloro nickelate (II)				
	(3) Tetra chloro nickel (II) – Tetra ammine nickel (II)	(3) Tetra chloro nickel (II) – Tetra ammine nickel (II)				
	(4) Tetra ammine nickel (II) – Tetra chloro nickel (II)	(4) Tetra ammine nickel (II) – Tetra chloro nickel (II)				
81.	81. Arrange the following compounds in decreasing order of re	eactivity with NBS/CCl4/hv:				
	(a) $PhCH_3$ (b) $PhCH_2CH_2CH_2CH_3$					
	(c) $PhCH_2CH = CH_2$ (d) $Ph - CH - C$	$H = CH_2$				
	CH_3					
	(1) d, c, a, b (2) d, c, b, a (3) a, b, c, d	(4) a, c, b, d				
82.	82. Which of the following will undergo free radical bromina	ation most readily?				
.*	(1) CH_3COOH (2) CH_3COCI					
	(3) CH_3CH_2COOH (4) $HOOC\ CH_2$	CH ₂ COOH				
83.	83. In which compound electrophilic addition takes place as rule?	ecording to anti-Markovnikov				
	(a) $CH_2 = CH - NO_2$ (b) $CH_2 = CH - CH_2$	-СНО				
	(c) $H_3C = CH - CN$ (d) $CH_3 - CH =$	= CH ₂				
	Answer is:					
	(1) a, b and c (2) a, b, c & d (3) Only d	(4) Only a				
CPG-	PG-EE-2018/(Chemistry)-(SET-X)/(B)	P. T. O				

4					
	E de la company				
84.	For electrophilic addition with HX which pair is correctly matched? (a) $CH_3 - CH = CH_2$: alkyl carbocation				
	(b) $CH_3 - C \equiv CH$: vinyl carbocation				
	(c) $CH_2 = CH - CH = CH_2$: alkyl carbocation (d) $C_6H_5 - CH = CH - CH_3$: Benzyl carbocation				
	Select the correct answer:				
	(1) a and d (2) a, b and d (3) b, c and d (4) a, c and d				
0.5					
85.	Which among the following reagents gives syn-addition with alkenes:				
	(a) Br_2 (b) Dil $KMNO_4 \mid \stackrel{\circ}{O}H$				
	(c) $OsOH \mid NaSO_3H \mid HOH$ (d) $H_2 \mid Ni \mid \Delta$				
	Select the correct answer:				
	(1) Only a (2) b and c (3) b, c and d (4) Only d				
86.	In the given reaction:				
	$H_3C CH = CH_2 \xrightarrow{Hg(OAc)_2} [X]$				
	[X] will be:				
	OH $(1) CH3CH2CH2OH$				
	(1) $CH_3CH_2CH_2OH$ (2) $CH_3 - \dot{C}H - CH_3$				
	ОН				
	$(3) CH_3 - CH - CH_2OAc $ $(4) H_3CCH_2CH_2OAc$				
87.	Which one of the following compounds undergoes thermal elimination reaction?				
	(1) Acetate (2) Chlorides (3) Bromide (4) Alcohols				
88.	In the given reaction				
	CH_3 Br				
	$CH_3 \qquad Br \\ H_3C - C - CH_2 - CH - CH_3 \xrightarrow{Alc \ KOH} [X]$				
	CH_3				
	[V] will bo				

[X] will be:
$$CH_{3}$$

$$CH_{3}$$

$$(1) H_{3}C - C - CH = CH - CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$(2) H_{3}C - C - CH_{2} - CH = CH_{2}$$

$$CH_{3}$$

$$CH_{3}$$

$$(4) H_{2}C = C - CH - CH_{2} - CH_{3}$$

$$CH_{3} CH_{3}$$

89. Arrange reactivity of alcohols in decreasing order for dehydration reaction:

(a)
$$CH_3 - CH - CH_3$$

(b)
$$H_3C - C - CH_3$$

 CH_3

(c)
$$H_5C_6 - C - CH_3$$

 CH_3

(d)
$$H_3CCH_2OH$$

Select the answer:

- (1) c, b, d, a

- (2) b, c, d, a (3) b, c, a, d (4) c, b, a, d
- **90.** Arrange acidity of given alcohols in decreasing order:
 - (a) 4-nitro-1-butanol

(b) 2-nitro-1-butanol

(c) 3-nitro-1-butanol

(d) 1-butanol

Correct answer is:

(1) a, b, d, c

(2) a, b, c, d

(3) b, c, a, d

- (4) b, c, d, a
- 91. AgNO₃ on treatment with hypo gives white ppt which changes to black after some time black ppt is:
 - (1) $Ag_2S_2O_3$ (2) Ag_2SO_4 (3) Ag_2S (4) $Ag_2S_4O_6$

- **92.** Which of the following is used to remove SO_4^{2-} ions from a mixture of SO_4^{2-} , $C_2O_4^{2-}$ and Cl⁻ ions?
 - (1) $Ba(OH)_2$ (2) NaOH (3) KOH (4) $BaSO_4$

- **93.** The myoglobin is:
 - (1) Monomer
- (2) Dimer
- (3) Trimer
- (4) Tetramer

- **94.** Residual entropy is:
 - (1) The entropy possessed by crystalline substance at -273°C
 - (2) The entropy in excess over the normal value
 - (3) The entropy arising out of the defects in crystalline substance
 - (4) None of these

Which of the following is correct one?

(1) $1 \text{ eV} = 80.656 \text{ cm}^{-1}$

(2) $1 \text{ eV} = 806.56 \text{ cm}^{-1}$

(3) $1 \text{ eV} = 8065.6 \text{ cm}^{-1}$

(4) $1 \text{ eV} = 8.0656 \text{ cm}^{-1}$

Critical temperature, T_C is related to Vander Waal's constants 'a' and 'b' by relation :

- (1) $T_C = \frac{27Ra}{8b}$ (2) $T_C = \frac{8ab}{27R}$ (3) $T_C = \frac{8a}{27Rb}$ (4) $T_C = \frac{27R}{8ab}$

The Boyle temperature is that at which second Virial coefficient of real gas is :

- (1) One
- (2) Two
- (3) Three
- (4) Zero

The average momentum of a particle can be estimated quantum mechanically using

$$(1) < p_x > = \frac{\int \psi \psi^{\otimes} dx}{\int \psi \hat{p}_x \psi^{\otimes} dx}$$

$$(2) \langle p_x \rangle = \int \psi \hat{p}_x \psi^{\otimes} dx$$

$$(3) < p_x > = \frac{\int \psi \hat{p}_x \psi^{\otimes} dx}{\int \psi \psi^{\otimes} dx}$$

$$(4) < p_x > = \frac{\int \hat{p}_x \psi \psi^{\otimes} dx}{\int \psi \psi^{\otimes} dx}$$

where $\langle p_x \rangle$ represent average momentum of a particle moving in a direction parallel to x-axis.

50 ml of 0.1 M NaOH is added to 49 ml of 0.1 M HCl. The pH of the resulting solution 99.

- (1) 11
- (2) 9
- (3) 8
- (4) 13

100. Henry's law is applicable to real gases, if:

- (1) Pressure is high
- (2) Solubility of gas is appreciable
- (3) Dissolved gas react with solvent
- (4) Temperature is not too low

used for pumbled elect verification of Kingle Some Total No. of Printed Pages: 17

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

CPG-EE-2018 (Chemistry)-(SET-X)

C

	8000
	Professor & Head,
	The of Chemistry,
	Deput Ph 251 Rohtal
	Deptt. of Chemistry, M.D. University Rohtal
0	

			Sr. No	
Time: 11/2 Hours	Total Ques	tions : 100		Max. Marks: 100
Roll No. (in figures)	(in words)			
Candidate's Name				
Father's Name	/ /	Mother's Name	Date of Bitti	
Date of Exam :				
(Signature of the Candidate)			(Signature of	the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are *compulsory* and carry equal marks. The candidates are required to attempt all questions.
- 2. The candidates *must return* the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means/misbehaviour will be registered against him/her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. In case there is any discrepancy in any question(s) in the Question Booklet, the same may be brought to the notice of the Controller of Examinations in writing within two hours after the test is over. No such complaint(s) will be entertained thereafter.
- **4.** The candidate **must not** do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers **must not** be ticked in the question booklet.
- 5. Use only black or blue ball point pen of good quality in the OMR Answer-Sheet.
- **6.** There will be **negative** marking. Each correct answer will be awarded **one** full mark and each incorrect answer will be negatively marked for which the candidate will get ¼ discredit. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 7. Before answering the questions, the candidates should ensure that they have been supplied correct & complete question booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

1.	Term symbol of Ni^{2+} is:					
	(1) 3F_4 (2) 3F_2	$(3)^{2}D_{0}$	$(4)^2 D_{5/2}$			
2.	Lowest energy transition in $[Ti(H_2O)_6]^{3+}$ is:					
	$(1) {}^2T_{2g} \rightarrow {}^2Eg$	$(2) {}^2Eg \rightarrow {}^2T_{2g}$				
	$(3) {}^{2}A_{2g} \rightarrow {}^{2}T_{2g}$	$(4) {}^{2}T_{2g} \rightarrow {}^{2}A_{2g}$				
3.	In octahedral field which of the following has zero crystal field stabilization energy?					
	(1) Co^{2+} (low spin)	(2) Fe^{3+} (low spin				
	(3) Fe^{3+} (high spin)	(4) Cr^{3+} (high sp	in)			
4.	+7 oxidation state is shown by following actinoids:					
	(1) U, Np (2) Pu, Am	(3) Am, Cm	(4) Np, Pu			
5.	Which of the following lanthanide is	s paramagnetic?				
	(1) Sm^{3+} (2) La^{3+}	(3) Lu^{3+}	(4) Yb^{3+}			
6.	The complex which does not obey 18 electron rule is:					
	(1) $Fe_2(CO)_9$ (2) $Fe(CO)_5$	$(3) V(CO)_6$	(4) Ni(CO) ₄			
7.	Which of the following will give cro	oss linked silicone polyr	ner on hydrolysis ?			
	$(1) RSiCl_3 \qquad (2) R_3SiCl$	$(3) R_4Si$	$(4) R_2 SiCl_2$			
8.	Among all which is not a lewis acid?					
	$(1) AlCl3 \qquad (2) SO2$	$(3) SbF_5$	(4) CN			
9.	The donor atoms of the hard bases l	have:				
	(1) Low polarization (2) High electronegativity		egativity			
	(3) Low electronegativity	(4) Both (1) & (2)	(4) Both (1) & (2)			
10.	The behaviour shown by urea in following solvents (a) water (b) liquid ammonia (c) anhydrous H_2SO_4 is respectively:					
	(1) Base, acid, non-electrolyte (2) Non electrolyte, base, acid		te, base, acid			
	(3) Non electrolyte, acid, base	(4) Acid, base, no	Acid, base, non-electrolyte			
CPG-EE-2018/(Chemistry)-(SET-X)/(C) P. T. O						

- **11.** Select the correct statement from the following:
 - (1) Work is a state function
 - (2) Delayed flourescence is phosphorescence
 - (3) Quantum yield of any reaction is always positive
 - (4) The molar extinction coefficient is unit less
- **12.** There cannot be a quadrupole point on the phase diagram for one-component system, because the degree of freedom is :
 - (1) 3
- (2) 4
- (3) -1
- (4) Zero

- **13.** Milk is a / an:
 - (1) Gel
- (2) Emulsion
- (3) Suspension
- (4) Solution

- **14.** Isotonic solutions have the same:
 - (1) Viscosity

(2) Surface tension

(3) pH

- (4) Osmotic pressure
- **15.** The rotational spectra of *HCl* molecule suggest that rotational lines are equally separated by 22.70 cm⁻¹. The internuclear bond length will be estimated by (all notations have their usual meanings):
 - (1) $\left[\frac{h \times 10^{-2}}{8\pi^2 \mu C \times 11.35}\right]^{1/2}$
- (2) $\left[\frac{h \times 10^{-2}}{8\pi^2 \mu C \times 22.70} \right]^{1/2}$
- (3) $\left[\frac{h \times 10^{-2}}{8\pi^2 \mu^2 C \times 11.35}\right]^{1/2}$
- (4) $\left[\frac{h \times 10^{-2}}{8\pi^2 \mu C^2 \times 22.70}\right]^{1/2}$
- **16.** Cellulose nitrate relates to which of the following category of the polymers?
 - (1) Synthetic polymers

- (2) Natural polymers
- (3) Semi Synthetic polymers
- (4) None of these
- 17. Which of the following monomers are not suitable for condensation polymerization?
 - (1) Butane-dioic acid and glycol
 - (2) Propanoic acid and ethanol
 - (3) Diamines and dicarboxylic acid
 - (4) Hydroxy acid

The transition zone for Raman spectra	is:
(1) between electronic levels	
(2) between magnetic levels of nuclei	
(3) between magnetic levels of unpair	ed electrons
(4) between vibrational and rotational	
Dry ice is used for fire extinguishers. I sprayed on a fire, it quickly changes in	It is stored in the cylinder in solid form. Wher to gas called CO2. The change of state is called
(1) Sublimation	(2) Evaporation
(3) Condensation	(4) Distillation
For an isentropic change of state:	
(1) $dH = 0$ (2) $dT = 0$	(3) $ds = 0$ (4) $ds = 1$
Arrange the following compounds in de	creasing order of reactivity with NBS/CCl4 /hv:
(a) $PhCH_3$ (c) $PhCH_2CH = CH_2$	(b) $PhCH_2CH_2CH_3$ (d) $Ph-CH-CH=CH_2$ CH_3
(1) d, c, a, b	(2) d, c, b, a
(3) a, b, c, d	(4) a, c, b, d
Which of the following will undergo from	ee radical bromination most readily?
(1) CH_3COOH	(2) CH ₃ COCl
(3) CH_3CH_2COOH	(4) HOOC CH ₂ CH ₂ COOH
In which compound electrophilic addit rule?	ion takes place according to anti-Markovnikov
(a) $CH_2 = CH - NO_2$	(b) $CH_2 = CH - CHO$
(c) $H_3C = CH - CN$	(d) $CH_3 - CH = CH_2$
Answer is:	
(1) a, b and c	(2) a, b, c & d
(3) Only d	(4) Only a
	 (1) between electronic levels (2) between magnetic levels of nuclei (3) between magnetic levels of unpaire (4) between vibrational and rotational Dry ice is used for fire extinguishers. Is sprayed on a fire, it quickly changes in (1) Sublimation (3) Condensation For an isentropic change of state: (1) dH = 0 (2) dT = 0 Arrange the following compounds in de (a) PhCH₃ (c) PhCH₂CH = CH₂ (1) d, c, a, b (3) a, b, c, d Which of the following will undergo from the following will be followed by the following will be followe

- **24.** For electrophilic addition with HX which pair is correctly matched?
 - (a) $CH_3 CH = CH_2$: alkyl carbocation
 - (b) $CH_3 C = CH$: vinyl carbocation
 - (c) $CH_2 = CH CH = CH_2$: alkyl carbocation
 - (d) $C_6H_5 CH = CH CH_3$: Benzyl carbocation

Select the correct answer:

- (1) a and d
- (2) a, b and d
- (3) b, c and d
- (4) a, c and d
- 25. Which among the following reagents gives syn-addition with alkenes:
 - (a) Br_2

- (b) Dil KMNO₄ | $\stackrel{\odot}{O}$ H
- (c) OsOH | NaSO₃H | HOH
- (d) $H_2 |Ni| \Delta$

Select the correct answer:

- (1) Only a
- (2) b and c
- (3) b, c and d (4) Only d

In the given reaction:

$$H_3C\ CH = CH_2 \xrightarrow{Hg(OAc)_2} [X]$$

[X] will be:

(1) $CH_3CH_2CH_2OH$

- OH (2) $CH_3 CH CH_3$
- (3) $CH_3 CH CH_2OAc$
- (4) $H_3CCH_2CH_2OAc$
- **27.** Which one of the following compounds undergoes thermal elimination reaction?
 - (1) Acetate
- (2) Chlorides
- (3) Bromide
- (4) Alcohols

In the given reaction 28.

$$\begin{array}{c|c} CH_3 & Br \\ H_3C - C - CH_2 - CH - CH_3 & \xrightarrow{Alc \ KOH} X \\ CH_3 & CH_3 & \end{array}$$

[*X*] will be :

(1)
$$H_3C - C - CH = CH - CH_3$$

 CH_3

(2)
$$H_3C - C - CH_2 - CH = CH_2$$

 CH_3

(3)
$$H_3C - C = C - CH_2CH_3$$
 (4) $H_2C = C - CH - CH_2 - CH_3$ CH_3CH_3

(4)
$$H_2C = C - CH - CH_2 - CH_3$$

 $CH_3 CH_3$

29. Arrange reactivity of alcohols in decreasing order for dehydration reaction :

$$(a) CH_3 - CH - CH_3$$

(b)
$$H_3C - C - CH_3$$

 CH_3

(c)
$$H_5C_6 - C - CH_3$$

 CH_3

(d)
$$H_3CCH_2OH$$

Select the answer:

- (1) c, b, d, a
- (2) b, c, d, a
- (3) b, c, a, d (4) c, b, a, d

30. Arrange acidity of given alcohols in decreasing order :

(a) 4-nitro-1-butanol

(b) 2-nitro-1-butanol

(c) 3-nitro-1-butanol

(d) 1-butanol

Correct answer is:

- (1) a, b, d, c
- (2) a, b, c, d (3) b, c, a, d
- (4) b, c, d, a

31.
$$CH_2(COOEt)_2 + (CH_2)_3 Br_2 \xrightarrow{NaOEt} I \xrightarrow{H_3O^{\oplus}} II$$

II is:

32.
$$H_3C - C \equiv C - CH_3 + B_2H_6 \rightarrow A \xrightarrow{H_3C \ COOH} B$$
 is:

(1)
$$CH_3 = C$$

$$CH_3$$

$$C = C$$

$$C - CH_3$$

$$C = C$$

(2)
$$H_3C = C COCH_3$$

$$CH_3$$

(3)
$$H_3C = C H_3$$

$$(4) \quad H_3C = C \quad H$$

$$CH_3$$

CPG-EE-2018/(Chemistry)-(SET-X)/(C)

P. T. O.

- **33.** A solution of (+) 2-chloro-2-phenylethane in toluene racemises slowly in presence of small amount of $SbCl_5$ due to formation of :
 - (1) Carbanion
- (2) Carbene
- (3) Carbocation
- (4) Free radical
- **34.** Which one of the following radicals exists in free state?
 - (1) $(C_6H_5)_3 \mathring{C}$

(2) $(H_3C)_3 - \dot{C}$

(4) $H_3C - \overset{C}{C} - CH = CH - \overset{\bullet}{C}H_2$ H_3C

35. In the given reaction :

B will be:

- **36.** Carbenes give which of the following reactions?
 - 1. Addition with alkenes
 - 2. Insertion into C-H bonds
 - 3. Addition with arynes
 - 4. Insertion into C P bonds
 - (1) Only 4
- (2) 3 and 1
- (3) 2 and 4
- (4) 1, 2 and 3
- **37.** Which one of the following ylides give cyclopropane derivative with α , β -unsaturated carbonyl compounds?
 - (1) Phosphorus ylide

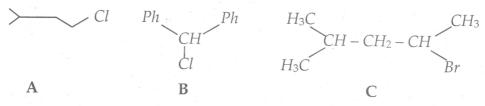
(2) Sulphoxonium ylide

(3) Sulphonium ylide

(4) Nitrogen ylide

- Carbonyl compounds react with which of the following compounds to form enamines?
 - (a) $C_6H_5NH_2$

(b) $C_6H_9NHCH_3$


Select the correct answer from the codes given below:

(1) Only a

(2) Only c & d

(3) a, c & d

- (4) b, c & d
- 39. Arrange the following compounds in order of increasing reactivity towards aqueous formic acid:

order is:

(1) C < B < A

(2) B < A < C

(3) A < C < B

- (4) A < B < C
- **40.** Arrange the following reactions in order of decreasing amount of isocyanide formed:
 - (A) $EtCl + NaCN \rightarrow EtCN + EtNC$
 - (B) $EtCl + AgCN \rightarrow EtCN + EtNC$
 - (C) $EtI + NaCN \rightarrow EtCN + EtNC$
 - (1) A > B > C (2) B > A > C (3) C > B > A (4) C > A > B

- **41.** What is the wavelength of a ball weighing 200 g and moving at a speed of 5 m/h?
 - (1) 1.6×10^{-24} m

(2) 2.3×10^{-30} m

(3) 3.2×10^{-28} m

- (4) 4.8×10^{-26} m
- **42.** Which set of quantum numbers is not suitable to an electron?
 - (1) 1, 0, 0, $+\frac{1}{2}$
- (2) 1, 0, 0, $-\frac{1}{2}$
- (3) 2, 0, 0, $+\frac{1}{2}$
- (4) 1, 1, 1, $+\frac{1}{2}$

CPG-EE-2018/(Chemistry)-(SET-X)/(C)

P. T. O.

43	3. What is the correct order of radii?	
	$(1) O^{2-} > F^{-} > O > F$	(2) $O^{2-} > F^{-} > F > O$
	(3) $F^- > O^{2-} > F > O$	(4) $O^{2-} > O > F^{-} > F$
44	Effective nuclear charge of an ion is:	
	(1) Nuclear charge	
	(2) Nuclear charge + Screening const	ant
	(3) Nuclear charge – Screening const	
	(4) Nuclear charge + Charge on ion	
45	. Which of the following molecule does	s not possess permanent dipole moment?
		(3) NO_2 (4) BF_3
46.	According to VSEPR theory shape of	
	(1) T-shaped (2) Triangular	(0)
47.		(1) Square planal
	hydrogen bonding is:	es that one water molecule can hold through
	(1) Two (2) Four	(3) Six (4) Eight
48.	Which of the following has highest late	
	(1) KF (2) NaF	(3) CsF (4) RbF
49.	Glauber's salt is:	
	$(1) MgSO_4.7H_2O$	(2) $Na_2SO_4.10H_2O$
	(3) $CuSO_4.5H_2O$	
50.		$(4) FeSO_4.7H_2O$
	KO_2 is used in oxygen cylinders in spa (1) absorbs CO_2	
		(2) produces O_3
	(3) absorbs moisture	(4) absorbs CO_2 and increases O_2
51.	PP 15.	white ppt which changes to black after some
	(1) $Ag_2S_2O_3$ (2) Ag_2SO_4	(3) Ag_2S (4) $Ag_2S_4O_6$
PG-E	E-2018/(Chemistry)-(SET-X)/(C)	., -02-4-6

52.	Which of the following is	used to	remove	SO_{4}^{2-}	ions from a	mixture	of SO_{-}^{2-}	$C_{\bullet}O^{2}$
	and Cl ions?			· ·			01 004	, 204

- (1) Ba $(OH)_2$
- (2) *NaOH*
- (3) *KOH*
- (4) BaSO₄

53. The myoglobin is:

- (1) Monomer
- (2) Dimer
- (3) Trimer
- (4) Tetramer

Residual entropy is:

- (1) The entropy possessed by crystalline substance at -273° C
- (2) The entropy in excess over the normal value
- (3) The entropy arising out of the defects in crystalline substance
- (4) None of these

Which of the following is correct one?

(1) $1 \text{ eV} = 80.656 \text{ cm}^{-1}$

(2) $1 \text{ eV} = 806.56 \text{ cm}^{-1}$

(3) $1 \text{ eV} = 8065.6 \text{ cm}^{-1}$

(4) $1 \text{ eV} = 8.0656 \text{ cm}^{-1}$

Critical temperature, T_C is related to Vander Waal's constants 'a' and 'b' by relation:

- (1) $T_C = \frac{27Ra}{8h}$ (2) $T_C = \frac{8ab}{27R}$ (3) $T_C = \frac{8a}{27Rb}$ (4) $T_C = \frac{27R}{8ab}$

The Boyle temperature is that at which second Virial coefficient of real gas is:

- (1) One
- (2) Two
- (3) Three
- (4) Zero

The average momentum of a particle can be estimated quantum mechanically using 58. relation:

$$(1) < p_x > = \frac{\int \psi \psi^{\otimes} dx}{\int \psi \hat{p}_x \psi^{\otimes} dx}$$

$$(2) \quad \langle p_x \rangle = \int \psi \hat{p}_x \psi^{\otimes} dx$$

$$(3) < p_x > = \frac{\int \psi \hat{p}_x \psi^{\otimes} dx}{\int \psi \psi^{\otimes} dx}$$

$$(4) < p_x > = \frac{\int \hat{p}_x \psi \psi^{\otimes} dx}{\int \psi \psi^{\otimes} dx}$$

where $\langle p_x \rangle$ represent average momentum of a particle moving in a direction parallel to x-axis.

59. 50 ml of 0.1 M NaOH is added to 49 ml of 0.1 M HCl. The pH of the resulting solution is:

- (1) 11
- (2) 9
- (3) 8
- (4) 13

60.	Henry's law is applicable to real gases, in	1 .	
	(1) Pressure is high		
	(2) Solubility of gas is appreciable		
	(3) Dissolved gas react with solvent		
	(4) Temperature is not too low		
61.	In "Inorganic benzene" hybridization of	B an	nd N respectively is:
	(1) Both have sp^2	(2)	sp^2 and sp^3
	(3) Both have sp^3	(4)	sp^3 and sp^2
62.	Three oxygen atoms of $[SiO_4]^{4-}$ are sha	red i	in:
	(1) Pyrosilicate	(2)	Linear chain silicate
	(3) Sheet silicate	(4)	Three dimensional silicate
63.	Number of P-O-P bonds in cyclic metap	phos	sphoric acid are :
	(1) Zero (2) Two	(3)	Three (4) Four
64.	Oxyacid of Sulphur which contains lon	ne pai	ir on Sulphur is:
	(1) Sulphuric acid	(2)) Pyrosulphuric acid
	(3) Peroxy disulphuric acid	(4)) Sulphurous acid
65.	Order of acidity of the following is:		
	$(1) HClO_4 < HClO_3 < HClO_2 < HClO_3$		
	$(2) HClO < HClO_4 < HClO_3 < HClO_2$		
	$(3) HClO < HClO_2 < HClO_3 < HClO_4$		4
	$(4) HClO_4 \triangleleft HClO_2 \triangleleft HClO_3 \triangleleft HClO$		
66.	Which of the following have same nur	mber	of electron pair on Xenon atom?
	(a) XeO_3 (b) $XeOF_4$		c) XeF ₆
	(1) Only (a) & (b)	(2	2) Only (b) & (c)
	(3) Only (a) & (c)	(4	4) (a), (b) & (c)
67	. Which of the following is not coloured	d?	
	(1) $KMnO_4$ (2) $K_2Cr_2O_7$	(3	3) $CuCl_2$ (4) TiO_2
CPG	-EE-2018/(Chemistry)-(SET-X)/(C)		*

Which of the following shows magnetic moment 1.74 BM?

(3) *TiCl*₄

- (2) $[Ni(CN)_6]^{2-}$
- (4) $[Cu(NH_3)_4]^{2+}$

69. Cis and trans complexes of $[PtA_2X_2]$ are distinguished by :

- (2) Ring test
- (3) Chromyl Chloride test
- (4) Carbylamine test

70. IUPAC name of $[Ni(NH_3)_4][NiCl_4]$ is:

- (1) Tetra chloro nickel (II) Tetra ammine nickelate (0)
- (2) Tetra ammine-nickel (II) Tetra chloro nickelate (II)
- (3) Tetra chloro nickel (II) Tetra ammine nickel (II)
- (4) Tetra ammine nickel (II) Tetra chloro nickel (II)

The operator for energy is:

- (1) $h \frac{\partial}{\partial t}$
- (2) $\hbar \cdot \frac{\partial}{\partial t}$
- (3) $i\hbar \cdot \frac{\partial}{\partial t}$
- (4) $-i\hbar \cdot \frac{\partial}{\partial t}$

The rate law for the multiple chain reaction

$$H_2 + Br_2 \rightarrow 2HBr$$
 is

$$\frac{d}{dt}[HBr] = \frac{kr_1[H_2][Br_2]^{3/2}}{[Br_2] + kr_2[HBr]}$$

Which of the following represent rate law in the limit of high pressure of bromine? (1) Rate = $kr_1[Br_2]$

(2) $Rate = kr_1 = [H_2]$

(3) Rate = $kr_1[H_2][Br_2]$

(4) Rate = $kr_1[H_2][Br_2]^{1/2}$

73. If $\left(\frac{\partial P}{\partial T}\right)_V = \frac{\alpha}{\beta}$; then according to Maxwell's relation:

 $(1) \ \left(\frac{\partial S}{\partial V}\right)_{T} = -\frac{\alpha}{\beta}$

(2) $\left(\frac{\partial S}{\partial V}\right)_T = \frac{\alpha}{\beta}$

(3) $\left(\frac{\partial S}{\partial V}\right)_{T} = \frac{\beta}{\alpha}$

 $(4) \left(\frac{\partial S}{\partial V}\right)_{T} = -\frac{\beta}{\alpha}$

Stefen law states that the total amount of energy E radiated by perfectly black body per unit area per unit time is directly proportional to:

(1) T

76. The Brunauer, Emmett and Teller (BET) equation relating to adsorption is expressed as:

(1)
$$\frac{P}{v_{\text{total}} (P_0 - P)} = \frac{1}{v_{\text{mono}} C} - \frac{C - 1}{v_{\text{mono}}} \left(\frac{P}{P_0}\right)$$

(2)
$$\frac{P}{v_{\text{total}} (P_0 - P)} = \frac{1}{v_{\text{mono}} C} + \frac{C - 1}{v_{\text{mono}} C} \left(\frac{P}{P_0}\right)$$

(3)
$$\frac{P}{v_{\text{total}} (P_0 - P)} = \frac{1}{C} + \frac{C - 1}{v_{\text{mono}} C} \left(\frac{P}{P_0}\right)$$

(4)
$$\frac{P}{P_0 - P} = \frac{1}{v_{\text{mono}} C} + \frac{1}{v_{\text{mono}} C} \left(\frac{P}{P_0}\right)$$

Where all the symbols have their usual meanings.

77. An organic fatty acid forms a surface film on water that obeys two-dimensional ideal gas law. If the surface tension lowering is $10 \, mN^{-1}$ at 25°C, then surface excess concentration is given by:

(1) $40.4 \times 10^{-6} \ mol \, m^{-2}$

(2) 4.04×10^{-6} mol m⁻²

(3) $404 \times 10^{-6} \ mol \, m^{-2}$

(4) $0.404 \times 10^{-6} \ mol \, m^{-2}$

The molecule which is IR inactive but Raman active is:

(1) HCl

(2) SO_2

 $(3) N_2$

(4) Protein

In the lead-acid battery during charging, the Cathode reaction is:

(1) Reduction of Pb^{+2} to Pb

(2) Formation of $PbSO_4$

(3) Formation of PbO_2

(4) None of these

- **80.** The number of α and β particles emitted by $\frac{218}{81}Ra$ in changing to a stable isotope of $\frac{206}{82}Pb$ will be :
 - (1) 1 and 2

(2) 2 and 4

(3) 1 and 4

- (4) 3 and 4
- **81.** The ether $\bigcirc -O CH_2 \bigcirc$ When treated with HI gives :

(2) $\langle O \rangle$ - Cu_2OH

(3) \bigcirc -I

- $(4) \quad \bigcirc -OCH_3$
- **82.** Formaldehyde does not undergo following reaction:
 - (1) Reduction

(2) Aldol condensation

(3) Polymerisation

- (4) Oxidation
- **83.** $B \leftarrow \frac{KMnO_4}{alkaline} \longrightarrow \frac{HCO_3H}{A} \rightarrow A$

A and B are:

(1) both
$$OH$$

(2) both OH

(3) A is trans, B is cis

(4) A is cis, B is trans

84.
$$H_2C = CH - CH = CH_2 \xrightarrow{H_2} A \xrightarrow{O_3/H_2O} B$$

A and B are:

- (1) $CH_2 = CH CH_2 CH_3, CH_2 CH_2 CHO, HCHO$ A
 B
- (2) $H_3C CH = CH CH_3$, CH_3CHO A B
- (3) Both correct
- (4) None is correct

Dehydration will be maximum in: 85.

(1)
$$CH_3 - CH - CH_2 CH_3$$

OH

(2)
$$H_3C - C - CH - CH_2 - CH_3$$

OH
 CH_3
(4) $CH_3 - C - OH$
 CH_3

$$(3) H_3C - CH - C - OH$$

$$OH$$

$$OH$$

$$(4) CH_3 - C - OH$$

$$CH_3$$

$$CH_3$$

86. In which case, product is same in the absence and presence of peroxide when HBr reacts with:

(1) 1-butene

(2) 2-butene

(3) Isobutene

(4) 2-pentene

87. Following reaction is acid catalysed:

$$\begin{array}{c|c}
O & OH \\
\hline
O & C-CH_3 & \stackrel{H^{\oplus}}{\longleftarrow} & O-C=CH_2
\end{array}$$

If D^+ (deuterium) is taken, product can be:

$$(1) \quad \bigcirc C = CH_2$$

$$(2) \quad \bigcirc -C = CH_2$$

(2)
$$\bigcirc -C = CH_2$$

$$\bigcirc OD$$

$$\bigcirc OD$$

$$\bigcirc OD$$

$$\bigcirc OD$$

$$\bigcirc C = CH D$$

88. $C_4H_8Cl_2 \xrightarrow{H_2O} C_4H_8O$, B forms oximes but negative haloform test, hence A and B A B

(1) $CH_3CH_2CH_2CHCl_2$, $CH_3COCH_2CH_3$

(2)
$$CH_3$$
 $CH CH Cl_2$, H_3C $CH CH O$ H_3C

- (3) CH₃CH₂ CCl₂ CH₃, CH₃CH₂CH₂CHO
- (4) none

89.
$$C$$
 $NK + \alpha$ -halo ester C
 A
 H_2N
 $COOH$

Required product is obtained when A is:

- (1) Ethyl-3-chlorobutyrate
- (2) ethyl-3-chloropropionate
- (3) Ethyl-2-chloropropionate
- (4) Ethyl chloroacetate
- Cinnamic acid can be prepared from benzaldehyde by: 90.
 - (1) Perkin condensation
- (2) Grignard reaction

- (3) Cannizarro reaction
- (4) Aldol condensation
- Which of the following is a correct relation?

(1)
$$pH = \frac{1}{2}pk_w + \frac{1}{2}pk_a + \frac{1}{2}pk_b$$
 (2) $pH = \frac{1}{2}pk_w + \frac{1}{2}pk_a - \frac{1}{2}pk_b$

(2)
$$pH = \frac{1}{2}pk_w + \frac{1}{2}pk_a - \frac{1}{2}pk_b$$

(3)
$$pH^{\frac{1}{2}}\frac{1}{2}pk_w + \frac{1}{2}k_a - \frac{1}{2}k_b$$

(4)
$$pH = \frac{1}{2}pk_w - \frac{1}{2}k_a + \frac{1}{2}k_b$$

Where all the notation have their usual meanings.

- The IR absorption at 1665 cm^{-1} in salicylic acid is due to : 92.
 - (1) C-H bending

(2) O-H bending

(3) O – H stretching

- (4) C = O stretching
- No Bragg reflection of X-rays from a crystal will be observed, if d_{hkl} is less than:
- $(2) \lambda/2$
- (3) $\lambda/3$
- $(4) \lambda/4$
- The number of collisions, Z_{11} between the reacting molecules per sec per dm^3 , according to kinetic theory of gases is expressed as:
 - (1) $Z_{11} = \frac{1}{\sqrt{2}} \pi \sigma^2(n^2) \overline{C}$

(2) $Z_{11} = \sqrt{2\pi\sigma^2(n^2)}\overline{C}$

(3) $Z_{11} = \frac{1}{\sqrt{2}} \pi \sigma(n^2) \overline{C}$

- (4) $Z_{11} = \sqrt{2\pi\sigma^2}(n)\overline{C}$
- In a closed room of 500 m³ a perfumed bottle is opened. The room develops smell. This is due to opened. The room develops smell. This is due to:
 - (1) Diffusion
- (2) Absorption
- (3) Desorption
- (4) Viscosity

- **96.** $\Psi_{21(-1)}$ represents :
 - (1) $2 p_x$ orbital
- (2) $2 p_y$ orbital
- (3) $2 p_z$ orbital
- (4) None of these
- 97. Which of the following will give meso form with Baeyer's reagent?

(1)
$$H_3C = C CH_3$$

$$H$$

(3)
$$Me$$
 $C = C$ Me

(2)
$$H_3C = C H$$

$$CH_3$$

(4)
$$Ph C = C H$$

98. The IUPAC name of compound:

$$COOH$$
 Br
 NO_2 is:

- (1) 2-bromo-3-carboxy-5- hydroxy-1-nitrobenzene
- (2) 2-bromo-5-hydroxy-3-nitrobenzoic acid
- (3) 4-bromo-3-carboxy-5-nitrophenol
- (4) 4-bromo-3-carboxy-5-nitro-1-hydroxybenzene
- **99.** In structural representation of molecules, the prefixes *Z* and *E* stands for :
 - (1) Zeigler-Erythro

(2) Zurammen-Estrogen

(3) Zeigler-Erhard

- (4) Zusamann-Enteggen
- **100.** β -phenylethyl chloride is the minor product obtained by reaction of chlorine with :

$$CH = CH_2$$
(1)

$$(3) H_3C - C - CH_3$$

$$C \equiv CH$$
(4)

SEAL

Jorn Jumbel chart verfreites Of Kornel

Total No. of Printed Pages: 17

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

CPG-EE-2018 (Chemistry)-(SET-X

D		M.D. L. Rohts
Time : 11/2 Hours	Total Questions : 100	Max. Marks : 100
Roll No. (in figures)	(in words)	
Candidate's Name		Date of Birth
Father's Name ————	Mother's Name	
Date of Exam :		
(Signature of the Candidate)	·	(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- All questions are compulsory and carry equal marks. The candidates are required to attempt all questions.
- 2. The candidates *must return* the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means/misbehaviour will be registered against him/her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- **3.** In case there is any discrepancy in any question(s) in the Question Booklet, the same may be brought to the notice of the Controller of Examinations in writing *within two hours* after the test is over. No such complaint(s) will be entertained thereafter.
- **4.** The candidate *must not* do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers *must not* be ticked in the question booklet.
- 5. Use only black or blue ball point pen of good quality in the OMR Answer-Sheet.
- **6.** There will be **negative** marking. Each correct answer will be awarded **one** full mark and each incorrect answer will be negatively marked for which the candidate will get ¼ discredit. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- **7.** Before answering the questions, the candidates should ensure that they have been supplied correct & complete question booklet. Complaints, if any, regarding misprinting etc. will not be entertained **30** minutes after starting of the examination.

- **1.** The ether $\bigcirc \bigcirc -O CH_2 \bigcirc \bigcirc$ When treated with HI gives :
 - $(1) \quad \bigcirc -CH_2$

(2) $\langle O \rangle$ - Cu_2OH

(3) \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

- (4) $\langle O \rangle$ -OCH₃
- 2. Formaldehyde does not undergo following reaction:
 - (1) Reduction

(2) Aldol condensation

(3) Polymerisation

(4) Oxidation

3.
$$B \leftarrow \frac{KMnO_4}{alkaline} \rightarrow A$$

A and B are:

(1) both
$$OH$$

(2) both OH

(3) A is trans, B is cis

(4) A is cis, B is trans

4.
$$H_2C = CH - CH = CH_2 \xrightarrow{H_2} A \xrightarrow{O_3/H_2O} B$$

A and B are:

- (1) $CH_2 = CH CH_2 CH_3, CH_2 CH_2 CHO, HCHO$ A
 B
- (2) $H_3C CH = CH CH_3$, CH_3CHO A B
- (3) Both correct
- (4) None is correct
- 5. Dehydration will be maximum in:

(1)
$$CH_3 - CH - CH_2 CH_3$$
 OH

(2)
$$H_3C - C - CH - CH_2 - CH_3$$

OH

(3)
$$H_3C - CH - C - OH$$

OH

$$(4) \quad CH_3 - C - OH$$

$$CH_3$$

- 6. In which case, product is same in the absence and presence of peroxide when HBr reacts with:
 - (1) 1-butene
- (2) 2-butene
- (3) Isobutene (4) 2-pentene
- **7.** Following reaction is acid catalysed:

$$O \longrightarrow C - CH_3 \stackrel{H^{\oplus}}{\rightleftharpoons} O \longrightarrow C = CH_2$$

If D^+ (deuterium) is taken, product can be :

$$(1) \bigcirc OH$$

$$C = CH_2$$

$$\begin{array}{c|c}
OD \\
\hline
(2) & \bigcirc -C = CH_2
\end{array}$$

$$(3) \quad \begin{array}{c} OH \\ \\ \hline \\ C = CHD \end{array}$$

$$(4) \quad \begin{array}{c} OD \\ -C = CH D \end{array}$$

8. $C_4H_8Cl_2 \xrightarrow{H_2O} C_4H_8O$, B forms oximes but negative haloform test, hence A and B A

are:

(1) CH₃CH₂CH₂CHCl₂, CH₃COCH₂CH₃

(2)
$$CH_3$$
 $CHCHCl_2$, H_3C $CHCHO$ H_3C

- (3) CH₃CH₂ CCl₂ CH₃, CH₃CH₂CH₂CHO
- (4) none

9.
$$C$$
 $NK+ \alpha$ -halo ester
 A
 C
 H_2N
 $COOH$

Required product is obtained when A is:

- (1) Ethyl-3-chlorobutyrate
- (2) ethyl-3-chloropropionate
- (3) Ethyl-2-chloropropionate
- (4) Ethyl chloroacetate
- 10. Cinnamic acid can be prepared from benzaldehyde by:
 - (1) Perkin condensation
- (2) Grignard reaction
- (3) Cannizarro reaction
- (4) Aldol condensation

11.	AgNO ₃ on treatment with hypo gives white ppt which changes to black after some	1e
	time black ppt is :	

- (1) $Ag_2S_2O_3$ (2) Ag_2SO_4 (3) Ag_2S (4) $Ag_2S_4O_6$
- **12.** Which of the following is used to remove SO_4^{2-} ions from a mixture of SO_4^{2-} , $C_2O_4^{2-}$ and Cl ions?
 - (1) $Ba(OH)_2$
- (2) *NaOH*
- (3) KOH
- (4) $BaSO_4$

- **13.** The myoglobin is:
 - (1) Monomer
- (2) Dimer
- (3) Trimer
- (4) Tetramer

- Residual entropy is:
 - (1) The entropy possessed by crystalline substance at -273°C
 - (2) The entropy in excess over the normal value
 - (3) The entropy arising out of the defects in crystalline substance
 - (4) None of these
- **15.** Which of the following is correct one?
 - (1) $1 \text{ eV} = 80.656 \text{ cm}^{-1}$

(2) $1 \text{ eV} = 806.56 \text{ cm}^{-1}$

(3) $1 \text{ eV} = 8065.6 \text{ cm}^{-1}$

- (4) $1 \text{ eV} = 8.0656 \text{ cm}^{-1}$
- **16.** Critical temperature, T_C is related to Vander Waal's constants 'a' and 'b' by relation :

 - (1) $T_C = \frac{27Ra}{8h}$ (2) $T_C = \frac{8ab}{27R}$ (3) $T_C = \frac{8a}{27Rh}$ (4) $T_C = \frac{27R}{8ah}$
- The Boyle temperature is that at which second Virial coefficient of real gas is:
 - (1) One
- (2) Two
- (3) Three
- (4) Zero
- The average momentum of a particle can be estimated quantum mechanically using relation:

$$(1) < p_x > = \frac{\int \psi \psi^{\otimes} dx}{\int \psi \hat{p}_x \psi^{\otimes} dx}$$

$$(2) \quad \langle p_x \rangle = \int \psi \hat{p}_x \psi^{\otimes} dx$$

$$(3) < p_x > = \frac{\int \psi \hat{p}_x \psi^{\otimes} dx}{\int \psi \psi^{\otimes} dx}$$

$$(4) < p_x > = \frac{\int \hat{p}_x \psi \psi^{\otimes} dx}{\int \psi \psi^{\otimes} dx}$$

where $\langle p_x \rangle$ represent average momentum of a particle moving in a direction parallel to x-axis.

- **19.** 50 ml of 0.1 M *NaOH* is added to 49 ml of 0.1 M *HCl*. The pH of the resulting solution is:
 - (1) 11
- (2) 9
- (3) 8
- (4) 13

- **20.** Henry's law is applicable to real gases, if:
 - (1) Pressure is high
 - (2) Solubility of gas is appreciable
 - (3) Dissolved gas react with solvent
 - (4) Temperature is not too low
- **21.** $CH_2(COOEt)_2 + (CH_2)_3 Br_2 \xrightarrow{NaOEt} I \xrightarrow{H_3O^{\oplus}} II$

II is:

COOH

(2) COOH

 $(3) \qquad COOH$

- $(4) \qquad \boxed{\qquad} COOH$
- **22.** $H_3C C \equiv C CH_3 + B_2H_6 \rightarrow A \xrightarrow{H_3C COOH} B$ is:
 - (1) $CH_3 C = C$ $CH_3 C C$ $C CH_3 C$ $C CH_3 C$
- (2) $H_3C = C COCH_3$ CH_3

(3) $H_3C = C H_3$

- (4) $H_3C = C H$ CH_3
- **23.** A solution of (+) 2-chloro-2-phenylethane in toluene racemises slowly in presence of small amount of $SbCl_5$ due to formation of :
 - (1) Carbanion

(2) Carbene

(3) Carbocation

(4) Free radical

- 24. Which one of the following radicals exists in free state?
 - $(1) (C_6H_5)_3 \mathring{C}$

(2) $(H_3C)_3 - \dot{C}$

$$(3) \int_{N}$$

(4) $H_3C - C - CH = CH - \dot{C}H_2$ H_3C

25. In the given reaction :

$$\begin{array}{c}
 & \stackrel{NBS/CCl_4}{\longrightarrow} A \xrightarrow{H_2O/K_2CO_3} B
\end{array}$$

B will be:

- **26.** Carbenes give which of the following reactions?
 - 1. Addition with alkenes
 - 2. Insertion into C-H bonds
 - 3. Addition with arynes
 - 4. Insertion into C P bonds
 - (1) Only 4

(2) 3 and 1

(3) 2 and 4

- (4) 1, 2 and 3
- **27.** Which one of the following ylides give cyclopropane derivative with α , β -unsaturated carbonyl compounds?
 - (1) Phosphorus ylide

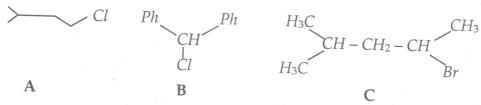
(2) Sulphoxonium ylide

(3) Sulphonium ylide

(4) Nitrogen ylide

- Carbonyl compounds react with which of the following compounds to form enamines?
 - (a) $C_6H_5NH_2$

(b) $C_6H_9NHCH_3$


Select the correct answer from the codes given below:

(1) Only a

(2) Only c & d

(3) a, c & d

- (4) b, c & d
- 29. Arrange the following compounds in order of increasing reactivity towards aqueous formic acid:

order is:

(1) C < B < A

(2) B < A < C

(3) A < C < B

- (4) A < B < C
- **30.** Arrange the following reactions in order of decreasing amount of isocyanide formed:
 - (A) $EtCl + NaCN \rightarrow EtCN + EtNC$
 - (B) $EtCl + AgCN \rightarrow EtCN + EtNC$
 - (C) $EtI + NaCN \rightarrow EtCN + EtNC$
 - (1) A > B > C
- (2) B > A > C
- (3) C > B > A (4) C > A > B
- **31.** Term symbol of Ni^{2+} is:
 - $(1)^{3}F_{4}$
- (2) ${}^{3}F_{2}$
- (3) $^{2}D_{0}$
- (4) $^{2}D_{5/2}$
- **32.** Lowest energy transition in $[Ti(H_2O)_6]^{3+}$ is:
 - $(1) \quad ^2T_{2g} \rightarrow ^2Eg$

 $(2) \quad {}^{2}Eg \rightarrow {}^{2}T_{2g}$

(3) ${}^{2}A_{2g} \rightarrow {}^{2}T_{2g}$

 $(4) {}^{2}T_{2g} \rightarrow {}^{2}A_{2g}$

)	
33.	In octahedral field which of the following has zero crystal field stabilization energy?
	(1) Co^{2+} (low spin) (2) Fe^{3+} (low spin) (3) Fe^{3+} (high spin) (4) Cr^{3+} (high spin)
34.	
35.	()
36.	
37.	
38.	Among all which is not a lewis acid? (1) $AlCl_3$ (2) SO_2 (3) SbF_5 (4) CN^-
39.	The donor atoms of the hard bases have: (1) Low polarization (2) High electronegativity (3) Low electronegativity (4) Both (1) & (2)
40.	The behaviour shown by urea in following solvents (a) water (b) liquid ammonia (c) anhydrous H_2SO_4 is respectively:
	 (1) Base, acid, non-electrolyte (2) Non electrolyte, base, acid (3) Non electrolyte, acid, base (4) Acid, base, non-electrolyte
41	Which of the fall-

41. Which of the following is a correct relation?

(1)
$$pH = \frac{1}{2}pk_w + \frac{1}{2}pk_a + \frac{1}{2}pk_b$$

(2)
$$pH = \frac{1}{2}pk_w + \frac{1}{2}pk_a - \frac{1}{2}pk_b$$

(3)
$$pH = \frac{1}{2}pk_w + \frac{1}{2}k_a - \frac{1}{2}k_b$$
 (4) $pH = \frac{1}{2}pk_w - \frac{1}{2}k_a + \frac{1}{2}k_b$

(4)
$$pH = \frac{1}{2}pk_w - \frac{1}{2}k_a + \frac{1}{2}k_b$$

Where all the notation have their usual meanings.

42. The IR absorption at 1665 cm⁻¹ in salicylic acid is due to :

(1) C – H bending

(2) O – H bending

(3) O – H stretching

(4) C = O stretching

- No Bragg reflection of X-rays from a crystal will be observed, if d_{hkl} is less than :
 - (1) λ
- $(2) \lambda/2$
- $(3) \lambda/3$
- $(4) \lambda/4$
- The number of collisions, Z₁₁ between the reacting molecules per sec per dm³, according to kinetic theory of gases is expressed as:
 - (1) $Z_{11} = \frac{1}{\sqrt{2}} \pi \sigma^2(n^2) \overline{C}$

(2) $Z_{11} = \sqrt{2}\pi\sigma^2(n^2)\overline{C}$

(3) $Z_{11} = \frac{1}{\sqrt{2}} \pi \sigma(n^2) \overline{C}$

- $(4) \quad Z_{11} = \sqrt{2\pi\sigma^2(n)}\overline{C}$
- **45.** In a closed room of 500 m³ a perfumed bottle is opened. The room develops smell. This is due to opened. The room develops smell. This is due to :
 - (1) Diffusion
- (2) Absorption
- (3) Desorption
- (4) Viscosity

- **46.** $\Psi_{21(-1)}$ represents :
 - (1) $2 p_x$ orbital
- (2) $2 p_y$ orbital (3) $2 p_z$ orbital
- (4) None of these
- 47. Which of the following will give meso form with Baeyer's reagent?

(1)
$$H_3C = C CH_3$$

$$H$$

(2)
$$H_3C = C H$$

$$CH_3$$

(3)
$$Me$$

$$tE = C$$
 Me

$$Me$$

$$(4) Ph C = C COOH$$

The IUPAC name of compound:

$$OOOH$$
 Br is
 NO_2

- (1) 2-bromo-3-carboxy-5- hydroxy-1-nitrobenzene
- (2) 2-bromo-5-hydroxy-3-nitrobenzoic acid
- (3) 4-bromo-3-carboxy-5-nitrophenol
- (4) 4-bromo-3-carboxy-5-nitro-1-hydroxybenzene

- **49.** In structural representation of molecules, the prefixes *Z* and *E* stands for :
 - (1) Zeigler-Erythro

(2) Zurammen-Estrogen

(3) Zeigler-Erhard

- (4) Zusamann-Enteggen
- **50.** β-phenylethyl chloride is the minor product obtained by reaction of chlorine with :

$$(1) \quad CH = CH_2$$

$$(2) \qquad CH_2 CH_3$$

$$(3) H_3C - C - CH_3$$

$$C \equiv CH$$
(4)

- **51.** Arrange the following compounds in decreasing order of reactivity with $NBS/CCl_4/h_V$:
 - (a) $PhCH_3$

(b) PhCH₂CH₂CH₃

(c) $PhCH_2CH = CH_2$

(d) $Ph - CH - CH = CH_2$ CH_3

(1) d, c, a, b

(2) d, c, b, a

(3) a, b, c, d

- (4) a, c, b, d
- **52.** Which of the following will undergo free radical bromination most readily?
 - (1) CH_3COOH

(2) CH₃COCl

(3) CH_3CH_2COOH

- (4) HOOC CH₂ CH₂ COOH
- **53.** In which compound electrophilic addition takes place according to anti-Markovnikov rule?
 - (a) $CH_2 = CH NO_2$

(b) $CH_2 = CH - CHO$

(c) $H_3C = CH - CN$

(d) $CH_3 - CH = CH_2$

Answer is:

(1) a, b and c

(2) a, b, c & d

(3) Only d

(4) Only a

54. For electrophilic addition with HX which pair is correctly matched?

- (a) $CH_3 CH = CH_2$: alkyl carbocation
- (b) $CH_3 C \equiv CH$: vinyl carbocation
- (c) $CH_2 = CH CH = CH_2$: alkyl carbocation
- (d) $C_6H_5 CH = CH CH_3$: Benzyl carbocation

Select the correct answer:

- (1) a and d
- (2) a, b and d
- (3) b, c and d
- (4) a, c and d

55. Which among the following reagents gives syn-addition with alkenes:

(a) Br_2

- (b) Dil KMNO₄ | ÕH
- (c) OsOH | NaSO₃H | HOH
- (d) $H_2 |Ni| \Delta$

Select the correct answer:

- (1) Only a
- (2) b and c
- (3) b, c and d (4) Only d

56. In the given reaction :

$$H_3C CH = CH_2 \xrightarrow{Hg(OAc)_2} [X]$$

[*X*] will be :

(1) $CH_3CH_2CH_2OH$ OH

- OH(2) $CH_3 - CH - CH_3$
- (3) $CH_3 CH CH_2OAc$
- (4) $H_3CCH_2CH_2OAc$

57. Which one of the following compounds undergoes thermal elimination reaction?

- (1) Acetate
- (2) Chlorides
- (3) Bromide
- (4) Alcohols

58. In the given reaction

$$\begin{array}{ccc} CH_3 & Br \\ & & | & \\ H_3C - C - CH_2 - CH - CH_3 & \xrightarrow{Alc\ KOH} & [X] \\ & & CH_3 & \end{array}$$

[X] will be:

- CH_3 (1) $H_3C - C - CH = CH - CH_3$
- CH_3 (2) $H_3C - C - CH_2 - CH = CH_2$
- CH₃ CH₃
- (3) $H_3C C = C CH_2CH_3$ (4) $H_2C = C CH CH_2 CH_3$ CH₃ CH₃

Arrange reactivity of alcohols in decreasing order for dehydration reaction:

$$(a) CH_3 - CH - CH_3$$

(b)
$$H_3C - C - CH_3$$

 CH_3

(c)
$$H_5C_6 - C - CH_3$$

$$_{1}$$
 (d) $_{1}H_{3}CCH_{2}OH$

Select the answer:

60. Arrange acidity of given alcohols in decreasing order:

(a) 4-nitro-1-butanol

(b) 2-nitro-1-butanol

(c) 3-nitro-1-butanol

(d) 1-butanol

Correct answer is:

The operator for energy is:

(1)
$$h \frac{\partial}{\partial t}$$

(2)
$$\hbar \cdot \frac{\partial}{\partial t}$$

(3)
$$i\hbar \cdot \frac{\partial}{\partial t}$$

$$(4) -i\hbar \cdot \frac{\partial}{\partial t}$$

The rate law for the multiple chain reaction

$$H_2 + Br_2 \rightarrow 2HBr$$
 is

$$\frac{d}{dt}[HBr] = \frac{kr_1[H_2][Br_2]^{3/2}}{[Br_2] + kr_2[HBr]}$$

Which of the following represent rate law in the limit of high pressure of bromine?

(1) Rate =
$$kr_1[Br_2]$$

(2) Rate =
$$kr_1 = [H_2]$$

(3) Rate =
$$kr_1[H_2][Br_2]$$

(4) Rate =
$$kr_1[H_2][Br_2]^{1/2}$$

63. If $\left(\frac{\partial P}{\partial T}\right)_{xy} = \frac{\alpha}{\beta}$; then according to Maxwell's relation:

$$(1) \quad \left(\frac{\partial S}{\partial V}\right)_T = -\frac{\alpha}{\beta}$$

(2)
$$\left(\frac{\partial S}{\partial V}\right)_T = \frac{\alpha}{\beta}$$

(3)
$$\left(\frac{\partial S}{\partial V}\right)_T = \frac{\beta}{\alpha}$$

(4)
$$\left(\frac{\partial S}{\partial V}\right)_T = -\frac{\beta}{\alpha}$$

(2) velocity of K^+ is greater than that of NO_3^- ions

(3) velocity of NO_3^- is greater than that of Na^+ ions

(4) None of the above

65. Stefen law states that the total amount of energy E radiated by perfectly black body per unit area per unit time is directly proportional to:

(1) T

(2) T^2

(3) T^3

 $(4) T^4$

66. The Brunauer, Emmett and Teller (BET) equation relating to adsorption is expressed as:

(1)
$$\frac{P}{v_{\text{total}} (P_0 - P)} = \frac{1}{v_{\text{mono}} C} - \frac{C - 1}{v_{\text{mono}}} \left(\frac{P}{P_0}\right)$$

(2)
$$\frac{P}{v_{\text{total}} (P_0 - P)} = \frac{1}{v_{\text{mono}} C} + \frac{C - 1}{v_{\text{mono}} C} \left(\frac{P}{P_0}\right)$$

(3)
$$\frac{P}{v_{\text{total}} (P_0 - P)} = \frac{1}{C} + \frac{C - 1}{v_{\text{mono}} C} \left(\frac{P}{P_0}\right)$$

(4)
$$\frac{P}{P_0 - P} = \frac{1}{v_{\text{mono}} C} + \frac{C - 1}{v_{\text{mono}} C} \left(\frac{P}{P_0}\right)$$

Where all the symbols have their usual meanings.

67. An organic fatty acid forms a surface film on water that obeys two-dimensional ideal gas law. If the surface tension lowering is $10 \, mN^{-1}$ at 25°C, then surface excess concentration is given by :

(1) $40.4 \times 10^{-6} \ mol \, m^{-2}$

(2) $4.04 \times 10^{-6} \ mol \, m^{-2}$

(3) $404 \times 10^{-6} \ mol \, m^{-2}$

(4) $0.404 \times 10^{-6} \ mol \, m^{-2}$

68. The molecule which is IR inactive but Raman active is:

(1) HCl

(2) *SO*₂

(3) N_2

(4) Protein

69. In the lead-acid battery during charging, the Cathode reaction is:

(1) Reduction of Pb^{+2} to Pb

(2) Formation of $PbSO_4$

(3) Formation of PbO_2

(4) None of these

- 70. The number of α and β particles emitted by $\frac{218}{81}Ra$ in changing to a stable isotope of $\frac{206}{82}Pb$ will be:
 - (1) 1 and 2
- (2) 2 and 4
- (3) 1 and 4
- (4) 3 and 4
- **71.** Select the correct statement from the following:
 - (1) Work is a state function
 - (2) Delayed flourescence is phosphorescence
 - (3) Quantum yield of any reaction is always positive
 - (4) The molar extinction coefficient is unit less
- **72.** There cannot be a quadrupole point on the phase diagram for one-component system, because the degree of freedom is:
 - (1) 3
- $(2)^{-4}$
- (3) -1
- (4) Zero

- **73.** Milk is a / an:
 - (1) Gel

(2) Emulsion

(3) Suspension

- (4) Solution
- **74.** Isotonic solutions have the same:
 - (1) Viscosity

(2) Surface tension

(3) pH

- (4) Osmotic pressure
- **75.** The rotational spectra of *HCl* molecule suggest that rotational lines are equally separated by 22.70 cm⁻¹. The internuclear bond length will be estimated by (all notations have their usual meanings):
 - (1) $\left[\frac{h \times 10^{-2}}{8\pi^2 \mu C \times 11.35} \right]^{1/2}$

- (2) $\left[\frac{h \times 10^{-2}}{8\pi^2 \mu C \times 22.70} \right]^{1/2}$
- (3) $\left[\frac{h \times 10^{-2}}{8\pi^2 \mu^2 C \times 11.35} \right]^{1/2}$
- (4) $\left[\frac{h \times 10^{-2}}{8\pi^2 \mu C^2 \times 22.70}\right]^{1/2}$
- **76.** Cellulose nitrate relates to which of the following category of the polymers?
 - (1) Synthetic polymers

- (2) Natural polymers
- (3) Semi Synthetic polymers
- (4) None of these

77	Which of the following monomers are not suitable for condensation polymerization?
	(1) Butane-dioic acid and glycol
	(2) Propanoic acid and ethanol
	(3) Diamines and dicarboxylic acid
	(4) Hydroxy acid
78.	The transition zone for Raman spectra is:
	(1) between electronic levels
	(2) between magnetic levels of nuclei
	(3) between magnetic levels of unpaired electrons
	(4) between vibrational and rotational levels
79.	Dry ice is used for fire extinguishers. It is stored in the cylinder in solid form. When sprayed on a fire, it quickly changes into gas called CO ₂ . The change of state is called:
	(1) Sublimation (2) Evaporation (3) Condensation (4) Distillation
80.	
	(1) $dH = 0$ (2) $dT = 0$ (3) $ds = 0$ (4) $ds = 1$
81.	What is the wavelength of a ball weighing 200 g and moving at a speed of 5 m/h?
	(1) 1.6×10^{-24} m (2) 2.3×10^{-30} m
	(3) 3.2×10^{-28} m (4) 4.8×10^{-26} m
82.	Which set of quantum numbers is not suitable to an electron?
	(1) $1, 0, 0, +\frac{1}{2}$ (2) $1, 0, 0, -\frac{1}{2}$ (3) $2, 0, 0, +\frac{1}{2}$ (4) $1, 1, 1, +\frac{1}{2}$
83.	What is the correct order of radii? (4) 1, 1, 1, 1 , 1 , 1 , 1 , 1 , 1 ,
	(4) 02-
	(2) 0 >1 >F>0
	(3) $F^- > O^{2-} > F > O$ (4) $O^{2-} > O > F^- > F$
84.	Effective nuclear charge of an ion is:
	(1) Nuclear charge
	(2) Nuclear charge + Screening constant
· ·	(3) Nuclear charge – Screening constant
	(4) Nuclear charge + Charge on ion
CPG-E	E-2018/(Chemistry)-(SFT-Y)/(D)

85	. Which of the follow	ring molecule does	not possess permaner	nt dipole moment?
	(1) NF_3	$(2) CH_2Cl_2$	(3) NO_2	$(4) BF_3$
86	. According to VSEP	R theory shape of (ClF ₃ is:	
	(1) T-shaped	(2) Triangular	(3) Tetrahedral	(4) Square planar
87	 Maximum number hydrogen bonding i 	of water molecules:	es that one water m	olecule can hold through
	(1) Two	(2) Four	(3) Six	(4) Eight
88	. Which of the follow	ing has highest latt	ice energy ?	
	(1) KF	(2) NaF	(3) CsF	(4) RbF
89.	Glauber's salt is:			
	(1) $MgSO_4.7H_2O$		(2) $Na_2SO_4.10H_2C$	
	(3) $CuSO_4.5H_2O$		$(4) FeSO_4.7H_2O$	
90.	KO ₂ is used in oxyg	en cylinders in spa	ce as it :	
	(1) absorbs CO_2		(2) produces O_3	
	(3) absorbs moisture	е	(4) absorbs CO_2 ar	nd increases O_2
91.	In "Inorganic benzer (1) Both have sp^2 (3) Both have sp^3	e" hybridization of	B and N respectively (2) sp^2 and sp^3 (4) sp^3 and sp^2	vis:
92.	Three oxygen atoms Pyrosilicate Sheet silicate 	of $[SiO_4]^{4-}$ are share	red in : (2) Linear chain sili (4) Three dimension	
93.	Number of P-O-P box	nds in cyclic metap	hosphoric acid are:	
	(4)	2) Two	(0)	(4) Four
94.	Oxyacid of Sulphur v (1) Sulphuric acid	vhich contains lone	e pair on Sulphur is : (2) Pyrosulphuric ac	cid
	(3) Peroxy disulphur	ric acid	(4) Sulphurous acid	
CPG-E	EE-2018/(Chemistry)-(S	SET-X)/(D)		P. T. O.

95.	Order of acidity of the following is:	
	$(1) HClO_4 < HClO_3 < HClO_2 < HClO$	
	$(2) HClO < HClO_4 < HClO_3 < HClO_2$	
	$(3) HClO < HClO_2 < HClO_3 < HClO_4$	
	$(4) HClO_4 < HClO_2 < HClO_3 < HClO$	
96.	Which of the following have same num	ber of electron pair on Xenon atom
	(a) XeO_3 (b) $XeOF_4$	(c) <i>XeF</i> ₆
	(1) Only (a) & (b)	(2) Only (b) & (c)
	(3) Only (a) & (c)	(4) (a), (b) & (c)
97.	Which of the following is not coloured	?
	(1) $KMnO_4$ (2) $K_2Cr_2O_7$	$(3) CuCl_2 \qquad \qquad (4) TiO_2$
98.	Which of the following shows magneti	c moment 1.74 BM ?
	(1) $[CoCl_4]^{4-}$	(2) $[Ni(CN)_6]^{2-}$
	(3) $TiCl_4$	(4) $[Cu(NH_3)_4]^{2+}$
99.	Cis and trans complexes of $[PtA_2X_2]$ a	re distinguished by:
	(1) Kurnakov test	(2) Ring test
	(3) Chromyl Chloride test	(4) Carbylamine test
100.	IUPAC name of $[Ni(NH_3)_4][NiCl_4]$ is	

- (1) Tetra chloro nickel (II) Tetra ammine nickelate (0)
- (2) Tetra ammine-nickel (II) Tetra chloro nickelate (II)
- (3) Tetra chloro nickel (II) Tetra ammine nickel (II)
- (4) Tetra ammine nickel (II) Tetra chloro nickel (II)

ANSWER KEY OF CHEMISTRY MDUCEE 2018

Sr. No.	Α	В	C C	D
1	2 .	3 -	1	1
2	4	4 ·	1	2,
3	1	. 2.	3	3,
4	3	1 .	4	2
5	4	4,	1	4 %
6	1	2	3	2 -
7	2	2, .	1	2
8	2	31.	4	2,
9	2	1:	4	3
10		4 .	3	1
11		2:	2	3 :
12		4.	3	1 ,
13		31.	2	1 %
14		31.	4	1.
15		. 2:	1	2
16	 	4,	3	3
17		2,	2	4
18		4.	4	3
19		4.,	1	1
20	-	2	3	4
21		1,	2	2 .
22		2.	3	4
23	-	3,	1	3
24		2;	2 ,	3 - ;
25		4 -	3	2 -
26	3	2	3	4 .
27		2	1	2 -
28	3 4	2 ·	2	4
29	9 4	3.	4	4
30	3	1	1	2.
31		2.	2	1
32		4:	4	1
33		1	3	3
34		3 :	3	4.
35	-	4.	2	1.
36		1	4	3 .
37		2:	2	1
38	3 3	2 :	4	4

ANSWER KEY OF CHEMISTRY MDUCEE 2018

ANSWER KEY OF CHEMISTRY MDUCEE 2018					
Sr. No.	Α	В	С	D	
39	1	2,	4	4	
40	4	4,	2	3	
41	3	2 /	2	2 , -	
42	4	3,	4	4	
43	2	· 2,	1	3	
44	1	4 ,	3	4	
45	4	1 .	4	1.	
46	2	3 .	1	2 /	
47	2	2 /	2	1 50	
48	3	4 '	2	2 -	
49	1	1	2	4	
50	4	3 .	4	2 🚈	
51	2	2.	3	2 -	
52		4.	1	3	
53	2	3.	1	1.7	
54	4	4,	1	2	
55	1	1	2	3 .	
56	3	2.	3	3,	
57	2	1,	4	1	
58	4 .	2,	3	2.	
59	1	4,	1	4	
60	3	. 2	4	1	
61	2	1.	1	3	
62		1:	3	4 -	
63	* 3	3,	3	2.	
64	4	4, .	4	1.	
65	1	1.,	3	4 %	
66	. 2	3	4	2	
67		1 .,	4	2	
68	2	4 -	4	3	
69	4	4 !	1	1.	
70	2	3 /	2	4	
71	<u> </u>	1 -	3	2 -	
72		3.	4	3 -	
73	3	3,	2	2	
74		4.	1	4-4	
75	2	3.	4	1 :	
76	-	4 .	2	3	

Professor & Head,
Deptt. of Chemistry,
M.D. University, Roh

800229 6 /18/

ANSWER KEY OF CHEMISTRY MDUCEE 2018

Sr. No.	Α	В	С	D
77	2	4.4	2	2
78	4	4 、	3	4
79	4	1.	1	1.
80	2	2 :	4	3,
81	2	2	1	2,
82	3	3,	2	4
83	1	1.	3	1.
84	2	2 -	2	3 - ,
85	3	3↓	4	4
86	3	3	2	1.7
87	1	. 1	2	2.
88	2	2.,	2	2.
89	4	4	3	2
90	1	1 -	1	. 4.
91	1	3 .	2	1.
92	2	1 .	4	3.
93	3	1.	3	3 %
94	* 2	1 .	4	4
95	4	2	1	3
96	2	3.	2	4.
97	2	4,	1	4:
98	2	3 .	2	4
99	3	1.	4	1.
100	1	4	2	2 /

Professor & Head,
Deptt. of Chemistry,
M.D. University, Rohtal

Jan 29/6/18