Question No.	Questions				
1.	The non-empty set of real numbers which is bounded below has				
	(1) supremum (2) infimum				
	(3) upper bound (4) none of these				
2.	The sequence $\{f_n\}$ where $f_n(x) = x^n$ is convergent on $[0, k], k < 1$				
	(1) uniformly (2) pointwise				
	(3) nowhere (4) none of these				
3.	Every bounded sequence has at least one limit point. This represents				
	(1) Archimedean Property (2) Heine-Borel theorem				
	(3) Bolzano-Weierstress theorem (4) Denseness Property				
4.	Which of the following is convergent?				
	(1) $\sum_{n=1}^{\infty} n^2 2^{-n}$ (2) $\sum_{n=1}^{\infty} n^{-2} 2^n$				
	(3) $\sum_{n=2}^{\infty} \frac{1}{n \log n}$ (4) $\sum_{n=1}^{\infty} \frac{1}{n \log (1+1/n)}$				
5.	If a function f defined on [0, 1] as $f(x) = \begin{cases} i, & \text{if } x \neq 1/2 \\ 0, & \text{if } x = 1/2 \end{cases}$, then				
4 4	(1) f is not bounded				
	(2) f is R-integrable				
	(3) f is not R-integrable since f is not bounded				
	(4) f is not R-integrable since lower and upper limits are unequal				
6.	Let $f: \mathbb{R} \to \mathbb{R}$ be a monotone function. Then				
	(1) f has no discontinuities				
	(2) f has only finitely many discontinuities.				
	(3) f can have at most countably many discontinuities				
	(4) f can have uncountably many discontinuities				

Question	Questions
No.	
7.	The length of an interval I is
	(1) Outer measure of an interval I
	(2) Less than outer measure of an interval I
	(3) Greater than outer measure of an interval I
	(4) Twice the outer measure of an interval I
8.	A set E is said to be Lebesgue measurable if for each set A
-4	(1) $m^*(A) = m^*(A \cap E) - m^*(A \cap E^c)$
	(2) $m^*(A) = m^*(A \cap E^c) - m^*(A \cap E)$
	(3) $m^*(A) = m^* (A \cup E) + m^* (A \cap E^c)$
	(4) $m^*(A) = m^*(A \cup E) - m^*(A \cap E^c)$
9.	A non-negative measurable function f is integrable over the measurable set E if
4 48 2 48	(1) $\int_{E} f = \infty$ (2) $\int_{E} f > \infty$ (3) $\int_{E} f < \infty$ (4) None of these
-	(3) $\int_{\mathbb{E}} f < \infty$ (4) None of these
10.	If f is of bounded variation on $[a, b]$ and $c \in (a, b)$. Then
	(1) f is of bounded variation on [a, c] and on [c, b]
	(2) f is not of bounded variation on [a, c] and on [c, b]
	(3) f is constant on [a, c] and on [c, b]
	(4) None of these
11.	Let X and Y be metric spaces, and $f: X \to Y$ a function then which of the following is true
	(1) f is continuous;
	(2) for every open set U in Y, f-1 (U) is open in X
	(3) for every closed set C in Y, f-1 (C) is closed in X
	(4) All the above

Question No.	Questions
12.	The metric space (R, d), where d is a usual metric, is
	(1) compact (2) disconnected
	(3) connected but not compact (4) compact and connected
13.	Let (X, d) be a metric space, then for all x, y, z ∈X
	(1) $d(x, y) \le d(x, z) + d(z, y)$ (2) $d(x, y) \ge d(x, z) + d(z, y)$
	(3) $d(x, y) \le 0$ (4) None of these
14.	A normed linear space X is complete iff
	(1) Every convergent series in X is absolutely convergent
	(2) Every convergent series in X is convergent
	(3) Every convergent series in X is uniformly convergent
	(4) Every absolutely convergent series in X is convergent
15.	If W ₁ , W ₂ are two subspaces of a finite dimension vector space V(F), then
#1 =7.1	(1) $\dim (W_1 + W_2) = \dim (W_1 \cup W_2)$
D	(2) $\dim (W_1 + W_2) = \dim W_1 + \dim W_2$
	(3) $\dim (W_1 + W_2) = \dim W_1 + \dim W_2 - \dim (W_1 \cap W_2)$
	(4) $\dim (W_1 + W_2) = \dim W_1 + \dim W_2 + \dim (W_1 \cap W_2)$
16.	The co-ordinates of vector (1, 1, 1) relative to basis (1, 1, 2), (2, 2, 1), (1, 2, 2) is
23	(1) (1/3, 0, 1/3) (2) (1/3, 1/3, 0)
	(3) (0, 1/3, 1/3) (4) None of these
17.	Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. Which of the following statements implies that T is bijective?
.177	(1) Nullity (T) = n (2) Rank (T) = Nullity (T) = n
	(3) Rank (T) + Nullity (T) = n (4) Rank (T) - Nullity (T) = n

Question No.	MILESTIONS		
18.			
	(1) $\operatorname{rank}(A + B) = \operatorname{rank}(A) + \operatorname{rank}(B)$		
	(2) $\operatorname{rank}(A + B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$		
	(3) $\operatorname{rank}(A + B) = \min \left\{ \operatorname{rank}(A), \operatorname{rank}(B) \right\}$		
	(4) $\operatorname{rank}(A + B) = \max \{\operatorname{rank}(A), \operatorname{rank}(B)\}$		
19.	Let A and B be real invertible matrices such that $AB = -BA$. Then		
	(1) Trace (A) = 1, Trace (B) = 0 (2) Trace (A) = Trace (B) = 1		
	(3) Trace (A) = 0, Trace (B) = 1 (4) Trace (A) = Trace (B) = 0		
20.	Consider the matrix $A(x) = \begin{bmatrix} 1+x^2 & 7 & 11 \\ 3x & 2x & 4 \\ 0 & 17 & 12 \end{bmatrix}$; $x \in \mathbb{R}$. Then		
20.	$\begin{bmatrix} 3x & 2x & 4 \\ 8x & 17 & 13 \end{bmatrix}$; x \in R. Then		
	(1) A (x) has eigenvalue 0 for some $x \in \mathbb{R}$		
	(2) 0 is not an eigenvalue of $A(x)$ for any $x \in \mathbb{R}$		
	(3) A (x) has eigenvalue 0 for all $x \in \mathbb{R}$		
-	(4) A (x) is invertible for every $x \in \mathbb{R}$		
21.	The Linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ corresponding to the matrix		
	$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$		
	0 2 0 is		
	$\begin{bmatrix} 0 & 0 & 3 \end{bmatrix}$		
	(1) $T(x_1, x_2, x_3) = (x_1, 2x_2, 3x_3)$		
	(2) $T(x_1, x_2, x_3) = (x_1 + x_3, 2x_1 + x_2, x_2 + x_3)$		
	(3) $T(x_1, x_2, x_3) = (x_1, x_2, x_3)$		
7 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(4) None of these		

Question No.	MILESTIANS		
22.	The matrix $\begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix}$ is		
	 non-negative definite but not positive definite positive definite negative definite neither negative definite nor positive definite 		
23.	Let $X = \begin{bmatrix} 2 & 0 & -3 \\ 3 & -1 & -3 \\ 0 & 0 & -1 \end{bmatrix}$. A matrix P such that P-1 XP is a diagonal matrix, is		
	(1) $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ (2) $\begin{bmatrix} -1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$		
	(3) $\begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ (4) $\begin{bmatrix} -1 & -1 & 1 \\ 0 & -1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$		
24.	The norm of x with respect to inner product space $\langle x, x \rangle$ is		
	(1) $\ \mathbf{x}\ = \langle \mathbf{x}, \mathbf{x} \rangle$ (2) $\ \mathbf{x}\ ^2 = \langle \mathbf{x}, \mathbf{x} \rangle$		
	(3) $\ x\ = \langle x, x \rangle^2$ (4) None of these		
25.	Cayley-Hamilton theorem states that (1) Every square matrix satisfies its own characteristic equation (2) Every square matrix does not satisfy its own characteristic equation (3) Every rectangular matrix satisfies its own characteristic equation (4) None of these		

Question No.	Ques	stions	
26.	If $ z = z-1 $ then		
	(1) $\text{Re}(z) = 1$	(2)	Re(z) = 1/2
	(3) $Im(z) = 1$	(4)	Im (z) = 1/2
27.	The power series $\sum_{n=0}^{\infty} 3^{-n} (z-1)^{2n}$ cor	verge	s if
	(1) z ≤ 3	(2)	$ z < \sqrt{3}$
	(3) $ z-1 < \sqrt{3}$	(4)	$ \mathbf{z}-1 \le \sqrt{3}$
28.	An analytic function of a complex $f(z) = u(x, y) + iv(x, y)$, where $i = \sqrt{2}$ be		2000 N OWN
	(1) $x^2 + y^2 + constant$	(2)	$x^2 - y^2 + constant$
	(3) $-x^2 + y^2 + constant$	(4)	$-x^2-y^2$ + constant
29.	$\int_{ z =2} \frac{2z}{z^2+2} \mathrm{d}z =$		
	(1) 0	(2)	$-2\pi \mathrm{i}$
	(3) 4πi	(4)	1
30.	The value of $\int_{C} \frac{\sin z}{4z + \pi} dz$ where $C: $	z =1	is a positively oriented contour.
And the second s	(1) 0	(2)	$\frac{-\sqrt{2} \pi i}{4}$
Total and the second se	$(3) \frac{-\sqrt{2} i}{4}$	(4)	$\frac{-\pi i}{4}$
o constant a constant			

Question No.	Questions		
31.	The statement, if f is entire and bounded for all $z \in C$, then f is constant, refers to:		
	(1) Morera's theorem (2) Maximum modulus theorem		
3-	(3) Liouville's theorem (4) Hurwitz theorem		
32.	Let f(z) be analytic in a closed, connected domain, D then which of the following is not true		
	(1) The extreme values of the modulus of the function must occur on the boundary		
	(2) If f(z) has an interior extrema, then the function is a constant		
	(3) The extreme values of the modulus of the function may occur on interior point and f(z) may not be constant		
	(4) If $f(z)$ is non constant then $ f(z) $ does not attains an extrema inside the boundary		
33.	The function $f: C \to C$ defined by $f(z) = e^z + e^{-z}$ has		
	(1) finitely many zeros (2) no zeros		
	(3) only real zeros (4) has infinitely may zeros		
34.	Consider the following complex function $f(z) = \frac{9}{(z-1)(z+2)^2}$. Which of the		
96	following is one of the residues of the above function?		
	(1) -1 (2) 9/16		
	(3) 2 (4) 9		
35.	The bilinear transformation that maps the points $z = \infty$, i, 0 into the points $w = 0$, i, ∞ is		
. 1	(1) $w = -z$ (2) $w = z$		
	(3) $w = \frac{-1}{z}$ (4) $w = \frac{1}{z}$		

Question No.		Ques	tions	
36.	The	fundamental theorem of arithm	etic st	ates that
	(1)	The factoring of any integer n from the order of prime factors	> 1 in	to primes is not unique apart
	(2)	The factoring of any integer not the order of prime factors	> 1 int	to primes is unique apart from
	(3)	There are infinitely many prim	es	
	(4)	The number of prime numbers	is finit	te
37.	The	e last two digits of 781 are		
	(1)	07	(2)	17
	(3)	37	(4)	47
38.	The	e congruence $35x \equiv 14 \pmod{21}$ h	as	
	(1)	7 solutions	(2)	6 solutions
	(3)	9 solutions	(4)	No solution
39.	If n is a positive integer such that the sum of all positive integers a satisfying $1 \le a \le n$ and GCD $(a, n) = 1$ is equal to 240n, then the number of summands, namely, $\phi(n)$, is			
	(1)	120	(2)	124
	(3)	240	(4)	480
40.	Ifg	cd(m, n) = 1 where $m > 2$ and $n > 3$	> 2, th	en the integer mn has
- Commence	(1)	no primitive roots	(2)	unique primitive root
	(3)	infinite primitive roots	(4)	finite primitive roots
41.	Ifp	is a prime, then any group G of	order	2p has
	(1)	a normal subgroup of order p		
	(0)	a normal subgroup of order 2p		A PART OF THE PART
	(2)	a normal subgroup of order 2p		
	(3)	a normal subgroup of order p ²		

Question No.	Questions	
42.	Let G be simple group of order 60. Then	
	(1) G has six Sylow-5 subgroups	
	(2) G has four Sylow-3 subgroups	
	(3) G has a cyclic subgroup of order 6	
	(4) G has a unique element of order 2	
43.	Let R be a Euclidean domain such that R is not a field. Then the polynomial ring $R[X]$ is always	
	(1) a Euclidean domain	
0 5	(2) a principal ideal domain but not a Euclidean domain	
	(3) a unique factorization domain but not a principal ideal domain	
	(4) not a unique factorization domain	
44.	Let $p(x) = 9x^5 + 10x^3 + 5x + 15$ and $q(x) = x^3 - x^2 - x - 2$ be two polynomials in $Q[x]$. Then over Q ,	
	(1) p(x) and q(x) are both irreducible	
	(2) p(x) is reducible but q(x) is irreducible	
* /	(3) p(x) is irreducible but q(x) is reducible	
	(4) p(x) and q(x) are both reducible	
45.	Find the degree of the field extension $Q\left(\sqrt{2}, \sqrt[4]{2}, \sqrt[8]{2}\right)$ over Q .	
	(1) 4 (2) 8	
100	(3) 14 (4) 32	
46.	Let F be a finite field and let K/F be a field extension of degree 6. Then the Galois group of K/F is isomorphic to	
	(1) the cyclic group of order 6	
	(2) the permutation group of {1, 2, 3}	
	(3) the permutation group on {1, 2, 3, 4, 5, 6}	
	(4) the permutation group on {1}	

Question No.	Questions		
47.	Let X be a topological space and A be a subset of X, then X is separable if (1) A is countable and $\overline{A} = X$ (2) \overline{A} is countable		
	(3) A is uncountable (4) None of these		
48.	Which of the following spaces is not separable?		
	(1) R with the trivial topology		
	(2) The Cantor set as a subspace of R		
	(3) R with the discrete topology		
	(4) None of these		
49.	Which of the following is true?		
	(1) Let X be compact and $f: X \to R$ be locally bounded. Then f is not bounded.		
	(2) Closed subspaces of compact spaces are compact		
	(3) Closed subspaces of compact spaces may not be compact		
	(4) Continuous images of compact spaces may not be compact		
50.	Let X and Y be two topological spaces and let $f: X \to Y$ be a continuou function. Then		
	(1) $f(K)$ is connected if $K \subset X$ is connected		
	(2) $f^{-1}(K)$ is connected if $K \subset Y$ is connected		
	(3) $f^{-1}(K)$ is compact if $K \subset Y$ is compact		
	(A) None of these		
	(4) None of these		
51.	Consider the initial value problem (IVP)		
51.			
51.	Consider the initial value problem (IVP) $\frac{dy}{dx} = y^2, \ y(0) = 1, (x, y) \in R \times R.$		
51.	Consider the initial value problem (IVP)		

Question No.	Questions
52.	The solution to the initial value problem $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = 3e^{-t} \sin t$,
	y(0) = 0 and $y'(0) = 3$, is
	(1) $y(t) = e^{t} (\sin t + \sin 2t)$ (2) $y(t) = e^{-t} (\sin t + \sin 2t)$
	(3) $y(t) = 3 e^{t} \sin t$ (4) $y(t) = 3 e^{-t} \sin t$
53.	Consider the differential equation $(x-1)y'' + xy' + \frac{1}{x}y = 0$. Then
	(1) $x = 1$ is the only singular point
	(2) $x = 0$ is the only singular point
	(3) both $x = 0$ and $x = 1$ are singular points
	(4) neither $x = 0$ nor $x = 1$ are singular points
54.	Let f and g be real linearly independent solutions of
	$\frac{d}{dx}\left[\frac{dy}{dx}P(x)\right] + Q(x)y = 0 \text{on the interval } a \le x \le b. \text{ Then}$
	(1) between any two consecutive zeros of f, there is precisely one zero of g.
	(2) between any two consecutive zeros of f, there is no zero of g.
	(3) between any two consecutive zeros of f, there is infinite zeros of g.
	(4) None of these
55.	The eigen values of a Sturm-Liouville BVP are
	(1) Always positive
	(2) Always negative
	(3) Always real
	(4) Always in the pair of complex conjugate

Question No.	Questions
56.	The Charpit's equations for the PDE $up^2 + q^2 + x + y = 0$, $p = \frac{\partial u}{\partial x}$,
	$q = \frac{\partial u}{\partial y}$ are given by
	(1) $\frac{dx}{-1-p^3} = \frac{dy}{-1-qp^2} = \frac{du}{2p^2u + 2q^2} = \frac{dp}{2pu} = \frac{dq}{2q}$
	(2) $\frac{dx}{2pu} = \frac{dy}{2q} = \frac{du}{2p^2u + 2q^2} = \frac{dp}{-1 - p^3} = \frac{dq}{-1 - qp^2}$
	(3) $\frac{dx}{up^2} = \frac{dy}{q^2} = \frac{du}{0} = \frac{dp}{x} = \frac{dq}{y}$
	(4) $\frac{dx}{2q} = \frac{dy}{2pu} = \frac{du}{x+y} = \frac{dp}{p^2} = \frac{dq}{qp^2}$
57.	The partial differential equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + u$ can be transformed to
	$\frac{\partial \mathbf{v}}{\partial t} = \frac{\partial^2 \mathbf{v}}{\partial \mathbf{x}^2} \mathbf{for}$
	(1) $v = e^{-t} u$. (2) $v = e^{t} u$.
	(3) $v = tu$. (4) $v = -tu$.
58.	The PDE $x \frac{\partial^2 u}{\partial x^2} + y \frac{\partial^2 u}{\partial y^2} = 0$ is
	(1) elliptic for $x < 0$, $y > 0$ (2) hyperbolic for $x > 0$, $y < 0$
	(3) elliptic for $x > 0$, $y < 0$ (4) hyperbolic for $x > 0$, $y > 0$

Question No.	Questions
59.	Solution of $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x \partial y} - 6 \frac{\partial^2 z}{\partial y^2} = 0$ is given by
	(1) $z = f_1 (y + 3x) + f_2 (y + 2x)$ (2) $z = f_1 (y + 3x) + f_2 (y - 2x)$ (3) $z = f_1 (y - 2x) + f_2 (y + 2x)$ (4) None of these
60.	Given Wave equation $\frac{\partial z}{\partial y} = c^2 \frac{\partial^2 z}{\partial x^2}$. By separation of variable, let
	$z(x, y) = X(x) Y(y)$ be a solution. Substituting it in $\frac{\partial z}{\partial y} = c^2 \frac{\partial^2 z}{\partial x^2}$ one have
	$\frac{d^2X}{dx^2}$ + kX = 0 and $\frac{dY}{dy}$ - kc ² Y = 0. If k = -p ² , p is real, then the solution is
	(c's are constants) (1) $z(x, y) = (c_1 \cos px) c_2 e^{-c^2 p^2 y}$
	(2) $z(x, y) = (c_1 \cos px + c_2 \sin px) c_1 e^{-c^2 p^2 y}$
	(3) $z(x,y) = e^{-c^2 p^2 y}$
	(4) $z(x, y) = (c_2 \cos px) c_1 e^{-c^2 p^2 y}$
61.	The rate of convergence is faster for
	(1) Regula-Falsi method (2) Bisection method
	(3) Newton-Raphson method (4) Cannot say
62.	As soon as a new value of a variable is found by iteration, it is used immediately in the following equations, this method is called
	(1) Gauss-Jordan method (2) Gauss-Seidal method
	(3) Jacobi's method (4) Relaxation method

3	20 - 72 - 5	6. 8				ulawa Tan Salah		
uestion No.				Questio	ns	* *		
63.	The value	of function	f (x) at 4	discrete	points	are givn	e below	•
n an	х	0		1	2	5		
A .	f(x	(x) 2	1:	3	12	147		
	Using Lag (1) 30 (3) 25	range's for	mula, the	(2) 3 (4) 2	5			
64.	The value	of function	f (x) at 5	discrete	points	are give	n below	:
	x	0	0.1	0.2	0.3	0.4		
	f(x)	0	10	40	90	160		
	Using Tra	pezoidal ru	lle with s	tep size (of 0.1, t	the value	of $\int_{0}^{0.4} f$	x) dx is
	(1) 10.8			(2) 1	3.4			u a
±	(3) 18.7			(4) 2	2.0	100		
65.		y, y (0) =	1, y ₁ (x) =	= 1 + x +	$\frac{x^2}{2}$, th	nen by P	icard's n	nethod, t
	value of y	$_{2}$ (x) is:						
i a	(1) 1+x	$+ x^2 + \frac{x^3}{6}$		(2) 1	- x + x	$x^2 + \frac{x^3}{6}$		
	(3) 1+x	$-x^2 + \frac{x^3}{6}$		(4) 1	. + x + :	$x^2 - \frac{x^3}{6}$		
					= *	9		

Question No.	Questions
66.	$I = \int\limits_{x_1}^{x_2} F(y, y') dx \text{whose ends are fixed is stationary if y satisfies the}$ equation
	(1) $\frac{\partial F}{\partial y'} = \text{constant}$ (2) $F - y' \frac{\partial F}{\partial y'} = \text{constant}$
	(3) $F - y \frac{\partial F}{\partial y'} = constant$ (4) $F' - y \frac{\partial F}{\partial y'} = constant$
67.	If $J[y] = \int_{1}^{2} (y'^2 + 2yy' + y^2) dx$, $y(1) = 1$ and $y(2)$ is arbitrary, then the
es o North Sales	extremal is
	(1) e^{x-1} (2) e^{x+1}
2 2	(3) e^{1-x} (4) e^{-x-1}
68.	The extremal of $\int_{1}^{2} \frac{\dot{x}^2}{t^3} dt$; x (1) = 3, x (2) = 18 (where $\dot{x} = \frac{dx}{dt}$) using Lagrange's
	equation is given by which of the following?
	(1) $x = t^4 + 2$ (2) $x = \frac{15}{7} t^3 + \frac{6}{7}$
	(3) $x = 5t^2 - 2$ (4) $x = 5t^3 + 3$
69.	The kernel $\sin (x + t)$ is
1 ** 2 2 2 20	(1) separable kernel (2) difference kernel
	(3) adjoint kernel (4) none of these

Ougstin	
Question No.	Questions
70.	The solution to the integral equation $\phi(x) = x + \int_0^x \sin(x-\xi) \phi(\xi) d\xi$ is given by
	(1) $x^2 + \frac{x^3}{3!}$ (2) $x - \frac{x^3}{3!}$ (3) $x + \frac{x^3}{3!}$ (4) $x^2 - \frac{x^3}{3!}$
71.	The homogeneous integral equation $\phi(x) - \lambda \int_0^1 (3x-2) t \phi(t) dt = 0$, has
	(1) One characteristic number(2) Three characteristic numbers
	(3) Two characteristic numbers (4) No characteristic number
72.	Let S be a mechanical system with Lagrangian L (q_j, \dot{q}_j, t) , $j=1, 2, \ldots, n$ and generalized coordinates. Then the Lagrange equations of motion for S
	(1) constitute a set of n first order ODEs.
	(2) can be transformed to the Hamilton form using Legendre transform.
	(3) are equivalent to a set on n first order ODEs when expressed in terms of Hamiltonian functions.
# = 1	(4) is a set of 2n second order ODEs.

Question No.	Questions
73.	Lagrange's equations for a Holonomic dynamical system specified by n-generalized coordinates q_j ($j=1,2,3$ n) having T as the K.E. of system at time t and Q_j the generalized forces are
	(1) $\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) + \frac{\partial T}{\partial q_j} = Q_j$ (2) $\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} = Q_j$
	(3) $\frac{d}{dt} \left(\frac{\partial \Gamma}{\partial \dot{q}_j} \right) - \frac{\partial \Gamma}{\partial q_j} = \dot{Q}_j$ (4) $\frac{d}{dt} \left(\frac{\partial \Gamma}{\partial \dot{q}_j} \right) + \frac{\partial \Gamma}{\partial q_j} = \dot{Q}_j$
74.	Let q_i and \dot{q}_i respectively are the generalized coordinates and velocity of
	a mechanical system and p_i are its generalized momenta. If H is the Hamiltonian of the system, then Hamilton's equations of motion are
	(1) $\dot{q}_i = \frac{\partial H}{\partial p_i}, \ \dot{p}_i = \frac{\partial H}{\partial q_i}$ (2) $\dot{q}_i = \frac{\partial H}{\partial p_i}, \ \dot{p}_i = -\frac{\partial H}{\partial q_i}$
	(3) $\dot{q}_i = -\frac{\partial H}{\partial p_i}$, $\dot{p}_i = \frac{\partial H}{\partial q_i}$ (4) $\dot{q}_i = -\frac{\partial H}{\partial p_i}$, $\dot{p}_i = -\frac{\partial H}{\partial q_i}$
75.	Hamiltonian H is defined as
	(1) $H = \sum p_i \dot{q}_i - L$ (2) $H = \sum \dot{p}_i q_i - L$
	(3) $H = \sum \dot{p}_i q_i + L$ (4) $H = \sum \dot{p}_i \dot{q}_i - L$
76.	What is the probability to get two aces in succession (with replacement) from a deck of 52 cards?
	(1) 1/52 (2) 1/169
	(3) 2/159 (4) 2/169

Question No.	Questions
77.	There are two boxes. Box 1 contains 2 red balls and 4 green balls. Box 2 contains 4 red balls and 2 green balls. A box is selected at random and a ball is chosen randomly from the selected box. If the ball turns out to be red, what is the probability that Box 1 had been selected?
	(1) 1/2 (2) 1/6
	(3) 2/3 (4) 1/3
78.	Suppose you have a coin with probability $\frac{3}{4}$ of getting a Head. You toss
	the coin twice independently. Let $\Omega = \{(H, H), (H, T), (T, H), (T, T)\}$ be the sample space. Then it is possible to have an event $E \subseteq \Omega$ such that
	(1) $P(E) = 1/3$ (2) $P(E) = 1/9$
	(3) $P(E) = 1/4$ (4) $P(E) = 7/8$
79.	A random variable X has a probability distribution as follows:
	r 0 1 2 3
	P (X = r) 2k 3k 13k 2k
	Then the probability that $P(X < 2)$ is equal to
	(1) 0.90 (2) 0.25
	(3) 0.65 (4) 0.15
80.	Find the value of λ such that the function f (x) is a valid probability density
	function where $f(x) = \begin{cases} \lambda(x-1)(2-x) & \text{for } 1 \le x \le 2\\ 0 & \text{otherwise} \end{cases}$
	(1) 1 (2) 5

Question No.	Questions
81.	A continuous random variable X has a probability density function $f(x) = e^{-x}$, $0 < x < \infty$. Then $P(X > 1)$ is
	(1) 0.368 (2) 0.5
	(3) 0.632 (4) 1.0
82.	Let X and Y be two random variables having the joint probability density
	function $f(x, y) = \begin{cases} 2 & \text{if } 0 < x < y < 1 \\ 0 & \text{otherwise.} \end{cases}$
	Then the conditional probability $P\left(X \le \frac{2}{3} \mid Y = \frac{3}{4}\right)$ is equal to
	(1) 5/9 (2) 2/3
	(3) 7/9 (4) 8/9
83.	The variance of a random variable X is given by
	(1) $E[X - E(X)]^2$ (2) $[E(X)]^2 - E(X)^2$
	(3) $E(X)^2 + (E(X))^2$ (4) None of these
84.	Standard Normal Variate has
	(1) Mean = 0 and variance = 1 (2) Mean = 1 and variance = 0
1.0	(3) Mean = 1 and variance = 1 (4) None of these
85.	When $n \to \infty$, the Binomial distribution can be approximated as
3 - 12	(1) Bernoulli distribution (2) Uniform distribution
	(3) Poisson distribution (4) None of these

Question No.	Questions
110.	
86.	The variance of Poisson distribution is given by
	(1) $\sigma^2 = \lambda$ (2) $\sigma^2 = \frac{1}{\lambda}$
* 4	^
	(3) $\sigma^2 = \frac{1}{\lambda^2}$ (4) None of these
87.	The first moment about origin is known as
	(1) Mean (2) Variance
	(3) Standard deviation (4) None of these
88.	In a hypothesis-testing problem, which of the following is not required in order to compute the p-value?
	(1) Value of the test statistic
	(2) Distribution of the test statistic under the null hypothesis
	(3) The level of significance
	(4) Whether the test is one-sided or two-sided
89.	In testing H : μ = 100 against A : μ ≠ 100 at the 10% level of significance, H is rejected if
	(1) 100 is contained in the 90% confidence interval
	(2) The value of the test statistic is in the acceptance region
	(3) The p-value is less than 0.10
	(4) The p-value is greater than 0.10

Question No.	Questions
90.	In the context of testing of statistical hypothesis, which one of the following statements is true?
	(1) When testing a simple hypothesis H ₀ against an alternative simple hypothesis H ₁ , the likelihood ratio principle leads to the most powerful test.
	(2) When testing a simple hypothesis H_0 against an alternative simple hypothesis H_1 , P [rejecting $H_0 \mid H_0$ is true] + P [accepting $H_0 \mid H_1$ is true] = 1.
	(3) For testing a simple hypothesis H ₀ against an alternative simple hypothesis H ₁ , randomized test is used to achieve the desired level of the power of the test.
	(4) UMP test for testing a simple hypothesis H_0 against an alternative simple hypothesis H_1 , always exist.
91.	A box contains N tickets which are numbered 1, 2,, N. Then value of N is however, unknown. A simple random sample of n tickets is drawn without replacement from the box. Let $X_1, X_2,, X_n$ be numbers on the tickets obtained in the 1 st , 2 nd ,, n th draws respectively. Here
	$\overline{X} = \frac{1}{N}(X_1 + X_2 + + X_n)$. Which of the following is an unbiased
	estimator of N?
	(1) $2\overline{X} - 1$ (2) $2\overline{X} + 1$
2 24 2 24 2 24 2 24	(3) $2\overline{X} + \frac{1}{2}$ (4) $2\overline{X} - \frac{1}{2}$
92.	Let $X_1 \sim N$ (0, 1) and let $X_2 = \begin{cases} -X_1, & -2 \le X_1 \le 2 \\ X_1, & \text{otherwise.} \end{cases}$
	Then identify the correct statement.
	(1) $\operatorname{corr}(X_1, X_2) = 1$
	(2) X ₂ does not have N (0, 1) distribution.
	(3) (X_1, X_2) has a bivariate normal distribution.
	(4) (X ₁ , X ₂) does not have a bivariate normal distribution.

Question No.	Questions
93.	Let $X_1, X_2,, X_n$ be a random sample of size n from a p-variate Normal distribution with mean μ and positive definite covariance matrix Σ . Choose the correct statement
	(1) $(X_1 - \mu)' \sum_{i=1}^{-1} (X_1 - \mu)$ has chi-suare distribution with 1 d.f.
- 1	(2) $\overline{X} \overline{X}'$ has Wishart distribution with p d.f.
	(3) $\sum_{i=1}^{n} (X_i - \mu)(X_i - \mu)'$ has Wishart distribution with n d.f.
	(4) $X_1 + X_2$ and $X_1 - X_2$ are independently distributed.
94.	In which of the following distributions, mean ≥ variance
	(1) Poisson distribution
	(2) Negative binomial distribution
	(3) Normal distribution
	(4) Binomial distribution
95.	Let X1, X2, be i.i.d. standard normal random variables and let
	$T_n = \frac{X_1^2 + + X_n^2}{n}$. Then
	(1) The limiting distribution of $T_n - 1$ is χ^2 with 1 degree of freedom.
	(2) The limiting distribution of $\frac{T_n-1}{\sqrt{n}}$ is normal with mean 0 and
	variance 2.
	(3) The limiting distribution of \sqrt{n} $(T_n - 1)$ is χ^2 with 1 degree of freedom.
	(4) The limiting distribution of \sqrt{n} $(T_n - 1)$ is normal with mean 0 and variance 2.

Question No.	Questions
96.	Suppose the cumulative distribution function of failure time T of a component is
	$1 - \exp(-ct^{\alpha}), t > 0, \alpha > 1, c > 0.$
	Then the hazard rate of λ (t) is
	(1) constant.
	(2) non-constant monotonically increasing in t.
	(3) non-constant monotonically decreasing in t.
78. 9	(4) not a monotone function in t.
97.	Consider the following linear programming problem
	$Maximize z = 3x_1 + 2x_2$
	subject to
	$x_1 + x_2 \ge 1$; $x_1 + x_2 \le 5$; $2x_1 + 3x_2 \le 6$; $-2x_1 + 3x_2 \le 6$
	The problem has
	(1) an unbounded solution
	(2) exactly one optimal solution
	(3) more than one optimal solution
	(4) no feasible solutions
98.	Let $\{X_n : n \ge 0\}$ be a Markov chain on a finite state space S with stationary transition probability matrix. Suppose that the chain is not irreducible. Then the Markov chain :
	(1) admits infinitely many stationary distributions
4 4	(2) admits a unique stationary distribution
27	(3) may not admit any stationary distribution
146	(4) cannot admit exactly two stationary distributions

Question	Questions
No.	
99.	Men arrive in a queue according to a Poisson process with rate λ_1 and women arrive in the same queue according to another Poisson process with rate λ_2 . The arrivals of mean and women are independent. The probability that the first arrival in the queue is a man is:
	(1) $\frac{\lambda_1}{\lambda_1 + \lambda_2}$ (2) $\frac{\lambda_2}{\lambda_1 + \lambda_2}$ (3) $\frac{\lambda_1}{\lambda_2}$ (4) $\frac{\lambda_2}{\lambda_1}$
	$(3) \frac{\lambda_1}{\lambda_2} \qquad \qquad (4) \frac{\lambda_2}{\lambda_1}$
100.	Let X (t) be the number of customers in an M/M/1 queuing system with arrival rate $\lambda > 0$ and service rate $\mu > 0$. The process X (t) is a
	(1) Poisson process with rate $\lambda - \mu$.
	(2) pure birth process with birth rate $\lambda - \mu$.
	 (2) pure birth process with birth rate λ - μ. (3) birth and death process with birth rate λ and death rate μ.
	(3) birth and death process with birth rate λ and death rate μ .
	(3) birth and death process with birth rate λ and death rate μ .
	(3) birth and death process with birth rate λ and death rate μ .
	(3) birth and death process with birth rate λ and death rate μ .
	(3) birth and death process with birth rate λ and death rate μ .
	(3) birth and death process with birth rate λ and death rate μ .

Question No.	Questions						
1.	Let X and Y be metric spaces, and $f: X \to Y$ a function then which of the following is true						
	(1) f is continuous;						
	(2) for every open set U in Y, f ⁻¹ (U) is open in X						
	(3) for every closed set C in Y, f ⁻¹ (C) is closed in X						
	(4) All the above						
2.	The metric space (R, d), where d is a usual metric, is						
	(1) compact (2) disconnected						
	(3) connected but not compact (4) compact and connected						
3.	Let (X, d) be a metric space, then for all x, y, z ∈X						
	(1) $d(x, y) \le d(x, z) + d(z, y)$ (2) $d(x, y) \ge d(x, z) + d(z, y)$						
	(3) $d(x, y) \le 0$ (4) None of these						
4.	A normed linear space X is complete iff						
	(1) Every convergent series in X is absolutely convergent						
	(2) Every convergent series in X is convergent						
	(3) Every convergent series in X is uniformly convergent						
	(4) Every absolutely convergent series in X is convergent						
5.	If W ₁ , W ₂ are two subspaces of a finite dimension vector space V(F), then						
	(1) $\dim (W_1 + W_2) = \dim (W_1 \cup W_2)$						
*****	(2) $\dim (W_1 + W_2) = \dim W_1 + \dim W_2$						
	(3) $\dim (W_1 + W_2) = \dim W_1 + \dim W_2 - \dim (W_1 \cap W_2)$						
	(4) $\dim (W_1 + W_2) = \dim W_1 + \dim W_2 + \dim (W_1 \cap W_2)$						

Questions							
The co-ordinates of vector (1, 1, 1) relative to basis (1, 1, 2), (2, 2, 1), (1, 2, 2) is							
(1) (1/3, 0, 1/3) (2) (1/3, 1/3, 0)							
(3) (0, 1/3, 1/3) (4) None of these							
Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. Which of the following statements implies that T is bijective?							
(1) Nullity (T) = n (2) Rank (T) = Nullity (T) = n							
(3) Rank (T) + Nullity (T) = n (4) Rank (T) – Nullity (T) = n							
Let A, B be $n \times n$ real matrices. Which of the following statements is correct?							
(1) $\operatorname{rank}(A + B) = \operatorname{rank}(A) + \operatorname{rank}(B)$							
(2) $\operatorname{rank}(A + B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$							
(3) $\operatorname{rank}(A + B) = \min \{\operatorname{rank}(A), \operatorname{rank}(B)\}$							
(4) $rank(A + B) = max \{rank(A), rank(B)\}$							
Let A and B be real invertible matrices such that $AB = -BA$. Then							
(1) Trace (A) = 1, Trace (B) = 0 (2) Trace (A) = Trace (B) = 1							
(3) Trace (A) = 0, Trace (B) = 1 (4) Trace (A) = Trace (B) = 0							
$\begin{bmatrix} 1+x^2 & 7 & 11 \end{bmatrix}$							
Consider the matrix $A(x) = \begin{bmatrix} 3x & 2x & 4 \\ 8x & 17 & 13 \end{bmatrix}$; $x \in \mathbb{R}$. Then							
(1) A (x) has eigenvalue 0 for some $x \in \mathbb{R}$							
(2) 0 is not an eigenvalue of $A(x)$ for any $x \in \mathbb{R}$							
(3) A (x) has eigenvalue 0 for all $x \in \mathbb{R}$							
(4) A (x) is invertible for every $x \in \mathbb{R}$							

Question No.	Questions				
11.	A box contains N tickets which are numbered 1, 2,, N. Then value of N is however, unknown. A simple random sample of n tickets is drawn without replacement from the box. Let $X_1, X_2,, X_n$ be numbers on the tickets obtained in the 1 st , 2 nd ,, n th draws respectively. Here				
	$\overline{X} = \frac{1}{N}(X_1 + X_2 + + X_n)$. Which of the following is an unbiased				
	estimator of N?				
	$(1) 2\overline{X} - 1 \qquad (2) 2\overline{X} + 1$				
	(3) $2\overline{X} + \frac{1}{2}$ (4) $2\overline{X} - \frac{1}{2}$				
12.	Let $X_1 \sim N$ (0, 1) and let $X_2 = \begin{cases} -X_1, & -2 \le X_1 \le 2 \\ X_1, & \text{otherwise.} \end{cases}$				
	Then identify the correct statement.				
	(1) $corr(X_1, X_2) = 1$				
	(2) X ₂ does not have N (0, 1) distribution.				
	(3) (X_1, X_2) has a bivariate normal distribution.				
	(4) (X ₁ , X ₂) does not have a bivariate normal distribution.				
13.	Let $X_1, X_2,, X_n$ be a random sample of size n from a p-variate Normal distribution with mean μ and positive definite covariance matrix Σ . Choose the correct statement				
	(1) $(X_1 - \mu)' \sum_{i=1}^{-1} (X_1 - \mu)$ has chi-suare distribution with 1 d.f.				
	(2) $\overline{X} \overline{X}'$ has Wishart distribution with p d.f.				
	(3) $\sum_{i=1}^{n} (X_i - \mu)(X_i - \mu)'$ has Wishart distribution with n d.f.				
	(4) $X_1 + X_2$ and $X_1 - X_2$ are independently distributed.				

Question No.	Questions
14.	In which of the following distributions, mean ≥ variance
	(1) Poisson distribution
	(2) Negative binomial distribution
	(3) Normal distribution
	(4) Binomial distribution
15.	Let X ₁ , X ₂ , be i.i.d. standard normal random variables and let
	$T_n = \frac{X_1^2 + + X_n^2}{n}$. Then
	(1) The limiting distribution of $T_n - 1$ is χ^2 with 1 degree of freedom.
	(2) The limiting distribution of $\frac{T_n-1}{\sqrt{n}}$ is normal with mean 0 and variance 2.
10 s 2 g = 0	(3) The limiting distribution of \sqrt{n} $(T_n - 1)$ is χ^2 with 1 degree of freedom.
	(4) The limiting distribution of \sqrt{n} $(T_n - 1)$ is normal with mean 0 and variance 2.
16.	Suppose the cumulative distribution function of failure time T of a component is
	$1 - \exp(-ct^{\alpha}), t > 0, \alpha > 1, c > 0.$
	Then the hazard rate of λ (t) is
	(1) constant.
	(2) non-constant monotonically increasing in t.
	(3) non-constant monotonically decreasing in t.
	(4) not a monotone function in t.

Question No.	Questions
17.	Consider the following linear programming problem
	$Maximize z = 3x_1 + 2x_2$
	subject to
	$x_1 + x_2 \ge 1$; $x_1 + x_2 \le 5$; $2x_1 + 3x_2 \le 6$; $-2x_1 + 3x_2 \le 6$
7.	The problem has
	(1) an unbounded solution
	(2) exactly one optimal solution
n * *	(3) more than one optimal solution
1 23	(4) no feasible solutions
18.	Let $\{X_n : n \ge 0\}$ be a Markov chain on a finite state space S with stationary transition probability matrix. Suppose that the chain is not irreducible. Then the Markov chain :
* 17	(1) admits infinitely many stationary distributions
	(2) admits a unique stationary distribution
	(3) may not admit any stationary distribution
	(4) cannot admit exactly two stationary distributions
19.	Men arrive in a queue according to a Poisson process with rate λ_1 and women arrive in the same queue according to another Poisson process with rate λ_2 . The arrivals of mean and women are independent. The probability that the first arrival in the queue is a man is:
	$(1) \frac{\lambda_1}{\lambda_1 + \lambda_2} \qquad (2) \frac{\lambda_2}{\lambda_1 + \lambda_2}$ $(3) \frac{\lambda_1}{\lambda_1} \qquad (4) \frac{\lambda_2}{\lambda_2}$
	$(3) \frac{\lambda_1}{\lambda_2} \qquad \qquad (4) \frac{\lambda_2}{\lambda_1}$

Question No.	Questions						
20.	Let X (t) be the number of customers in an M/M/1 queuing system with arrival rate $\lambda > 0$ and service rate $\mu > 0$. The process X (t) is a						
	(1) Poisson process with rate $\lambda - \mu$.						
	(2) pure birth process with birth rate $\lambda - \mu$.						
	(3) birth and death process with birth rate λ and death rate μ .						
	(4) birth and death process with birth rate $1/\lambda$ and death rate $1/\mu$.						
21.	The homogeneous integral equation $\phi(x) - \lambda \int (3x-2) t \phi(t) dt = 0$,						
	has						
	(1) One characteristic number						
	(2) Three characteristic numbers						
	(3) Two characteristic numbers						
	(4) No characteristic number						
22.	Let S be a mechanical system with Lagrangian L (q_j, \dot{q}_j, t) , $j = 1, 2, \dots, n$ and generalized coordinates. Then the Lagrange equations of motion for S						
	(1) constitute a set of n first order ODEs.						
	(2) can be transformed to the Hamilton form using Legendre transform.						
	(3) are equivalent to a set on n first order ODEs when expressed in terms of Hamiltonian functions.						
	(4) is a set of 2n second order ODEs.						

Question No.	Questions							
23.	Lagrange's equations for a Holonomic dynamical system specified by n-generalized coordinates q_j ($j=1, 2, 3 n$) having T as the K.E. of system at time t and Q_j the generalized forces are							
	(1) $\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) + \frac{\partial T}{\partial q_j} = Q_j$ (2) $\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} = Q_j$							
	(3) $\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} = \dot{Q}_j$ (4) $\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) + \frac{\partial T}{\partial q_j} = \dot{Q}_j$							
24.	Let q_i and \dot{q}_i respectively are the generalized coordinates and velocity of a mechanical system and p_i are its generalized momenta. If H is the Hamiltonian of the system, then Hamilton's equations of motion are							
	(1) $\dot{q}_i = \frac{\partial H}{\partial p_i}, \ \dot{p}_i = \frac{\partial H}{\partial q_i}$ (2) $\dot{q}_i = \frac{\partial H}{\partial p_i}, \ \dot{p}_i = -\frac{\partial H}{\partial q_i}$							
	(3) $\dot{q}_i = -\frac{\partial H}{\partial p_i}$, $\dot{p}_i = \frac{\partial H}{\partial q_i}$ (4) $\dot{q}_i = -\frac{\partial H}{\partial p_i}$, $\dot{p}_i = -\frac{\partial H}{\partial q_i}$							
25.	Hamiltonian H is defined as							
	(1) $H = \sum p_i \dot{q}_i - L$ (2) $H = \sum \dot{p}_i q_i - L$							
	(3) $H = \sum \dot{p}_i q_i + L$ (4) $H = \sum \dot{p}_i \dot{q}_i - L$							
26.	What is the probability to get two aces in succession (with replacement from a deck of 52 cards?							
	(1) 1/52 (2) 1/169							
	(3) 2/159 (4) 2/169							

Question No.	Questions								
27.	There are two boxes. Box 1 contains 2 red balls and 4 green balls. Box 2 contains 4 red balls and 2 green balls. A box is selected at random and a ball is chosen randomly from the selected box. If the ball turns out to be red, what is the probability that Box 1 had been selected?							om and a	
	(1) 1/2(3) 2/3	×		1. \ /	1/6 1/3				
28.	Suppose you have a coin with probability $\frac{3}{4}$ of getting a Head. You toss the coin twice independently. Let $\Omega = \{(H, H), (H, T), (T, H), (T, T)\}$ be the sample space. Then it is possible to have an event $E \subseteq \Omega$ such that (1) $P(E) = 1/3$ (2) $P(E) = 1/9$ (3) $P(E) = 1/4$ (4) $P(E) = 7/8$							Γ)} be the	
29.	A random v	variable 2	K has a pro	bability	distri	butio	n as fol	lows:	
	r P (X = r)	0 2k	1 3k	2 13k	3 21				
	Then the p (1) 0.90 (3) 0.65	robabilit	y that P (X		0.25	to			
30.	Find the value of λ such that the function $f(x)$ is a valid probability density function where $f(x) = \begin{cases} \lambda(x-1)(2-x) & \text{for } 1 \le x \le 2 \\ 0 & \text{otherwise} \end{cases}$ (1) 1 (2) 5 (3) 6 (4) 7								

Question No.	Questions							
31.	Consider the initial value problem (IVP)							
	$\frac{\mathrm{d}y}{\mathrm{d}x}=y^2,\ y\ (0)=1,\ (x,y)\in\mathrm{R}\times\mathrm{R}.$							
	Then there exists a unique solution of the IVP on							
	$(1) (-\infty, \infty) \qquad \qquad (2) (-\infty, 1)$							
	(3) $(-2, 2)$ (4) $(-1, \infty)$							
32.	The solution to the initial value problem $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = 3e^{-t} \sin t$,							
	y(0) = 0 and $y'(0) = 3$, is							
	(1) $y(t) = e^t (\sin t + \sin 2t)$ (2) $y(t) = e^{-t} (\sin t + \sin 2t)$							
	(3) $y(t) = 3 e^{t} \sin t$ (4) $y(t) = 3 e^{-t} \sin t$							
33.	Consider the differential equation $(x-1)y'' + xy' + \frac{1}{x}y = 0$. Then							
	(1) $x = 1$ is the only singular point							
	(2) $x = 0$ is the only singular point							
	(3) both $x = 0$ and $x = 1$ are singular points							
	(4) neither $x = 0$ nor $x = 1$ are singular points							
34.	Let f and g be real linearly independent solutions of							
	$\frac{d}{dx}\left[\frac{dy}{dx}P(x)\right] + Q(x)y = 0 \text{ on the interval } a \le x \le b. \text{ Then}$							
	(1) between any two consecutive zeros of f, there is precisely one zero of g.							
	(2) between any two consecutive zeros of f, there is no zero of g.							
	(3) between any two consecutive zeros of f, there is infinite zeros of g.							
	(4) None of these							
	, v							

Question No.	Questions
35.	The eigen values of a Sturm-Liouville BVP are
	(1) Always positive
	(2) Always negative
	(3) Always real
	(4) Always in the pair of complex conjugate
36.	The Charpit's equations for the PDE up ² + q ² + x + y = 0, p = $\frac{\partial u}{\partial x}$,
	$q = \frac{\partial u}{\partial y}$ are given by
	dx dy du dp da
Control of the Contro	(1) $\frac{dx}{-1-p^3} = \frac{dy}{-1-qp^2} = \frac{du}{2p^2u + 2q^2} = \frac{dp}{2pu} = \frac{dq}{2q}$
	(2) $\frac{dx}{2pu} = \frac{dy}{2q} = \frac{du}{2p^2u + 2q^2} = \frac{dp}{-1 - p^3} = \frac{dq}{-1 - qp^2}$
	(3) $\frac{\mathrm{dx}}{\mathrm{up}^2} = \frac{\mathrm{dy}}{\mathrm{q}^2} = \frac{\mathrm{du}}{\mathrm{0}} = \frac{\mathrm{dp}}{\mathrm{x}} = \frac{\mathrm{dq}}{\mathrm{y}}$
	(4) $\frac{dx}{2q} = \frac{dy}{2pu} = \frac{du}{x+y} = \frac{dp}{p^2} = \frac{dq}{qp^2}$
37.	The partial differential equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + u$ can be transformed to
	$\frac{\partial \mathbf{v}}{\partial \mathbf{t}} = \frac{\partial^2 \mathbf{v}}{\partial \mathbf{x}^2} \mathbf{for}$
	(1) $v = e^{-t} u$. (2) $v = e^{t} u$.
	(3) $v = tu$. (4) $v = -tu$.

Question No.	Questions						
38.	The PDE $x \frac{\partial^2 u}{\partial x^2} + y \frac{\partial^2 u}{\partial y^2} = 0$ is						
	(1) elliptic for $x < 0$, $y > 0$ (2) hyperbolic for $x > 0$, $y < 0$						
	(3) elliptic for $x > 0$, $y < 0$ (4) hyperbolic for $x > 0$, $y > 0$						
39.	Solution of $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x \partial y} - 6 \frac{\partial^2 z}{\partial y^2} = 0$ is given by						
	(1) $z = f_1 (y + 3x) + f_2 (y + 2x)$ (2) $z = f_1 (y + 3x) + f_2 (y - 2x)$						
	(3) $z = f_1 (y - 2x) + f_2 (y + 2x)$ (4) None of these						
40.	Given Wave equation $\frac{\partial z}{\partial y} = c^2 \frac{\partial^2 z}{\partial x^2}$. By separation of variable, let						
	z (x, y) = X (x) Y (y) be a solution. Substituting it in $\frac{\partial z}{\partial y} = c^2 \frac{\partial^2 z}{\partial x^2}$ one have						
	$\frac{d^2X}{dx^2}$ + kX = 0 and $\frac{dY}{dy}$ - kc ² Y = 0. If k = -p ² , p is real, then the solution is						
	(c's are constants)						
	(1) $z(x, y) = (c_1 \cos px) c_2 e^{-c^2 p^2 y}$						
	(2) $z(x, y) = (c_1 \cos px + c_2 \sin px) c_1 e^{-c^2 p^2 y}$						
	(3) $z(x, y) = e^{-c^2 p^2 y}$						
	(4) $z(x, y) = (c_2 \cos px) c_1 e^{-c^2 p^2 y}$						

Question No.	Questions							
41.	The statement, if f is entire and bounded for all $z \in C$, then f is constant, refers to:							
	(1) Morera's theorem (2) Maximum modulus theorem							
29	(3) Liouville's theorem (4) Hurwitz theorem							
42.	Let f(z) be analytic in a closed, connected domain, D then which of the following is not true							
	(1) The extreme values of the modulus of the function must occur on the boundary							
	(2) If f(z) has an interior extrema, then the function is a constant							
	(3) The extreme values of the modulus of the function may occur on interior point and f(z) may not be constant							
	(4) If $f(z)$ is non constant then $ f(z) $ does not attains an extrema inside the boundary							
43.	The function $f: C \rightarrow C$ defined by $f(z) = e^z + e^{-z}$ has							
	(1) finitely many zeros (2) no zeros							
	(3) only real zeros (4) has infinitely may zeros							
44.	Consider the following complex function $f(z) = \frac{9}{(z-1)(z+2)^2}$. Which of the following is one of the residues of the above function?							
	(1) -1 (2) 9/16							
	(3) 2 (4) 9							
45.	The bilinear transformation that maps the points $z = \infty$, i, 0 into the points $w = 0$, i, ∞ is							
	(1) $w = -z$ (2) $w = z$							
	(3) $w = \frac{-1}{z}$ (4) $w = \frac{1}{z}$							
194								

Question No.	Questions					
46.	The fundamental theorem of arithmetic states that					
	(1) The factoring of any integer n > 1 into primes is not unique apart from the order of prime factors					
	(2) The factoring of any integer n > 1 into primes is unique apart from the order of prime factors					
	(3) There are infinitely many primes					
	(4) The number of prime numbers is finite					
47.	The last two digits of 781 are					
W vs	(1) 07 (2) 17					
	(3) 37 (4) 47					
48.	The congruence $35x \equiv 14 \pmod{21}$ has					
	(1) 7 solutions (2) 6 solutions					
	(3) 9 solutions (4) No solution					
49.	If n is a positive integer such that the sum of all positive integers a satisfying $1 \le a \le n$ and GCD $(a, n) = 1$ is equal to 240n, then the number of summands, namely, $\phi(n)$, is					
	(1) 120 (2) 124					
	(3) 240 (4) 480					
50.	If $gcd(m, n) = 1$ where $m > 2$ and $n > 2$, then the integer mn has					
	(1) no primitive roots (2) unique primitive root					
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(3) infinite primitive roots (4) finite primitive roots					

Question No.	Questions
51.	The Linear transformation $T: R^3 \to R^3$ corresponding to the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ is $(1) T(x_1, x_2, x_3) = (x_1, 2x_2, 3x_3)$ $(2) T(x_1, x_2, x_3) = (x_1 + x_3, 2x_1 + x_2, x_2 + x_3)$ $(3) T(x_1, x_2, x_3) = (x_1, x_2, x_3)$ $(4) \text{None of these}$
52.	The matrix $\begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix}$ is (1) non-negative definite but not positive definite (2) positive definite (3) negative definite (4) neither negative definite nor positive definite
53.	Let $X = \begin{bmatrix} 2 & 0 & -3 \\ 3 & -1 & -3 \\ 0 & 0 & -1 \end{bmatrix}$. A matrix P such that $P^{-1}XP$ is a diagonal matrix, is $ \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} $ (2) $ \begin{pmatrix} -1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} $ (3) $ \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} $ (4) $ \begin{pmatrix} -1 & -1 & 1 \\ 0 & -1 & 1 \\ 1 & 1 & 0 \end{pmatrix} $

nestion No.			Que	stions	
54.	The	norm of x with r	espect to inne	r produc	t space $\langle x, x \rangle$ is
	(1)	$ \mathbf{x} = \langle \mathbf{x}, \mathbf{x} \rangle$		(2)	$ \times ^2 = \langle x, x \rangle$
	(3)	$ \mathbf{x} = \langle \mathbf{x}, \mathbf{x} \rangle^2$		(4)	None of these
55.	Cay	ley-Hamilton the			3
	(1)	Every square m	atrix satisfies	its own	characteristic equation
	(2)	Every square m	atrix does not	satisty i	ts own characteristic equation
	(3)		lar matrix sati	isnes its	own characteristic equation
	(4)	None of these			MARKET FILLS THE THE MARKET DATA OF THE HEIGHT SHEET MARKET PROMISE AS A CONTROL OF THE HEIGHT SHOWN AS A CONTROL OF THE SHEET SHEET SHOWN AS A CONTROL OF THE SHEET
56.		z = z-1 then	L	(0)	D - (-) 1/0
	20.00	Re(z) = 1			Re(z) = 1/2
	(3)	Im (z) = 1		(4)	Im(z) = 1/2
1.00	100000000000000000000000000000000000000				THE RESIDENCE OF THE PARTY OF T
57.	The	e power series $\sum_{n=0}^{\infty}$	$3^{-n} (z-1)^{2n} c$	onverges	if
57.	The (1)	n=1	,	(2)	$ z < \sqrt{3}$
57.	(1)	n=	,	(2)	
57.	(1) (3) An	$ z \le 3$ $ z-1 < \sqrt{3}$ analytic function	on of a comple	(2) (4) ex varial	$ z < \sqrt{3}$ $ z-1 \le \sqrt{3}$ ble $z = x + iy$ is expressed a
	(1) (3) An	$ z \le 3$ $ z-1 < \sqrt{3}$ analytic function	on of a comple	(2) (4) ex varial	$ \mathbf{z} < \sqrt{3}$ $ \mathbf{z}-1 \le \sqrt{3}$
	(1) (3) An	$ z \le 3$ $ z-1 < \sqrt{3}$ analytic function	on of a comple	(2) (4) ex varial	$ z < \sqrt{3}$ $ z-1 \le \sqrt{3}$ ble $z = x + iy$ is expressed at $(x, y) = 2xy$, then $v(x, y)$ must
58.	(1) (3) An f(z) be	$ z \le 3$ $ z-1 < \sqrt{3}$ analytic function	on of a complety), where i =	(2) (4) ex varial	$ z < \sqrt{3}$ $ z-1 \le \sqrt{3}$ ble $z = x + iy$ is expressed a
58.	(1) (3) An f(z) be (1)	$ z \le 3$ $ z-1 < \sqrt{3}$ analytic function $z = u(x, y) + iv(x, y)$	on of a complete, y), where i =	(2) (4) ex varial $\sqrt{-1} \cdot \text{If } u$	$ z < \sqrt{3}$ $ z-1 \le \sqrt{3}$ ble $z = x + iy$ is expressed at $(x, y) = 2xy$, then $v(x, y)$ must $x^2 - y^2 + constant$
58.	(1) (3) An f(z) be (1)	$ z \le 3$ $ z-1 < \sqrt{3}$ analytic function $z = u(x, y) + iv(x, y)$ $x^2 + y^2 + const$ $-x^2 + y^2 + cons$ $\frac{2z}{z^2 + 2} dz = 0$	on of a complete, y), where i =	(2) (4) ex varial $\sqrt{-1} \cdot \text{If } u$ (2)	$ z < \sqrt{3}$ $ z-1 \le \sqrt{3}$ ble $z = x + iy$ is expressed at $(x, y) = 2xy$, then $v(x, y)$ must $x^2 - y^2 + constant$
58.	(1) (3) An f(z) be (1) (3)	$ z \le 3$ $ z-1 < \sqrt{3}$ analytic function $z = u(x, y) + iv(x, y)$ $x^2 + y^2 + constant -x^2 + y^2 + const \frac{2z}{z^2 + 2} dz = \frac{2z}{z^2 + 2}$	on of a complete, y), where i =	(2) (4) ex varial $\sqrt{-1} \cdot \text{If } u$ (2)	$ z < \sqrt{3}$ $ z-1 \le \sqrt{3}$ ble $z = x + iy$ is expressed at $(x, y) = 2xy$, then $v(x, y)$ must $x^2 - y^2 + constant$

Question No.	Questions
60.	The value of $\int_{C} \frac{\sin z}{4z + \pi} dz$ where $C: z = 1$ is a positively oriented contour.
	(1) 0 (2) $\frac{-\sqrt{2} \pi i}{4}$
	(3) $\frac{-\sqrt{2}i}{4}$ (4) $\frac{-\pi i}{4}$
61.	If p is a prime, then any group G of order 2p has
- 1 4 7	(1) a normal subgroup of order p
	(2) a normal subgroup of order 2p
	(3) a normal subgroup of order p ²
	(4) None of these
62.	Let G be simple group of order 60. Then
	(1) G has six Sylow-5 subgroups
	(2) G has four Sylow-3 subgroups
	(3) G has a cyclic subgroup of order 6
	(4) G has a unique element of order 2
63.	Let R be a Euclidean domain such that R is not a field. Then the polynomial ring $R[X]$ is always
	(1) a Euclidean domain
	(2) a principal ideal domain but not a Euclidean domain
	(3) a unique factorization domain but not a principal ideal domain
	(4) not a unique factorization domain

Question No.	Questions
64.	Let $p(x) = 9x^5 + 10x^3 + 5x + 15$ and $q(x) = x^3 - x^2 - x - 2$ be two polynomials in $Q[x]$. Then over Q ,
2	(1) p(x) and q(x) are both irreducible
	(2) p(x) is reducible but q(x) is irreducible
	(3) p(x) is irreducible but q(x) is reducible
	(4) p(x) and q(x) are both reducible
65.	Find the degree of the field extension $Q\left(\sqrt{2}, \sqrt[4]{2}, \sqrt[8]{2}\right)$ over Q .
	(1) 4 (2) 8
	(3) 14 (4) 32
66.	Let F be a finite field and let K/F be a field extension of degree 6. Then the Galois group of K/F is isomorphic to
	(1) the cyclic group of order 6
	(2) the permutation group of {1, 2, 3}
	(3) the permutation group on {1, 2, 3, 4, 5, 6}
	(4) the permutation group on {1}
67.	Let X be a topological space and A be a subset of X, then X is separable if
	(1) A is countable and $\overline{A} = X$ (2) \overline{A} is countable
1 2	(3) A is uncountable (4) None of these
68.	Which of the following spaces is not separable?
	(1) R with the trivial topology
	(2) The Cantor set as a subspace of R
	(3) R with the discrete topology
	(4) None of these

Question No.	Questions					
140.						
69.	Which of the following is true?					
	(1) Let X be compact and $f: X \to R$ be locally bounded. Then f is no bounded.					
	(2) Closed subspaces of compact spaces are compact					
	(3) Closed subspaces of compact spaces may not be compact					
	(4) Continuous images of compact spaces may not be compact					
70.	Let X and Y be two topological spaces and let $f: X \to Y$ be a continuou function. Then					
	(1) $f(K)$ is connected if $K \subset X$ is connected					
-	(2) $f^{-1}(K)$ is connected if $K \subset Y$ is connected					
# # # _ # ** #	(3) f ⁻¹ (K) is compact if K ⊂ Y is compact					
	. (4) None of these					
71.	The rate of convergence is faster for					
, "î	(1) Regula-Falsi method (2) Bisection method					
	(3) Newton-Raphson method (4) Cannot say					
72.	As soon as a new value of a variable is found by iteration, it is used immediately in the following equations, this method is called					
	(1) Gauss-Jordan method (2) Gauss-Seidal method					
	(3) Jacobi's method (4) Relaxation method					
73.	The value of function f (x) at 4 discrete points are givne below:					
8	x 0 1 2 5					
	f(x) 2 3 12 147					
	TT: T					
	Using Lagrange's formula, the value of f (3) is					
	(1) 30 (2) 35					
	(3) 25 (4) 20					

uestion No.				Question	ıs	w	
74.	The value of function f (x) at 5 discrete points are given below:						
	х	0	0.1	0.2	0.3	0.4	
e la	f(x)	0	10	40	90	160	
	22			(4) (4) (4)		0.4	
	Using Tra	pezoidal ru	le with s	tep size o	f 0.1, the	e value of \int_{0}^{1}	f(x)dx is
	(1) 10.8		A Section	(2) 1	3.4		
	(3) 18.7			(4) 2	2.0		
75.	If $y' = x + y$ value of y		1, y ₁ (x)	=1+x+	$\frac{x^2}{2}$, the	n by Picard'	s method, th
	(1) 1+x	$+ x^2 + \frac{x^3}{6}$		(2) 1	$-x+x^2$	$+\frac{x^3}{6}$	
	(3) 1+x	$-x^2 + \frac{x^3}{6}$		(4)	$1 + x + x^2$	$\frac{x^3}{6}$	
76.	$I = \int_{x_1}^{x_2} F(y)$	y, y') dx wl	nose end	ls are fix	ed is st	ationary if	y satisfies tl
	equation						
# # # # # # # # # # # # # # # # # # #	$(1) \frac{\partial F}{\partial y'}$	= constant		(2)	$\mathbf{F} - \mathbf{y}' \frac{\partial \mathbf{H}}{\partial \mathbf{y}}$	$\frac{F}{F} = \text{constant}$	
	(3) F-	$y \frac{\partial F}{\partial y'} = con$	stant	(4)	$\mathbf{F}' - \mathbf{y} \frac{\partial \mathbf{I}}{\partial \mathbf{y}}$	$\frac{F}{F} = constant$	ŧ
1		· ,					

Question No.	Questions
77.	If $J[y] = \int_{1}^{2} (y'^{2} + 2yy' + y^{2}) dx$, $y(1) = 1$ and $y(2)$ is arbitrary, then the extremal is (1) e^{x-1} (2) e^{x+1} (3) e^{1-x} (4) e^{-x-1}
78.	The extremal of $\int_{1}^{2} \frac{\dot{x}^2}{t^3} dt$; $x(1) = 3$, $x(2) = 18$ (where $\dot{x} = \frac{dx}{dt}$) using Lagrange's equation is given by which of the following? (1) $x = t^4 + 2$ (2) $x = \frac{15}{7} t^3 + \frac{6}{7}$ (3) $x = 5t^2 - 2$ (4) $x = 5t^3 + 3$
79.	The kernel sin (x + t) is (1) separable kernel (2) difference kernel (3) adjoint kernel (4) none of these
80.	The solution to the integral equation $\phi(x) = x + \int_0^x \sin(x-\xi) \phi(\xi) d\xi$ is given by (1) $x^2 + \frac{x^3}{3}$ (2) $x - \frac{x^3}{3!}$
	(3) $x + \frac{x^3}{3!}$ (4) $x^2 - \frac{x^3}{3!}$

Question No.	Questions					
81.	The non-empty set of real numbers which is bounded below has					
	(1) supremum (2) infimum					
	(3) upper bound (4) none of these					
82.	The sequence $\{f_n\}$ where $f_n(x) = x^n$ is convergent on $[0, k], k < 1$					
	(1) uniformly (2) pointwise					
i p	(3) nowhere (4) none of these					
83.	Every bounded sequence has at least one limit point. This represents					
	(1) Archimedean Property (2) Heine-Borel theorem					
	(3) Bolzano-Weierstress theorem (4) Denseness Property					
84.	Which of the following is convergent?					
	(1) $\sum_{n=1}^{\infty} n^2 2^{-n}$ (2) $\sum_{n=1}^{\infty} n^{-2} 2^n$					
200	(3) $\sum_{n=2}^{\infty} \frac{1}{n \log n}$ (4) $\sum_{n=1}^{\infty} \frac{1}{n \log (1+1/n)}$					
85.	If a function f defined on [0, 1] as $f(x) = \begin{cases} i, & \text{if } x \neq 1/2 \\ 0, & \text{if } x = 1/2 \end{cases}$, then					
	(1) f is not bounded					
13.2	(2) f is R-integrable					
	(3) f is not R-integrable since f is not bounded					
	(4) f is not R-integrable since lower and upper limits are unequal					
86.	Let $f: \mathbb{R} \to \mathbb{R}$ be a monotone function. Then					
	(1) f has no discontinuities					
	(2) f has only finitely many discontinuities.					
	(3) f can have at most countably many discontinuities					
	(4) f can have uncountably many discontinuities					

Question No.,	Questions
87.	The length of an interval I is
	(1) Outer measure of an interval I
	(2) Less than outer measure of an interval I
	(3) Greater than outer measure of an interval I
	(4) Twice the outer measure of an interval I
88.	A set E is said to be Lebesgue measurable if for each set A
2 10 10 2 3	(1) $m^*(A) = m^*(A \cap E) - m^*(A \cap E^c)$
	(2) $m^*(A) = m^*(A \cap E^c) - m^*(A \cap E)$
	(3) $m^*(A) = m^*(A \cup E) + m^*(A \cap E^c)$
	(4) $m^*(A) = m^*(A \cup E) - m^*(A \cap E^c)$
89.	A non-negative measurable function f is integrable over the measurable set E if
	$(1) \int_{\mathbb{E}} f = \infty \qquad (2) \qquad \int_{\mathbb{E}} f > \infty$
	(1) $\int_{\mathbb{E}} f = \infty$ (2) $\int_{\mathbb{E}} f > \infty$ (3) $\int_{\mathbb{E}} f < \infty$ (4) None of these
90.	If f is of bounded variation on $[a, b]$ and $c \in (a, b)$. Then
	(1) f is of bounded variation on [a, c] and on [c, b]
	(2) f is not of bounded variation on [a, c] and on [c, b]
	(3) f is constant on [a, c] and on [c, b]
	(4) None of these
91.	A continuous random variable X has a probability density function $f(x) = e^{-x}$, $0 < x < \infty$. Then $P(X > 1)$ is
	(1) 0.368 (2) 0.5
E TOTAL CONTRACTOR CON	(3) 0.632 (4) 1.0

nestion No.	Questions
92.	Let X and Y be two random variables having the joint probability density
	function $f(x, y) = \begin{cases} 2 & \text{if } 0 < x < y < 1 \\ 0 & \text{otherwise.} \end{cases}$
	Then the conditional probability $P\left(X \le \frac{2}{3} \mid Y = \frac{3}{4}\right)$ is equal to
	(1) 5/9 (2) 2/3
	(3) 7/9 (4) 8/9
93.	The variance of a random variable X is given by
	(1) $E[X - E(X)]^2$ (2) $[E(X)]^2 - E(X)^2$
	(3) $E(X)^2 + (E(X))^2$ (4) None of these
94.	Standard Normal Variate has
10.	(1) Mean = 0 and variance = 1 (2) Mean = 1 and variance = 0
	(3) Mean = 1 and variance = 1 (4) None of these
95.	When $n \to \infty$, the Binomial distribution can be approximated as
	(1) Bernoulli distribution (2) Uniform distribution
	(3) Poisson distribution (4) None of these
96.	The variance of Poisson distribution is given by
	(1) $\sigma^2 = \lambda$ (2) $\sigma^2 = \frac{1}{\lambda}$
	(3) $\sigma^2 = \frac{1}{\lambda^2}$ (4) None of these

Question No.	Questions
97.	The first moment about origin is known as
	(1) Mean (2) Variance
	(3) Standard deviation (4) None of these
98.	In a hypothesis-testing problem, which of the following is not required in order to compute the p-value?
	(1) Value of the test statistic
	(2) Distribution of the test statistic under the null hypothesis
	(3) The level of significance
	(4) Whether the test is one-sided or two-sided
99.	In testing $H: \mu = 100$ against $A: \mu \neq 100$ at the 10% level of significance, H is rejected if
	(1) 100 is contained in the 90% confidence interval
	(2) The value of the test statistic is in the acceptance region
	(3) The p-value is less than 0.10
	(4) The p-value is greater than 0.10
100.	In the context of testing of statistical hypothesis, which one of the following statements is true?
	(1) When testing a simple hypothesis H ₀ against an alternative simple hypothesis H ₁ , the likelihood ratio principle leads to the most powerful test.
	(2) When testing a simple hypothesis H_0 against an alternative simple hypothesis H_1 , P [rejecting $H_0 \mid H_0$ is true] + P [accepting $H_0 \mid H_1$ is true] = 1.
	(3) For testing a simple hypothesis H ₀ against an alternative simple hypothesis H ₁ , randomized test is used to achieve the desired level of the power of the test.
	(4) UMP test for testing a simple hypothesis H ₀ against an alternative simple hypothesis H ₁ , always exist.

Question No.	Questions						
1.	If p is a prime, then any group G of order 2p has						
b es l	(1) a normal subgroup of order p						
	(2) a normal subgroup of order 2p						
	(3) a normal subgroup of order p ²						
10 10	(4) None of these						
2.	Let G be simple group of order 60. Then						
	(1) G has six Sylow-5 subgroups						
	(2) G has four Sylow-3 subgroups						
	(3) G has a cyclic subgroup of order 6						
	(4) G has a unique element of order 2						
3.	Let R be a Euclidean domain such that R is not a field. Then the polynomial ring $R[X]$ is always						
	(1) a Euclidean domain						
	(2) a principal ideal domain but not a Euclidean domain						
2 19	(3) a unique factorization domain but not a principal ideal domain						
	(4) not a unique factorization domain						
4.	Let $p(x) = 9x^5 + 10x^3 + 5x + 15$ and $q(x) = x^3 - x^2 - x - 2$ be two polynomials in Q[x]. Then over Q,						
	(1) p(x) and q(x) are both irreducible						
	(2) p(x) is reducible but q(x) is irreducible						
	(3) p(x) is irreducible but q(x) is reducible						
	(4) p(x) and q(x) are both reducible						
5.	Find the degree of the field extension $Q\left(\sqrt{2}, \sqrt[4]{2}, \sqrt[8]{2}\right)$ over Q .						
	(1) 4 (2) 8						
	(3) 14 (4) 32						

Question No.	Questions
6.	Let F be a finite field and let K/F be a field extension of degree 6. Then the Galois group of K/F is isomorphic to
**	(1) the cyclic group of order 6
	(2) the permutation group of {1, 2, 3}
	(3) the permutation group on {1, 2, 3, 4, 5, 6}
	(4) the permutation group on {1}
7.	Let X be a topological space and A be a subset of X, then X is separable if
v	(1) A is countable and $\overline{A} = X$ (2) \overline{A} is countable
	(3) A is uncountable (4) None of these
8.	Which of the following spaces is not separable?
	(1) R with the trivial topology
	(2) The Cantor set as a subspace of R
	(3) R with the discrete topology
	(4) None of these
9.	Which of the following is true?
	(1) Let X be compact and $f: X \to R$ be locally bounded. Then f is not bounded.
	(2) Closed subspaces of compact spaces are compact
	(3) Closed subspaces of compact spaces may not be compact
	(4) Continuous images of compact spaces may not be compact
10.	Let X and Y be two topological spaces and let $f: X \to Y$ be a continuous function. Then
	(1) $f(K)$ is connected if $K \subset X$ is connected
	(2) $f^{-1}(K)$ is connected if $K \subset Y$ is connected
	(3) $f^{-1}(K)$ is compact if $K \subset Y$ is compact
	(4) None of these

Question No.	Questions						
11.	The Linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ corresponding to the matrix						
	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ is						
	(1) $T(x_1, x_2, x_3) = (x_1, 2x_2, 3x_3)$ (2) $T(x_1, x_2, x_3) = (x_1 + x_3, 2x_1 + x_2, x_2 + x_3)$						
	 (3) T (x₁, x₂, x₃) = (x₁, x₂, x₃) (4) None of these 						
12.	The matrix $\begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix}$ is (1) non-negative definite but not positive definite (2) positive definite (3) negative definite (4) neither negative definite nor positive definite						
13.	Let $X = \begin{bmatrix} 2 & 0 & -3 \\ 3 & -1 & -3 \\ 0 & 0 & -1 \end{bmatrix}$. A matrix P such that $P^{-1}XP$ is a diagonal matrix, i (1) $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ (2) $\begin{bmatrix} -1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$						
	(3) $\begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ (4) $\begin{bmatrix} -1 & -1 & 1 \\ 0 & -1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$						

Question No.	Questions								
14.	The norm of x with respect to inner product space $\langle x, x \rangle$ is								
	(1) $ x = \langle x, x \rangle$ (2) $ x ^2 = \langle x, x \rangle$								
	(3) $ x = \langle x, x \rangle^2$ (4) None of these								
15.	Cayley-Hamilton theorem states that								
	(1) Every square matrix satisfies its own characteristic equation								
	(2) Every square matrix does not satisfy its own characteristic equation								
	(3) Every rectangular matrix satisfies its own characteristic equation								
	(4) None of these								
16.	If $ z = z-1 $ then								
	(1) Re (z) = 1 (2) Re (z) = $1/2$								
1 1 1	(3) $\operatorname{Im}(z) = 1$ (4) $\operatorname{Im}(z) = 1/2$								
17.	The power series $\sum_{n=0}^{\infty} 3^{-n} (z-1)^{2n}$ converges if								
	(1) $ z \le 3$ (2) $ z < \sqrt{3}$								
	(3) $ z-1 < \sqrt{3}$ (4) $ z-1 \le \sqrt{3}$								
18.	An analytic function of a complex variable $z = x + iy$ is expressed as								
, V*.	$f(z) = u(x, y) + iv(x, y)$, where $i = \sqrt{-1}$. If $u(x, y) = 2xy$, then $v(x, y)$ must								
	be								
25 (n.e.) ⁵³	(1) $x^2 + y^2 + constant$ (2) $x^2 - y^2 + constant$								
	(3) $-x^2 + y^2 + constant$ (4) $-x^2 - y^2 + constant$								
19.	$\int_{ z =2} \frac{2z}{z^2 + 2} \mathrm{d}z =$								
	(1) 0 (2) $-2\pi i$								

Question No.	Questions								
20.	The value of $\int_{C} \frac{\sin z}{4z + \pi} dz$ where $C : z = 1$ is a positively oriented contour.								
	(1) 0 (2) $\frac{-\sqrt{2} \pi i}{4}$								
	(3) $\frac{-\sqrt{2}i}{4}$ (4) $\frac{-\pi i}{4}$								
21.	The non-empty set of real numbers which is bounded below has								
	(1) supremum (2) infimum								
	(3) upper bound (4) none of these								
22.	The sequence $\{f_n\}$ where $f_n(x) = x^n$ is convergent on $[0, k], k < 1$								
	(1) uniformly (2) pointwise								
	(3) nowhere (4) none of these								
23.	Every bounded sequence has at least one limit point. This represents								
	(1) Archimedean Property (2) Heine-Borel theorem								
	(3) Bolzano-Weierstress theorem (4) Denseness Property								
24.	Which of the following is convergent?								
	(1) $\sum_{n=1}^{\infty} n^2 2^{-n}$ (2) $\sum_{n=1}^{\infty} n^{-2} 2^n$								
	(3) $\sum_{n=2}^{\infty} \frac{1}{n \log n}$ (4) $\sum_{n=1}^{\infty} \frac{1}{n \log (1+1/n)}$								
25.	If a function f defined on [0, 1] as $f(x) = \begin{cases} i, & \text{if } x \neq 1/2 \\ 0, & \text{if } x = 1/2 \end{cases}$, then								
2 7	(1) f is not bounded								
	(2) f is R-integrable								
	(3) f is not R-integrable since f is not bounded								
	(4) f is not R-integrable since lower and upper limits are unequal								

Question No.	Questions
26.	Let $f: \mathbb{R} \to \mathbb{R}$ be a monotone function. Then
	(1) f has no discontinuities
	(2) f has only finitely many discontinuities.
	(3) f can have at most countably many discontinuities
	(4) f can have uncountably many discontinuities
27.	The length of an interval I is
3	(1) Outer measure of an interval I
, a	(2) Less than outer measure of an interval I
	(3) Greater than outer measure of an interval I
· ·	(4) Twice the outer measure of an interval I
28.	A set E is said to be Lebesgue measurable if for each set A
	(1) $m^*(A) = m^*(A \cap E) - m^*(A \cap E^c)$
	(2) $m^*(A) = m^*(A \cap E^c) - m^*(A \cap E)$
	(3) $m^*(A) = m^*(A \cup E) + m^*(A \cap E^c)$
	(4) $m^*(A) = m^*(A \cup E) - m^*(A \cap E^c)$
29.	A non-negative measurable function f is integrable over the measurable set E if
	$(1) \int_{E} f = \infty \qquad (2) \int_{E} f > \infty$
	(3) $\int_{\mathbb{E}} f < \infty$ (4) None of these
30.	If f is of bounded variation on $[a, b]$ and $c \in (a, b)$. Then
	(1) f is of bounded variation on [a, c] and on [c, b]
	(2) f is not of bounded variation on [a, c] and on [c, b]
	(3) f is constant on [a, c] and on [c, b]
	(4) None of these

Question No.	Questions						
31.	A box contains N tickets which are numbered 1, 2,, N. Then value of N is however, unknown. A simple random sample of n tickets is drawn without replacement from the box. Let $X_1, X_2,, X_n$ be numbers on the tickets obtained in the 1^{st} , 2^{nd} ,, n^{th} draws respectively. Here						
	$\overline{X} = \frac{1}{N}(X_1 + X_2 + + X_n)$. Which of the following is an unbiased						
	estimator of N?						
	$(1) 2\overline{X}-1 \qquad (2) 2\overline{X}+1$						
	(3) $2\overline{X} + \frac{1}{2}$ (4) $2\overline{X} - \frac{1}{2}$						
32.	Let $X_1 \sim N$ (0, 1) and let $X_2 = \begin{cases} -X_1, & -2 \le X_1 \le 2 \\ X_1, & \text{otherwise.} \end{cases}$						
	Then identify the correct statement. (1) $\operatorname{corr}(X_1, X_2) = 1$						
	 (2) X₂ does not have N (0, 1) distribution. (3) (X₁, X₂) has a bivariate normal distribution. 						
	(4) (X_1, X_2) does not have a bivariate normal distribution.						
33.	Let X_1 , X_2 ,, X_n be a random sample of size n from a p-variate Norma distribution with mean μ and positive definite covariance matrix Σ Choose the correct statement						
	(1) $(X_1 - \mu)' \sum_{i=1}^{-1} (X_1 - \mu)$ has chi-suare distribution with 1 d.f.						
	(2) $\overline{X} \overline{X}'$ has Wishart distribution with p d.f.						
	(3) $\sum_{i=1}^{n} (X_i - \mu)(X_i - \mu)'$ has Wishart distribution with n d.f.						
	(4) $X_1 + X_2$ and $X_1 - X_2$ are independently distributed.						

Question No.	Questions
34.	In which of the following distributions, mean ≥ variance
	(1) Poisson distribution
	(2) Negative binomial distribution
	(3) Normal distribution
	(4) Binomial distribution
35.	Let X ₁ , X ₂ , be i.i.d. standard normal random variables and let
	$T_n = \frac{X_1^2 + + X_n^2}{n}$. Then
and property of the control of the c	(1) The limiting distribution of $T_n - 1$ is χ^2 with 1 degree of freedom.
	(2) The limiting distribution of $\frac{T_n-1}{\sqrt{n}}$ is normal with mean 0 and
	variance 2.
	(3) The limiting distribution of \sqrt{n} (T_n-1) is χ^2 with 1 degree of freedom.
	(4) The limiting distribution of \sqrt{n} $(T_n - 1)$ is normal with mean 0 and variance 2.
36.	Suppose the cumulative distribution function of failure time T of a component is
	$1 - \exp(-ct^{\alpha}), t > 0, \alpha > 1, c > 0.$
	Then the hazard rate of λ (t) is
	(1) constant.
	(2) non-constant monotonically increasing in t.
	(3) non-constant monotonically decreasing in t.
	(4) not a monotone function in t.
and the state of t	

Question No.	Questions							
37.	Consider the following linear programming problem							
	$Maximize z = 3x_1 + 2x_2$							
	subject to $x_1 + x_2 \ge 1 \; ; \; x_1 + x_2 \le 5 \; ; \; 2x_1 + 3x_2 \le 6 \; ; -2x_1 + 3x_2 \le 6$							
	The problem has							
	(1) an unbounded solution							
	(2) exactly one optimal solution							
	(3) more than one optimal solution							
	(4) no feasible solutions							
38.	 Let {X_n: n≥0} be a Markov chain on a finite state space S with stationary transition probability matrix. Suppose that the chain is not irreducible. Then the Markov chain: (1) admits infinitely many stationary distributions (2) admits a unique stationary distribution (3) may not admit any stationary distribution 							
	(4) cannot admit exactly two stationary distributions							
39.	Men arrive in a queue according to a Poisson process with rate λ_1 and women arrive in the same queue according to another Poisson process with rate λ_2 . The arrivals of mean and women are independent. The probability that the first arrival in the queue is a man is:							
	$(1) \frac{\lambda_1}{\lambda_1 + \lambda_2} \qquad (2) \frac{\lambda_2}{\lambda_1 + \lambda_2}$							
	$(3) \frac{\lambda_1}{\lambda_2} \qquad \qquad (4) \frac{\lambda_2}{\lambda_1}$							

Question No.	Questions								
40.	Let X (t) be the number of customers in an M/M/1 queuing system with arrival rate $\lambda > 0$ and service rate $\mu > 0$. The process X (t) is a								
	(1) Poisson process with rate $\lambda - \mu$.								
	(2) pure birth process with birth rate $\lambda - \mu$.								
	(3) birth and death process with birth rate λ and death rate μ .								
	(4) birth and death process with birth rate $1/\lambda$ and death rate $1/\mu$.								
41.	The rate of convergence is faster for								
5 ²⁷ (20)	(1) Regula-Falsi method (2) Bisection method								
	(3) Newton-Raphson method (4) Cannot say								
42.	As soon as a new value of a variable is found by iteration, it is used immediately in the following equations, this method is called								
	(1) Gauss-Jordan method (2) Gauss-Seidal method								
	(3) Jacobi's method (4) Relaxation method								
43.	The value of function f (x) at 4 discrete points are givne below:								
	x 0 1 2 5								
	f(x) 2 3 12 147								
	Using Lagrange's formula, the value of f (3) is								
- 4 - 47 - 47	(1) 30 (2) 35								
	(3) 25 (4) 20								

uestion No.	on Questions							
44.	The value of function f (x) at 5 discrete points are given below:							
	X	0	0.1	0.2	0.3	0.4		
	f(x)	0	10	40	90	160		
	Using Tra	pezoidal 1	rule with s		of 0.1, the 3.4	e value of	$\int_{0}^{0.4} f(x) dx$	x is
	(3) 18.7			(4) 2	22.0		*	
	value of y	$_{2}(x)$ is:						
	(3) 1+2	$x - x^2 + \frac{x^3}{6}$	3	(4)	$1 - x + x^2$ $1 + x + x$	$\frac{x^3}{6}$		
46.	(3) 1+2	$x - x^2 + \frac{x^3}{6}$	m"	(4)	1 + x + x	$\frac{x^3}{6}$	if y sat	isfies th
46.	(3) 1+2	(y, y') dx	3	(4)	1 + x + x	$\frac{x^3}{6}$	if y sat	isfies th
46.	(3) $1 + x$ $I = \int_{x_1}^{x_2} F(x) dx$ equation $(1) \frac{\partial F}{\partial y'}$	(y, y') dx $= constant$	whose end	(4) ds are fi	$1 + x + x$ $xed is st$ $F - y' \frac{\partial}{\partial y}$	$\frac{x^3}{6}$ Exationary $\frac{F}{y'} = const$	tant	isfies th

Question No.	Questions							
47.	If J [y] = $\int_{1}^{2} (y'^2 + 2yy' + y^2) dx$, y (1) = 1 and y (2) is arbitrary, then the							
	extremal is $(1) e^{x-1} \qquad (2) e^{x+1}$							
	(3) e^{1-x} (4) e^{-x-1}							
48.	The extremal of $\int_{1}^{2} \frac{\dot{x}^2}{t^3} dt$; $x(1) = 3$, $x(2) = 18$ (where $\dot{x} = \frac{dx}{dt}$) using Lagrange's							
	equation is given by which of the following?							
	(1) $x = t^4 + 2$ (2) $x = \frac{15}{7} t^3 + \frac{6}{7}$							
	(3) $x = 5t^2 - 2$ (4) $x = 5t^3 + 3$							
49.	The kernel $\sin (x + t)$ is							
	(1) separable kernel (2) difference kernel							
	(3) adjoint kernel (4) none of these							
50.	The solution to the integral equation $\phi(x) = x + \int_{0}^{x} \sin(x-\xi) \phi(\xi) d\xi$ is							
	given by							
	(1) $x^2 + \frac{x^3}{3}$ (2) $x - \frac{x^3}{3!}$							
	(3) $x + \frac{x^3}{3!}$ (4) $x^2 - \frac{x^3}{3!}$							

uestion No.	Questions	
51.	The statement, if f is entire and bounded for all z∈C, then f is constant, refers to: (1) Morera's theorem (2) Maximum modulus theorem (3) Liouville's theorem (4) Hurwitz theorem	
52.	Let f(z) be analytic in a closed, connected domain, D then which of the following is not true	
	(1) The extreme values of the modulus of the function must occur on the boundary	
	(2) If $ f(z) $ has an interior extrema, then the function is a constant	
	(3) The extreme values of the modulus of the function may occur on interior point and f(z) may not be constant	
	(4) If f(z) is non constant then f(z) does not attains an extrema inside the boundary	
53.	The function $f: C \to C$ defined by $f(z) = e^z + e^{-z}$ has	
	(1) finitely many zeros (2) no zeros	
	(3) only real zeros (4) has infinitely may zeros	
54.	Consider the following complex function $f(z) = \frac{9}{(z-1)(z+2)^2}$. Which of the	
	following is one of the residues of the above function?	
	(1) -1 (2) $9/16$	
	(3) 2 (4) 9	
55.	The bilinear transformation that maps the points $z = \infty$, i, 0 into the points $w = 0$, i, ∞ is	
	(1) $w = -z$ (2) $w = z$	
	(3) $w = \frac{-1}{z}$ (4) $w = \frac{1}{z}$	

Question No.		Questions	
56.	The fundamental theorem	of arithmetic st	ates that
2	(1) The factoring of any in from the order of prim		to primes is not unique apart
	(2) The factoring of any in the order of prime fac		o primes is unique apart from
	(3) There are infinitely ma	any primes	
	(4) The number of prime r	numbers is finit	e
57.	The last two digits of 781 ar	e	
	(1) 07	(2)	17
	(3) 37	(4)	47
58.	The congruence $35x = 14$ (n	nod 21) has	-
	(1) 7 solutions	(2)	6 solutions
	(3) 9 solutions	(4)	No solution
59.	satisfying $1 \le a \le n$ and $G(0)$ of summands, namely, $\phi(n)$ (1) 120	CD (a, n) = 1 is e , is (2)	sum of all positive integers a equal to 240n, then the number 124 480
20	(3) 240	(4)	
60.	If $gcd(m, n) = 1$ where $m >$	2 and n > 2, th	en the integer mn has
60.	If gcd (m, n) = 1 where m > (1) no primitive roots	2 and $n > 2$, th (2)	en the integer mn has unique primitive root
60.	If $gcd(m, n) = 1$ where $m >$	2 and $n > 2$, th (2)	en the integer mn has
61.	If gcd (m, n) = 1 where m > (1) no primitive roots (3) infinite primitive root	2 and $n > 2$, th (2) (4)	en the integer mn has unique primitive root finite primitive roots
	If gcd (m, n) = 1 where m > (1) no primitive roots (3) infinite primitive root	2 and $n > 2$, th (2) (4)	en the integer mn has unique primitive root
	If gcd (m, n) = 1 where m > (1) no primitive roots (3) infinite primitive root The homogeneous integr	2 and n > 2, th (2) s (4) ral equation \$\phi\$	en the integer mn has unique primitive root finite primitive roots
	If gcd (m, n) = 1 where m > (1) no primitive roots (3) infinite primitive root The homogeneous integral	2 and n > 2, th (2) s (4) val equation \$\phi\$	en the integer mn has unique primitive root finite primitive roots
	If gcd (m, n) = 1 where m > (1) no primitive roots (3) infinite primitive root The homogeneous integral has (1) One characteristic numbers	2 and n > 2, th (2) s (4) cal equation ϕ mber numbers	en the integer mn has unique primitive root finite primitive roots

Question No.	Questions		
62.	Let S be a mechanical system with Lagrangian L (q_j, \dot{q}_j, t) , $j = 1, 2, \dots, n$ and generalized coordinates. Then the Lagrange equations of motion for S		
	(1) constitute a set of n first order ODEs.		
	(2) can be transformed to the Hamilton form using Legendre transform.		
	(3) are equivalent to a set on n first order ODEs when expressed in terms of Hamiltonian functions.		
	(4) is a set of 2n second order ODEs.		
63.	Lagrange's equations for a Holonomic dynamical system specified by n-generalized coordinates q_i ($i = 1, 2, 3 n$) having T as the K.E. of system at time t and Q_i the generalized forces are		
	(1) $\frac{d}{dt} \left(\frac{\partial \Gamma}{\partial \dot{q}_j} \right) + \frac{\partial \Gamma}{\partial q_j} = Q_j$ (2) $\frac{d}{dt} \left(\frac{\partial \Gamma}{\partial \dot{q}_j} \right) - \frac{\partial \Gamma}{\partial q_j} = Q_j$		
	(3) $\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} = \dot{Q}_j$ (4) $\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) + \frac{\partial T}{\partial q_j} = \dot{Q}_j$		
64.	Let q_i and \dot{q}_i respectively are the generalized coordinates and velocity of		
	a mechanical system and p are its generalized momenta. If H is the Hamiltonian of the system, then Hamilton's equations of motion are		
	$(1) \dot{\mathbf{q}}_{i} = \frac{\partial \mathbf{H}}{\partial \mathbf{p}_{i}}, \ \dot{\mathbf{p}}_{i} = \frac{\partial \mathbf{H}}{\partial \mathbf{q}_{i}} $ $(2) \dot{\mathbf{q}}_{i} = \frac{\partial \mathbf{H}}{\partial \mathbf{p}_{i}}, \ \dot{\mathbf{p}}_{i} = -\frac{\partial \mathbf{H}}{\partial \mathbf{q}_{i}}$		
	(3) $\dot{q}_i = -\frac{\partial H}{\partial p_i}, \ \dot{p}_i = \frac{\partial H}{\partial q_i}$ (4) $\dot{q}_i = -\frac{\partial H}{\partial p_i}, \ \dot{p}_i = -\frac{\partial H}{\partial q_i}$		

Question No.	Questions	
65.	Hamiltonian H is defined as	
	(1) $H = \sum p_i \dot{q}_i - L$ (2) $H = \sum \dot{p}_i q_i - L$	
	(3) $H = \sum \dot{p}_i q_i + L$ (4) $H = \sum \dot{p}_i \dot{q}_i - L$	
66.	What is the probability to get two aces in succession (with replacement) from a deck of 52 cards?	
	(1) 1/52 (2) 1/169	
	(3) 2/159 (4) 2/169	
There are two boxes. Box 1 contains 2 red balls and 4 green by contains 4 red balls and 2 green balls. A box is selected at rand ball is chosen randomly from the selected box. If the ball turning red, what is the probability that Box 1 had been selected?		
	(1) 1/2 (2) 1/6	
	(3) 2/3 (4) 1/3	
68.	Suppose you have a coin with probability $\frac{3}{4}$ of getting a Head. You toss the coin twice independently. Let $\Omega = \{(H, H), (H, T), (T, H), (T, T)\}$ be the sample space. Then it is possible to have an event $E \subseteq \Omega$ such that (1) $P(E) = 1/3$ (2) $P(E) = 1/9$ (3) $P(E) = 1/4$ (4) $P(E) = 7/8$	
69.	A random variable X has a probability distribution as follows:	
	r 0 1 2 3	
	P (X = r) 2k 3k 13k 2k	
	Then the probability that $P(X < 2)$ is equal to	
	(1) 0.90 (2) 0.25	
	(3) 0.65 (4) 0.15	

Question No.	Questions
70.	Find the value of λ such that the function $f(x)$ is a valid probability density function where $f(x) = \begin{cases} \lambda(x-1)(2-x) & \text{for } 1 \le x \le 2 \\ 0 & \text{otherwise} \end{cases}$
	(1) 1 (2) 5 (3) 6 (4) 7
71.	A continuous random variable X has a probability density function $f(x) = e^{-x}$, $0 < x < \infty$. Then $P(X > 1)$ is (1) 0.368 (2) 0.5 (3) 0.632 (4) 1.0
72.	Let X and Y be two random variables having the joint probability density function $f(x, y) = \begin{cases} 2 & \text{if } 0 < x < y < 1 \\ 0 & \text{otherwise.} \end{cases}$ Then the conditional probability $P\left(X \le \frac{2}{3} \mid Y = \frac{3}{4}\right)$ is equal to
	(1) 5/9 (2) 2/3 (3) 7/9 (4) 8/9
73.	The variance of a random variable X is given by (1) $E[X - E(X)]^2$ (2) $[E(X)]^2 - E(X)^2$ (3) $E(X)^2 + (E(X))^2$ (4) None of these
74.	Standard Normal Variate has (1) Mean = 0 and variance = 1 (2) Mean = 1 and variance = 0 (3) Mean = 1 and variance = 1 (4) None of these

Questions		
(3) Poisson distribution (4) None of these		
The variance of Poisson distribution is given by		
(1) $\sigma^2 = \lambda$ (2) $\sigma^2 = \frac{1}{\lambda}$		
(3) $\sigma^2 = \frac{1}{\lambda^2}$ (4) None of these		
The first moment about origin is known as		
(1) Mean (2) Variance		
(3) Standard deviation (4) None of these		
In a hypothesis-testing problem, which of the following is not required in order to compute the p-value?		
(1) Value of the test statistic		
(2) Distribution of the test statistic under the null hypothesis		
(3) The level of significance		
(4) Whether the test is one-sided or two-sided		
In testing H : μ = 100 against A : μ ≠ 100 at the 10% level of significance, H is rejected if		
(1) 100 is contained in the 90% confidence interval		
(2) The value of the test statistic is in the acceptance region		
(3) The p-value is less than 0.10		
(4) The p-value is greater than 0.10		

uestion No.	Questions	
80. In the context of testing of statistical hypothesis, which one of the statements is true?		
	(1) When testing a simple hypothesis H ₀ against an alternative simple hypothesis H ₁ , the likelihood ratio principle leads to the most powerful test.	
	(2) When testing a simple hypothesis H_0 against an alternative simple hypothesis H_1 , P [rejecting $H_0 \mid H_0$ is true] + P [accepting $H_0 \mid H_1$ is true] = 1.	
	(3) For testing a simple hypothesis H ₀ against an alternative simple hypothesis H ₁ , randomized test is used to achieve the desired level of the power of the test.	
	(4) UMP test for testing a simple hypothesis H ₀ against an alternative simple hypothesis H ₁ , always exist.	
81.	Let X and Y be metric spaces, and $f: X \rightarrow Y$ a function then which of the following is true	
	(1) f is continuous;	
	(2) for every open set U in Y, f-1 (U) is open in X	
	(3) for every closed set C in Y, f-1 (C) is closed in X	
2 P	(4) All the above	
82.	The metric space (R, d), where d is a usual metric, is	
	(1) compact (2) disconnected	
1.	(3) connected but not compact (4) compact and connected	
83.	Let (X, d) be a metric space, then for all x, y, z ∈ X	
	(1) $d(x, y) \le d(x, z) + d(z, y)$ (2) $d(x, y) \ge d(x, z) + d(z, y)$	
	(3) $d(x, y) \le 0$ (4) None of these	

Question No.	Questions
84.	A normed linear space X is complete iff
1.	(1) Every convergent series in X is absolutely convergent
	(2) Every convergent series in X is convergent
	(3) Every convergent series in X is uniformly convergent
	(4) Every absolutely convergent series in X is convergent
85.	If W ₁ , W ₂ are two subspaces of a finite dimension vector space V(F), then
	(1) $\dim (W_1 + W_2) = \dim (W_1 \cup W_2)$
	(2) $\dim (W_1 + W_2) = \dim W_1 + \dim W_2$
mar to a control de la control	(3) $\dim (W_1 + W_2) = \dim W_1 + \dim W_2 - \dim (W_1 \cap W_2)$
	(4) $\dim (W_1 + W_2) = \dim W_1 + \dim W_2 + \dim (W_1 \cap W_2)$
86.	The co-ordinates of vector (1, 1, 1) relative to basis (1, 1, 2), (2, 2, 1), (1, 2, 2) is
	(1) (1/3, 0, 1/3) (2) (1/3, 1/3, 0)
	(3) (0, 1/3, 1/3) (4) None of these
87.	Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. Which of the following statements implies that T is bijective?
	(1) Nullity (T) = n (2) Rank (T) = Nullity (T) = n
	(3) Rank (T) + Nullity (T) = n (4) Rank (T) – Nullity (T) = n
88.	Let A, B be $n \times n$ real matrices. Which of the following statements is correct?
	(1) $\operatorname{rank}(A + B) = \operatorname{rank}(A) + \operatorname{rank}(B)$
	(2) $\operatorname{rank}(A + B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$
	(3) $\operatorname{rank}(A + B) = \min \{\operatorname{rank}(A), \operatorname{rank}(B)\}$
And a second sec	(4) $\operatorname{rank}(A + B) = \max \{\operatorname{rank}(A), \operatorname{rank}(B)\}$

Question No.	Questions
89.	Let A and B be real invertible matrices such that $AB = -BA$. Then (1) Trace (A) = 1, Trace (B) = 0 (2) Trace (A) = Trace (B) = 1
	(1) Trace (A) = 1, Trace (B) = 0 (2) Trace (A) = Trace (B) = 1 (3) Trace (A) = 0, Trace (B) = 1 (4) Trace (A) = Trace (B) = 0
90.	Consider the matrix $A(x) = \begin{bmatrix} 1 + x^2 & 7 & 11 \\ 3x & 2x & 4 \\ 8x & 17 & 13 \end{bmatrix}$; $x \in \mathbb{R}$. Then
	(1) A (x) has eigenvalue 0 for some x∈R
	(2) 0 is not an eigenvalue of $A(x)$ for any $x \in \mathbb{R}$
	(3) A (x) has eigenvalue 0 for all $x \in \mathbb{R}$
	(4) A (x) is invertible for every x∈R
91.	Consider the initial value problem (IVP) $\frac{dy}{dx} = y^2, \ y(0) = 1, (x, y) \in \mathbb{R} \times \mathbb{R}.$
	Then there exists a unique solution of the IVP on
	$(1) (-\infty, \infty) \qquad \qquad (2) (-\infty, 1)$
	(3) $(-2, 2)$ (4) $(-1, \infty)$
92.	The solution to the initial value problem $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = 3e^{-t} \sin t$, $y(0) = 0$ and $y'(0) = 3$, is
	(1) $y(t) = e^{t} (\sin t + \sin 2t)$ (2) $y(t) = e^{-t} (\sin t + \sin 2t)$ (3) $y(t) = 3 e^{t} \sin t$ (4) $y(t) = 3 e^{-t} \sin t$

Question No.	Questions
93.	Consider the differential equation $(x - 1) y'' + xy' + \frac{1}{x} y = 0$. Then
	(1) $x = 1$ is the only singular point
	(2) $x = 0$ is the only singular point
	(3) both $x = 0$ and $x = 1$ are singular points
	(4) neither $x = 0$ nor $x = 1$ are singular points
94.	Let f and g be real linearly independent solutions of
	$\frac{d}{dx}\left[\frac{dy}{dx}P(x)\right] + Q(x)y = 0 \text{on the interval } a \le x \le b. \text{ Then}$
	(1) between any two consecutive zeros of f, there is precisely one zero of g.
	(2) between any two consecutive zeros of f, there is no zero of g.
	(3) between any two consecutive zeros of f, there is infinite zeros of g.
	(4) None of these
95.	The eigen values of a Sturm-Liouville BVP are
A COLO	(1) Always positive
	(2) Always negative
	(3) Always real
	(4) Always in the pair of complex conjugate

Question No.	Questions
96.	The Charpit's equations for the PDE $up^2 + q^2 + x + y = 0$, $p = \frac{\partial u}{\partial x}$,
	$q = \frac{\partial u}{\partial y}$ are given by
e ^e ya a	(1) $\frac{dx}{-1-p^3} = \frac{dy}{-1-qp^2} = \frac{du}{2p^2u + 2q^2} = \frac{dp}{2pu} = \frac{dq}{2q}$
	(2) $\frac{dx}{2pu} = \frac{dy}{2q} = \frac{du}{2p^2u + 2q^2} = \frac{dp}{-1 - p^3} = \frac{dq}{-1 - qp^2}$
	(3) $\frac{dx}{up^{2}} = \frac{dy}{q^{2}} = \frac{du}{0} = \frac{dp}{x} = \frac{dq}{y}$ (4) $\frac{dx}{2q} = \frac{dy}{2pu} = \frac{du}{x+y} = \frac{dp}{p^{2}} = \frac{dq}{qp^{2}}$
97.	The partial differential equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + u$ can be transformed to $\frac{\partial v}{\partial t} = \frac{\partial^2 v}{\partial x^2}$ for
	(1) $v = e^{-t} u$. (2) $v = e^{t} u$. (3) $v = tu$. (4) $v = -tu$.
98.	The PDE $x \frac{\partial^2 u}{\partial x^2} + y \frac{\partial^2 u}{\partial y^2} = 0$ is
	(1) elliptic for $x < 0$, $y > 0$ (2) hyperbolic for $x > 0$, $y < 0$ (3) elliptic for $x > 0$, $y < 0$ (4) hyperbolic for $x > 0$, $y > 0$

Question No.	Questions
99.	Solution of $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x \partial y} - 6 \frac{\partial^2 z}{\partial y^2} = 0$ is given by
	(1) $z = f_1 (y + 3x) + f_2 (y + 2x)$ (2) $z = f_1 (y + 3x) + f_2 (y - 2x)$
	(3) $z = f_1 (y - 2x) + f_2 (y + 2x)$ (4) None of these
100.	Given Wave equation $\frac{\partial z}{\partial y} = c^2 \frac{\partial^2 z}{\partial x^2}$. By separation of variable, le
	$z(x, y) = X(x) Y(y)$ be a solution. Substituting it in $\frac{\partial z}{\partial y} = c^2 \frac{\partial^2 z}{\partial x^2}$ one have $\frac{d^2 X}{dx^2} + kX = 0$ and $\frac{dY}{dy} - kc^2 Y = 0$. If $k = -p^2$, p is real, then the solution is
	(c's are constants)
	(1) $z(x, y) = (c_1 \cos px) c_2 e^{-c^2 p^2 y}$
	(2) $z(x, y) = (c_1 \cos px + c_2 \sin px) c_1 e^{-c^2 p^2 y}$
7	(3) $z(x,y) = e^{-c^2 p^2 y}$
	(4) $z(x, y) = (c_2 \cos px) c_1 e^{-c^2 p^2 y}$
MPH-PHD	-URS-EE-2018-Mathematics-Code-C (24)

Question No.	Questions
1.	The homogeneous integral equation $\phi(x) - \lambda \int_{0}^{1} (3x-2)t \phi(t) dt = 0$, has
	 (1) One characteristic number (2) Three characteristic numbers (3) Two characteristic numbers
2.	(4) No characteristic number Let S be a mechanical system with Lagrangian L $(q_j, \dot{q}_j, t), j = 1, 2,, n$ and generalized coordinates. Then the Lagrange equations of motion for S
	 constitute a set of n first order ODEs. can be transformed to the Hamilton form using Legendre transform. are equivalent to a set on n first order ODEs when expressed in terms of Hamiltonian functions. is a set of 2n second order ODEs.
3.	Lagrange's equations for a Holonomic dynamical system specified by n-generalized coordinates q_j ($j=1, 2, 3 \dots n$) having T as the K.E. of system at time t and Q_j the generalized forces are
	$(1) \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{j}} \right) + \frac{\partial T}{\partial q_{j}} = Q_{j} $ $(2) \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{j}} \right) - \frac{\partial T}{\partial q_{j}} = Q_{j} $ $(3) \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{j}} \right) - \frac{\partial T}{\partial q_{j}} = \dot{Q}_{j} $ $(4) \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{i}} \right) + \frac{\partial T}{\partial q_{i}} = \dot{Q}_{j} $

Question No.	Questions
4.	Let q_i and \dot{q}_i respectively are the generalized coordinates and velocity of a mechanical system and p_i are its generalized momenta. If H is the Hamiltonian of the system, then Hamilton's equations of motion are
	(1) $\dot{q}_i = \frac{\partial H}{\partial p_i}, \ \dot{p}_i = \frac{\partial H}{\partial q_i}$ (2) $\dot{q}_i = \frac{\partial H}{\partial p_i}, \ \dot{p}_i = -\frac{\partial H}{\partial q_i}$
	(3) $\dot{q}_i = -\frac{\partial H}{\partial p_i}$, $\dot{p}_i = \frac{\partial H}{\partial q_i}$ (4) $\dot{q}_i = -\frac{\partial H}{\partial p_i}$, $\dot{p}_i = -\frac{\partial H}{\partial q_i}$
5.	Hamiltonian H is defined as
	(1) $H = \sum p_i \dot{q}_i - L$ (2) $H = \sum \dot{p}_i q_i - L$
	(3) $H = \sum \dot{p}_i q_i + L$ (4) $H = \sum \dot{p}_i \dot{q}_i - L$
6.	What is the probability to get two aces in succession (with replacement) from a deck of 52 cards?
	(1) 1/52 (2) 1/169
	(3) 2/159 (4) 2/169
7.	There are two boxes. Box 1 contains 2 red balls and 4 green balls. Box 2 contains 4 red balls and 2 green balls. A box is selected at random and a ball is chosen randomly from the selected box. If the ball turns out to be red, what is the probability that Box 1 had been selected?
	(1) 1/2 (2) 1/6
	(3) 2/3 (4) 1/3

Question No.	Questions
8.	Suppose you have a coin with probability $\frac{3}{4}$ of getting a Head. You toss the coin twice independently. Let $\Omega = \{(H, H), (H, T), (T, H), (T, T)\}$ be the sample space. Then it is possible to have an event $E \subseteq \Omega$ such that (1) $P(E) = 1/3$ (2) $P(E) = 1/9$ (3) $P(E) = 1/4$ (4) $P(E) = 7/8$
9.	A random variable X has a probability distribution as follows:
	r 0 1 2 3 P(X=r) 2k 3k 13k 2k
	Then the probability that P (X < 2) is equal to (1) 0.90 (2) 0.25 (3) 0.65 (4) 0.15
10.	Find the value of λ such that the function $f(x)$ is a valid probability density function where $f(x) = \begin{cases} \lambda(x-1)(2-x) & \text{for } 1 \le x \le 2 \\ 0 & \text{otherwise} \end{cases}$ (1) 1 (2) 5
	(1) 1 (2) 5 (3) 6 (4) 7
11.	Consider the initial value problem (IVP) $\frac{dy}{dx} = y^2, \ y(0) = 1, (x, y) \in \mathbb{R} \times \mathbb{R}.$ Then there exists a unique solution of the IVP on
	(1) $(-\infty, \infty)$ (2) $(-\infty, 1)$ (3) $(-2, 2)$ (4) $(-1, \infty)$

Question No.	Questions
12.	The solution to the initial value problem $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = 3e^{-t} \sin t$, $y(0) = 0$ and $y'(0) = 3$, is
	(1) $y(t) = e^{t} (\sin t + \sin 2t)$ (2) $y(t) = e^{-t} (\sin t + \sin 2t)$ (3) $y(t) = 3 e^{t} \sin t$ (4) $y(t) = 3 e^{-t} \sin t$
13.	Consider the differential equation $(x-1)y'' + xy' + \frac{1}{x}y = 0$. Then
	(1) $x = 1$ is the only singular point
	(2) $x = 0$ is the only singular point
	(3) both $x = 0$ and $x = 1$ are singular points
	(4) neither $x = 0$ nor $x = 1$ are singular points
14.	Let f and g be real linearly independent solutions of
	$\frac{d}{dx}\left[\frac{dy}{dx}P(x)\right] + Q(x)y = 0 \text{on the interval } a \le x \le b. \text{ Then}$
	(1) between any two consecutive zeros of f, there is precisely one zero of g.
	(2) between any two consecutive zeros of f, there is no zero of g.
	(3) between any two consecutive zeros of f, there is infinite zeros of g.
	(4) None of these
15.	The eigen values of a Sturm-Liouville BVP are
	(1) Always positive
	(2) Always negative
	(3) Always real
	(4) Always in the pair of complex conjugate

Question No.	Questions
16.	The Charpit's equations for the PDE up ² + q ² + x + y = 0, p = $\frac{\partial u}{\partial x}$,
	$q = \frac{\partial u}{\partial y}$ are given by
	(1) $\frac{dx}{-1-p^3} = \frac{dy}{-1-qp^2} = \frac{du}{2p^2u + 2q^2} = \frac{dp}{2pu} = \frac{dq}{2q}$
	(2) $\frac{dx}{2pu} = \frac{dy}{2q} = \frac{du}{2p^2u + 2q^2} = \frac{dp}{-1 - p^3} = \frac{dq}{-1 - qp^2}$
	(3) $\frac{dx}{up^2} = \frac{dy}{q^2} = \frac{du}{0} = \frac{dp}{x} = \frac{dq}{y}$
	(4) $\frac{dx}{2q} = \frac{dy}{2pu} = \frac{du}{x+y} = \frac{dp}{p^2} = \frac{dq}{qp^2}$
17.	The partial differential equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + u$ can be transformed to
	$\frac{\partial \mathbf{v}}{\partial t} = \frac{\partial^2 \mathbf{v}}{\partial \mathbf{x}^2} \mathbf{for}$
	(1) $v = e^{-t} u$. (2) $v = e^{t} u$.
	(3) $v = tu$. (4) $v = -tu$.
18.	The PDE $x \frac{\partial^2 u}{\partial x^2} + y \frac{\partial^2 u}{\partial y^2} = 0$ is
	(1) elliptic for $x < 0$, $y > 0$ (2) hyperbolic for $x > 0$, $y < 0$
	(3) elliptic for $x > 0$, $y < 0$ (4) hyperbolic for $x > 0$, $y > 0$

Question No.	Questions
110.	
19.	Solution of $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x \partial y} - 6 \frac{\partial^2 z}{\partial y^2} = 0$ is given by
	(1) $z = f_1 (y + 3x) + f_2 (y + 2x)$ (2) $z = f_1 (y + 3x) + f_2 (y - 2x)$
	(3) $z = f_1 (y - 2x) + f_2 (y + 2x)$ (4) None of these
20.	Given Wave equation $\frac{\partial z}{\partial y} = c^2 \frac{\partial^2 z}{\partial x^2}$. By separation of variable, let
	$z(x, y) = X(x) Y(y)$ be a solution. Substituting it in $\frac{\partial z}{\partial y} = c^2 \frac{\partial^2 z}{\partial x^2}$ one have
	$\frac{d^2X}{dx^2}$ + kX = 0 and $\frac{dY}{dy}$ - kc ² Y = 0. If k = - p ² , p is real, then the solution is
	(c's are constants)
	(1) $z(x, y) = (c_1 \cos px) c_2 e^{-c^2 p^2 y}$
	(2) $z(x, y) = (c_1 \cos px + c_2 \sin px) c_1 e^{-c^2 p^2 y}$
	(3) $z(x, y) = e^{-c^2 p^2 y}$
	(4) $z(x, y) = (c_2 \cos px) c_1 e^{-c^2 p^2 y}$
21.	The statement, if f is entire and bounded for all $z \in C$, then f is constant refers to:
	(1) Morera's theorem (2) Maximum modulus theorem
	(3) Liouville's theorem (4) Hurwitz theorem

Question No.	Questions
22.	Let f(z) be analytic in a closed, connected domain, D then which of the following is not true
	(1) The extreme values of the modulus of the function must occur on the boundary
	(2) If f(z) has an interior extrema, then the function is a constant
	(3) The extreme values of the modulus of the function may occur on interior point and f(z) may not be constant
	(4) If $f(z)$ is non constant then $ f(z) $ does not attains an extrema inside the boundary
23.	The function $f: C \to C$ defined by $f(z) = e^z + e^{-z}$ has
	(1) finitely many zeros (2) no zeros
i k	(3) only real zeros (4) has infinitely may zeros
24.	Consider the following complex function $f(z) = \frac{9}{(z-1)(z+2)^2}$. Which of the
	following is one of the residues of the above function?
•	(1) -1 (2) 9/16
	(3) 2 (4) 9
25.	The bilinear transformation that maps the points $z = \infty$, i, 0 into the
9 g 3	points $w = 0$, i, ∞ is
	$(1) \mathbf{w} = -\mathbf{z} \tag{2} \mathbf{w} = \mathbf{z}$
	(3) $w = \frac{-1}{z}$ (4) $w = \frac{1}{z}$

Question No.	Questions
26.	The fundamental theorem of arithmetic states that
	(1) The factoring of any integer n > 1 into primes is not unique apart from the order of prime factors
	(2) The factoring of any integer n > 1 into primes is unique apart from the order of prime factors
	(3) There are infinitely many primes
	(4) The number of prime numbers is finite
27.	The last two digits of 781 are
	(1) 07 (2) 17
	(3) 37 (4) 47
28.	The congruence $35x \equiv 14 \pmod{21}$ has
	(1) 7 solutions (2) 6 solutions
	(3) 9 solutions (4) No solution
29.	If n is a positive integer such that the sum of all positive integers a satisfying $1 \le a \le n$ and GCD $(a, n) = 1$ is equal to 240n, then the number of summands, namely, $\phi(n)$, is
	(1) 120 (2) 124
	(3) 240 (4) 480
30.	If $gcd(m, n) = 1$ where $m > 2$ and $n > 2$, then the integer mn has
	(1) no primitive roots (2) unique primitive root
2	(3) infinite primitive roots (4) finite primitive roots
31.	Let X and Y be metric spaces, and $f: X \rightarrow Y$ a function then which of the following is true
	(1) f is continuous;
	(2) for every open set U in Y, f ⁻¹ (U) is open in X
	(3) for every closed set C in Y, f ⁻¹ (C) is closed in X
	(4) All the above

Question No.	Questions
32.	The metric space (R, d), where d is a usual metric, is
	(1) compact (2) disconnected
	(3) connected but not compact (4) compact and connected
33.	Let (X, d) be a metric space, then for all x, y, z ∈X
	(1) $d(x, y) \le d(x, z) + d(z, y)$ (2) $d(x, y) \ge d(x, z) + d(z, y)$
	(3) $d(x, y) \le 0$ (4) None of these
34.	A normed linear space X is complete iff
	(1) Every convergent series in X is absolutely convergent
	(2) Every convergent series in X is convergent
	(3) Every convergent series in X is uniformly convergent
	(4) Every absolutely convergent series in X is convergent
35.	If W ₁ , W ₂ are two subspaces of a finite dimension vector space V(F), then
	(1) $\dim (W_1 + W_2) = \dim (W_1 \cup W_2)$
	(2) $\dim (W_1 + W_2) = \dim W_1 + \dim W_2$
	(3) $\dim (W_1 + W_2) = \dim W_1 + \dim W_2 - \dim (W_1 \cap W_2)$
	(4) $\dim (W_1 + W_2) = \dim W_1 + \dim W_2 + \dim (W_1 \cap W_2)$
36.	The co-ordinates of vector (1, 1, 1) relative to basis (1, 1, 2), (2, 2, 1) (1, 2, 2) is
	$(1) (1/3, 0, 1/3) \qquad (2) (1/3, 1/3, 0)$
	(3) (0, 1/3, 1/3) (4) None of these
37.	Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. Which of the followin statements implies that T is bijective?
	(1) Nullity (T) = n (2) Rank (T) = Nullity (T) = n
	(3) Rank (T) + Nullity (T) = n (4) Rank (T) – Nullity (T) = n

Question No.	Questions
38.	 Let A, B be n × n real matrices. Which of the following statements is correct? (1) rank (A + B) = rank(A) + rank(B) (2) rank (A + B) ≤ rank(A) + rank(B) (3) rank (A + B) = min {rank(A), rank(B)}
39.	(4) rank (A + B) = max {rank (A), rank(B)} Let A and B be real invertible matrices such that AB = -BA. Then (1) Trace (A) = 1, Trace (B) = 0 (2) Trace (A) = Trace (B) = 1 (3) Trace (A) = 0, Trace (B) = 1 (4) Trace (A) = Trace (B) = 0
40.	Consider the matrix $A(x) = \begin{bmatrix} 1+x^2 & 7 & 11 \\ 3x & 2x & 4 \\ 8x & 17 & 13 \end{bmatrix}$; $x \in \mathbb{R}$. Then (1) A (x) has eigenvalue 0 for some $x \in \mathbb{R}$ (2) 0 is not an eigenvalue of A(x) for any $x \in \mathbb{R}$ (3) A (x) has eigenvalue 0 for all $x \in \mathbb{R}$ (4) A (x) is invertible for every $x \in \mathbb{R}$
41.	A box contains N tickets which are numbered 1, 2,, N. Then value of N is however, unknown. A simple random sample of n tickets is drawn without replacement from the box. Let $X_1, X_2,, X_n$ be numbers on the tickets obtained in the 1^{st} , 2^{nd} ,, n^{th} draws respectively. Here $\overline{X} = \frac{1}{N}(X_1 + X_2 + + X_n)$. Which of the following is an unbiased estimator of N? (1) $2\overline{X} - 1$ (2) $2\overline{X} + 1$ (3) $2\overline{X} + \frac{1}{2}$ (4) $2\overline{X} - \frac{1}{2}$

Question No.	Questions
42.	Let $X_1 \sim N$ (0, 1) and let $X_2 = \begin{cases} -X_1, & -2 \le X_1 \le 2 \\ X_1, & \text{otherwise.} \end{cases}$
	Then identify the correct statement.
	(1) $\operatorname{corr}(X_1, X_2) = 1$
	(2) X ₂ does not have N (0, 1) distribution.
	(3) (X ₁ , X ₂) has a bivariate normal distribution.
	(4) (X ₁ , X ₂) does not have a bivariate normal distribution.
43.	Let $X_1, X_2,, X_n$ be a random sample of size n from a p-variate Normal distribution with mean μ and positive definite covariance matrix Σ . Choose the correct statement
	(1) $(X_1 - \mu)' \sum_{i=1}^{-1} (X_1 - \mu)$ has chi-suare distribution with 1 d.f.
	(2) $\overline{X} \overline{X}'$ has Wishart distribution with p d.f.
	(3) $\sum_{i=1}^{n} (X_i - \mu)(X_i - \mu)'$ has Wishart distribution with n d.f.
	(4) $X_1 + X_2$ and $X_1 - X_2$ are independently distributed.
44.	In which of the following distributions, mean ≥ variance
	(1) Poisson distribution
	(2) Negative binomial distribution
	(3) Normal distribution
	(4) Binomial distribution

Question	Questions
No.	
45.	Let X1, X2, be i.i.d. standard normal random variables and let
	$T_n = \frac{X_1^2 + + X_n^2}{n}$. Then
	(1) The limiting distribution of $T_n - 1$ is χ^2 with 1 degree of freedom.
	(2) The limiting distribution of $\frac{T_n-1}{\sqrt{n}}$ is normal with mean 0 and
	variance 2.
	(3) The limiting distribution of \sqrt{n} $(T_n - 1)$ is χ^2 with 1 degree of freedom.
	(4) The limiting distribution of \sqrt{n} $(T_n - 1)$ is normal with mean 0 and variance 2.
46.	Suppose the cumulative distribution function of failure time T of a
	component is
	$1 - \exp(-ct^{\alpha}), t > 0, \alpha > 1, c > 0.$
	Then the hazard rate of λ (t) is
	(1) constant.
	(2) non-constant monotonically increasing in t.
	(3) non-constant monotonically decreasing in t.
. 8	(4) not a monotone function in t.
47.	Consider the following linear programming problem
	$Maximize z = 3x_1 + 2x_2$
	subject to
	$x_1 + x_2 \ge 1$; $x_1 + x_2 \le 5$; $2x_1 + 3x_2 \le 6$; $-2x_1 + 3x_2 \le 6$
	The problem has
	(1) an unbounded solution
	(2) exactly one optimal solution
	(3) more than one optimal solution
	(4) no feasible solutions

Question No.	Questions
48.	Let $\{X_n : n \ge 0\}$ be a Markov chain on a finite state space S with stationary transition probability matrix. Suppose that the chain is not irreducible. Then the Markov chain :
	(1) admits infinitely many stationary distributions
	(2) admits a unique stationary distribution
	(3) may not admit any stationary distribution
. 81	(4) cannot admit exactly two stationary distributions
49.	Men arrive in a queue according to a Poisson process with rate λ_1 and women arrive in the same queue according to another Poisson process with rate λ_2 . The arrivals of mean and women are independent. The probability that the first arrival in the queue is a man is:
e e e e e e e e e e e e e e e e e e e	(1) $\frac{\lambda_1}{\lambda_1 + \lambda_2}$ (2) $\frac{\lambda_2}{\lambda_1 + \lambda_2}$ (3) $\frac{\lambda_1}{\lambda_2}$ (4) $\frac{\lambda_2}{\lambda_1}$
	$(3) \frac{\lambda_1}{\lambda_2} \qquad (4) \frac{\lambda_2}{\lambda_1}$
50.	Let X (t) be the number of customers in an M/M/1 queuing system with arrival rate $\lambda > 0$ and service rate $\mu > 0$. The process X (t) is a (1) Poisson process with rate $\lambda - \mu$.
	(2) pure birth process with birth rate $\lambda - \mu$.
*	(3) birth and death process with birth rate λ and death rate μ .
	(4) birth and death process with birth rate $1/\lambda$ and death rate $1/\mu$.
51.	The rate of convergence is faster for
	(1) Regula-Falsi method (2) Bisection method
	(3) Newton-Raphson method (4) Cannot say

Question No.				Questio	ns			
52.	immediate (1) Gaus	s a new va ely in the fo s-Jordan m i's method	llowing e	quations (2) G	, this me auss-Se		alled od	is used
53.	The value	of function	f (x) at 4	discrete	points	are givne	below:	
	х	0			2	5	101	
	f(x) 2	3	3	12	147		
	Using Lag	range's for	mula, the	value of				
	(3) 25			(4) 20				
54.	The value	of function	f(x) at 5	discrete	points	are given	below:	gang per pendudukan bahan bahan bahas den
	x	0	0.1	0.2	0.3	0.4		
	f(x)	0	10	40	90	160]	
* 1000	Using Tra	pezoidal rı	ıle with s	tep size (of 0.1, tl	ne value o	of $\int_{0}^{0.4} f(x) dx$	x is
	(1) 10.8			(2) 1	3.4			
	(3) 18.7			(4) 2	2.0			
55.	If y' = x +	$y, y(0) = $ $y_2(x) \text{ is :}$	1, y ₁ (x) =	= 1 + x +	$\frac{x^2}{2}$, the	en by Pic	ard's met	hod, the
	(1) 1+x	$x + x^2 + \frac{x^3}{6}$			-x+x			
	(3) 1+x	$x - x^2 + \frac{x^3}{6}$		(4) 1	+ x + x	$x^2 - \frac{x^3}{6}$		

Question No.	Questions
56.	$I = \int\limits_{x_1}^{x_2} F\left(y,y'\right) dx \text{whose ends are fixed is stationary if } y \text{ satisfies the}$ equation
	(1) $\frac{\partial F}{\partial y'} = \text{constant}$ (2) $F - y' \frac{\partial F}{\partial y'} = \text{constant}$
	(3) $F - y \frac{\partial F}{\partial y'} = constant$ (4) $F' - y \frac{\partial F}{\partial y'} = constant$
57.	If J [y] = $\int_{1}^{2} (y'^2 + 2yy' + y^2) dx$, y (1) = 1 and y (2) is arbitrary, then the
	extremal is (1) e^{x-1} (2) e^{x+1} (3) e^{1-x} (4) e^{-x-1}
58.	The extremal of $\int_{1}^{2} \frac{\dot{x}^2}{t^3} dt$; x (1) = 3, x (2) = 18 (where $\dot{x} = \frac{dx}{dt}$) using Lagrange's
	equation is given by which of the following?
	(1) $x = t^4 + 2$ (2) $x = \frac{15}{7} t^3 + \frac{6}{7}$
	(3) $x = 5t^2 - 2$ (4) $x = 5t^3 + 3$
59.	The kernel sin (x + t) is
	(1) separable kernel (2) difference kernel
	(3) adjoint kernel (4) none of these

Question No.	Questions
60.	The solution to the integral equation $\phi(x) = x + \int_0^x \sin(x-\xi)\phi(\xi) d\xi$ is given by
1	(1) $x^2 + \frac{x^3}{3}$ (2) $x - \frac{x^3}{3!}$
	(3) $x + \frac{x^3}{3!}$ (4) $x^2 - \frac{x^3}{3!}$
61.	A continuous random variable X has a probability density function $f(x) = e^{-x}$, $0 \le x \le \infty$. Then $P(X > 1)$ is
	(1) 0.368 (2) 0.5
	(3) 0.632 (4) 1.0
62.	Let X and Y be two random variables having the joint probability density
Y	function $f(x, y) = \begin{cases} 2 & \text{if } 0 < x < y < 1 \\ 0 & \text{otherwise.} \end{cases}$
	Then the conditional probability $P\left(X \le \frac{2}{3} \mid Y = \frac{3}{4}\right)$ is equal to
	(1) 5/9 (2) 2/3
	(3) 7/9 (4) 8/9
63.	The variance of a random variable X is given by
	(1) $E[X - E(X)]^2$ (2) $[E(X)]^2 - E(X)^2$
	(3) $E(X)^2 + (E(X))^2$ (4) None of these

Question No.	Questions
64.	Standard Normal Variate has
	(1) Mean = 0 and variance = 1 (2) Mean = 1 and variance = 0
	(3) Mean = 1 and variance = 1 (4) None of these
65.	When $n \to \infty$, the Binomial distribution can be approximated as
	(1) Bernoulli distribution (2) Uniform distribution
= 12	(3) Poisson distribution (4) None of these
66.	The variance of Poisson distribution is given by
	(1) $\sigma^2 = \lambda$ (2) $\sigma^2 = \frac{1}{\lambda}$
	(3) $\sigma^2 = \frac{1}{\lambda^2}$ (4) None of these
67.	The first moment about origin is known as
7.5	(1) Mean (2) Variance
	(3) Standard deviation (4) None of these
68.	In a hypothesis-testing problem, which of the following is not required in order to compute the p-value?
	(1) Value of the test statistic
	(2) Distribution of the test statistic under the null hypothesis
	(3) The level of significance
	(4) Whether the test is one-sided or two-sided

uestion No.	Questions
69.	In testing H : μ = 100 against A : μ ≠ 100 at the 10% level of significance, H is rejected if
-1	(1) 100 is contained in the 90% confidence interval
	(2) The value of the test statistic is in the acceptance region
	(3) The p-value is less than 0.10
	(4) The p-value is greater than 0.10
70.	In the context of testing of statistical hypothesis, which one of the following statements is true?
	(1) When testing a simple hypothesis H ₀ against an alternative simple hypothesis H ₁ , the likelihood ratio principle leads to the most powerful test.
	(2) When testing a simple hypothesis H_0 against an alternative simple hypothesis H_1 , P [rejecting $H_0 \mid H_0$ is true] + P [accepting $H_0 \mid H_1$ is true] = 1.
	(3) For testing a simple hypothesis H ₀ against an alternative simple hypothesis H ₁ , randomized test is used to achieve the desired level of the power of the test.
	(4) UMP test for testing a simple hypothesis H ₀ against an alternative simple hypothesis H ₁ , always exist.
71.	If p is a prime, then any group G of order 2p has
	(1) a normal subgroup of order p
- 124	(2) a normal subgroup of order 2p
	(3) a normal subgroup of order p ²
	(4) None of these
72.	Let G be simple group of order 60. Then
0 3	(1) G has six Sylow-5 subgroups
	(2) G has four Sylow-3 subgroups
	(3) G has a cyclic subgroup of order 6
	(4) G has a unique element of order 2

Question No.	Questions
73.	Let R be a Euclidean domain such that R is not a field. Then the polynomial ring $R[X]$ is always
	(1) a Euclidean domain
	(2) a principal ideal domain but not a Euclidean domain
	(3) a unique factorization domain but not a principal ideal domain
	(4) not a unique factorization domain
74.	Let $p(x) = 9x^5 + 10x^3 + 5x + 15$ and $q(x) = x^3 - x^2 - x - 2$ be two polynomials in Q[x]. Then over Q,
E not to	(1) p(x) and q(x) are both irreducible
	(2) p(x) is reducible but q(x) is irreducible
	(3) p(x) is irreducible but q(x) is reducible
	(4) p(x) and q(x) are both reducible
75.	Find the degree of the field extension $Q\left(\sqrt{2}, \sqrt[4]{2}, \sqrt[8]{2}\right)$ over Q .
	(1) 4 (3) 14 (2) 8 (4) 32
76.	Let F be a finite field and let K/F be a field extension of degree 6. The the Galois group of K/F is isomorphic to
	(1) the cyclic group of order 6
	(2) the permutation group of {1, 2, 3}
	(3) the permutation group on {1, 2, 3, 4, 5, 6}
	(4) the permutation group on {1}
77.	Let X be a topological space and A be a subset of X, then X is separable
	(1) A is countable and $\overline{A} = X$ (2) \overline{A} is countable

Question No.	Questions
78.	Which of the following spaces is not separable?
	(1) R with the trivial topology
	(2) The Cantor set as a subspace of R
	(3) R with the discrete topology
	(4) None of these
79.	Which of the following is true?
	(1) Let X be compact and $f: X \to R$ be locally bounded. Then f is not bounded.
	(2) Closed subspaces of compact spaces are compact
	(3) Closed subspaces of compact spaces may not be compact
	(4) Continuous images of compact spaces may not be compact
80.	Let X and Y be two topological spaces and let $f: X \to Y$ be a continuous function. Then
	(1) $f(K)$ is connected if $K \subset X$ is connected
	(2) $f^{-1}(K)$ is connected if $K \subset Y$ is connected
	(3) $f^{-1}(K)$ is compact if $K \subset Y$ is compact
	(4) None of these
81.	The Linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ corresponding to the matrix
	[1 0 0]
	0 2 0 is
	$\begin{bmatrix} 0 & 0 & 3 \end{bmatrix}$
n ee j	(1) $T(x_1, x_2, x_3) = (x_1, 2x_2, 3x_3)$
	(2) $T(x_1, x_2, x_3) = (x_1 + x_3, 2x_1 + x_2, x_2 + x_3)$
	(3) $T(x_1, x_2, x_3) = (x_1, x_2, x_3)$
	(4) None of these
	(2) 21020 01 01000

Question No.	Questions
82.	The matrix $\begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix}$ is
	 non-negative definite but not positive definite positive definite negative definite neither negative definite nor positive definite
83.	Let $X = \begin{bmatrix} 2 & 0 & -3 \\ 3 & -1 & -3 \\ 0 & 0 & -1 \end{bmatrix}$. A matrix P such that $P^{-1}XP$ is a diagonal matrix, is
2 AM	(1) $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ (2) $\begin{bmatrix} -1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$
	$ \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} $
84.	The norm of x with respect to inner product space $\langle x, x \rangle$ is
	(1) $ \mathbf{x} = \langle \mathbf{x}, \mathbf{x} \rangle$ (2) $ \mathbf{x} ^2 = \langle \mathbf{x}, \mathbf{x} \rangle$
	(3) $ x = \langle x, x \rangle^2$ (4) None of these
85.	Cayley-Hamilton theorem states that (1) Every square matrix satisfies its own characteristic equation (2) Every square matrix does not satisfy its own characteristic equatio (3) Every rectangular matrix satisfies its own characteristic equation (4) None of these

uestion	Questions
No.	
86.	If $ z = z-1 $ then
	(1) Re (z) = 1 (2) Re (z) = $1/2$
3	(3) Im (z) = 1 (4) Im (z) = $1/2$
87.	The power series $\sum_{n=0}^{\infty} 3^{-n} (z-1)^{2n}$ converges if
	(1) $ z \le 3$ (2) $ z < \sqrt{3}$
	(3) $ z-1 < \sqrt{3}$ (4) $ z-1 \le \sqrt{3}$
88.	An analytic function of a complex variable $z = x + iy$ is expressed at $f(z) = u(x, y) + iv(x, y)$, where $i = \sqrt{-1}$. If $u(x, y) = 2xy$, then $v(x, y)$ must be
,	(1) $x^2 + y^2 + constant$ (2) $x^2 - y^2 + constant$
	(3) $-x^2 + y^2 + constant$ (4) $-x^2 - y^2 + constant$
89.	$\int_{ z =2} \frac{2z}{z^2+2} dz =$
	(1) 0 (2) $-2\pi i$
	(3) 4πi (4) 1
90.	The value of $\int_{C} \frac{\sin z}{4z + \pi} dz$ where $C : z = 1$ is a positively oriented contour
	(1) 0 (2) $\frac{-\sqrt{2} \pi i}{4}$
	$(3) \frac{-\sqrt{2}i}{4} \qquad \qquad (4) \qquad \frac{-\pi i}{4}$

Question No.	Questions					
91.	The non-empty set of real numbers which is bounded below has					
	(1) supremum (2) infimum	v mores v				
	(3) upper bound (4) none of these					
92.	The sequence $\{f_n\}$ where $f_n(x) = x^n$ is convergent on $[0, k]$], k < 1				
	(1) uniformly (2) pointwise	*				
	(3) nowhere (4) none of these	8) (F				
93.	Every bounded sequence has at least one limit point. This represe	ents				
12 13	(1) Archimedean Property (2) Heine-Borel theorem					
	(3) Bolzano-Weierstress theorem (4) Denseness Property					
94.	Which of the following is convergent?	THE RESERVE AND PROPERTY.				
	(1) $\sum_{n=1}^{\infty} n^2 2^{-n}$ (2) $\sum_{n=1}^{\infty} n^{-2} 2^n$					
	(3) $\sum_{n=2}^{\infty} \frac{1}{n \log n}$ (4) $\sum_{n=1}^{\infty} \frac{1}{n \log (1+1/n)}$					
95.	If a function f defined on [0, 1] as $f(x) = \begin{cases} i, & \text{if } x \neq 1/2 \\ 0, & \text{if } x = 1/2 \end{cases}$, then					
	(1) f is not bounded					
	(2) f is R-integrable					
	(3) f is not R-integrable since f is not bounded					
	(4) f is not R-integrable since lower and upper limits are unequa	d				
96.	Let $f: \mathbb{R} \to \mathbb{R}$ be a monotone function. Then					
	(1) f has no discontinuities					
	(2) f has only finitely many discontinuities.					
	(3) f can have at most countably many discontinuities					
	(4) f can have uncountably many discontinuities					

Question No.	Questions
97.	The length of an interval I is
	(1) Outer measure of an interval I
	(2) Less than outer measure of an interval I
	(3) Greater than outer measure of an interval I
	(4) Twice the outer measure of an interval I
98.	A set E is said to be Lebesgue measurable if for each set A
	(1) $m^*(A) = m^*(A \cap E) - m^*(A \cap E^c)$
	(2) $m^*(A) = m^*(A \cap E^c) - m^*(A \cap E)$
	(3) $m^*(A) = m^*(A \cup E) + m^*(A \cap E^c)$
	(4) $m^*(A) = m^* (A \cup E) - m^* (A \cap E^c)$
99.	A non-negative measurable function f is integrable over the measurable set E if
	$(1) \int_{\mathbb{E}} f = \infty \qquad (2) \int_{\mathbb{E}} f > \infty$
	(3) $\int_{\mathbb{E}} f < \infty$ (4) None of these
100.	If f is of bounded variation on $[a, b]$ and $c \in (a, b)$. Then
	(1) f is of bounded variation on [a, c] and on [c, b]
	(2) f is not of bounded variation on [a, c] and on [c, b]
	(3) f is constant on [a, c] and on [c, b]
	(4) None of these

Mathematics PhD Entrance Test Key

Sr. No	Set- A	Set-B	Set-C	Set-D
1	В	D	Δ	D
2	A	-	Δ	B
3	(Δ	-	В
Δ	Δ	D	C	B
5	B	0	D	Δ
5	0	<u>C</u>	В	A
6	^	В	A	В
1	A/	D	A	0
8	A /	В	C	<u>C</u>
9	C	D	В	В
10	A	A	A	C
11	D /	Α.	Α	В
12	C ,	D	В	В
13	Α,	С	Α	С
14	D /	D	В	А
15	C /	D	A	C
16	B /	В	В	В
17	D/	В	C	A
18	B /	D	C	В
19	D /	Α	C	В
20	A /	C	В	В
21	A .	D	В	С
22	B -	В	А	С
23	A /	В	С	D
24	B -	В	A	A
25	A -	А	В	С
26	B -	В	C	В
27	C /	D	A	A
28	C '	C	A	A
29	C /	В	C	D
30	B /	C	А	Α
31	C /	В	Α	D
32	C	В	D	C
33	D /	C	C	A
34	A /	A	D	D
35	C /	C	D	C
'36	B /	В	В	В
37	A /	A	В	D
38	A /	В	D	В
39	D /	В	A	D
40	A	В	C	A
41	A /	C	C	A
42	A /	C	В	D
43	C /	D	В	C
44	C /	A	D	D
45	B /	C	A	D
46	A	В	В	В
47	A	A	C	В
48	C	A	A	D
49	B /	D	A	A

Sumed Ampipelle Muran 20/11/18 Porange

50	A	A	C	C
51	B /	A	C	С
52	B '	В	C	В
53	C -	A	D	В.
54	A	В	A	D
55	C /	A	С	A
56	B	В	В	В
57	A	C	A	C
58	B /	C	A	A
59	B -	C	D	A
60	B	В	A	С
61	C -	Α	D	A
62	B	A	В	D
63	B '	С	В	A
64	D/	С	В	A
65	A -	В	A	C
66	B	A	В	A
67	C /	A	D	A
68	'A /	C	C	C
69	A /	В	В	C
70	C /	A	С	A
71	D	C	Α	A
72	B /	В	D	A
73	B ′	В	А	C
74	B /	D	Α	C
75	A	A	C	В
76	B /	В	A	A
77	Ď ′	C	А	А
78	C '	Α	C	C
79	B /	Α	C	В
80	C /	C	Α	А
81	A /	В	D	Α
82	D /	Α	C	В
83	A /	C	Α	· A
84	Α ′	Α	D	В
85	C /	В	C	Α
86	A /	C	В	В
87	A /	A	D	C
88	C /	A	В	C
89	C /	C	D	C
90	A	A	A	В
91	A	A	В	В
92	0	0	В	A
93	D /	A		C
95	D /	A	A	A
	D		C	В
96	B /	A	В	C
98	D /	A	A	A
99	1	-	B	A
100	6	^	D	
100		A	D	А

Juned Anja 20/11/18 Meerand 18. Ponant Meerand 18. 20/11/18